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Abstract
For certain non compact Riemannian manifolds with ends which may or may not satisfy the

doubling condition on the volume of geodesic balls, we obtain Littlewood-Paley type estimates
on (weighted) Lp spaces, using the usual square function defined by a dyadic partition.

(French translation) Pour certaines variétés riemanniennes à bouts, satisfaisant ou non la
condition de doublement de volume des boules géodésiques, nous obtenons des décompositions
de Littlewood-Paley sur des espaces Lp (à poids), en utilisant la fonction carrée usuelle définie
via une partition dyadique.
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1 Introduction

1.1 Motivation and description of the results

Let (M, g) be a Riemannian manifold, ∆g be the Laplacian on functions and dg be the Riemannian
measure. Consider a dyadic partition of unit, namely choose ϕ0 ∈ C∞0 (R) and ϕ ∈ C∞0 (0,+∞)
such that

1 = ϕ0(λ) +
∑
k≥0

ϕ(2−kλ), λ ≥ 0. (1.1)

The existence of such a partition is standard. In this paper, we are basically interested in getting
estimates of ||u||Lp(M,dg) in terms of ϕ(−2−k∆g)u, either through the following square function

S−∆gu(x) :=

|ϕ0(−∆g)u(x)|2 +
∑
k≥0

|ϕ(−2−k∆g)u(x)|2
1/2

, x ∈M, (1.2)
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or, at least, through ∑
k≥0

||ϕ(−2k∆g)u||2Lp(M,dg)

1/2

,

and a certain remainder term. For the latter, we have typically in mind estimates of the form

||u||Lp(M,dg) .

∑
k≥0

||ϕ(−2k∆g)u||2Lp(M,dg)

1/2

+ ||u||L2(M,dg), (1.3)

for p ≥ 2. In the best possible cases, we want to obtain the equivalence of norms

||S−∆g
u||Lp(M,dg) ≈ ||u||Lp(M,dg), (1.4)

which is well known, for 1 < p < ∞, if M = Rn and g is the Euclidean metric (see for instance
[13, 12, 16]).

Such inequalities are typically of interest to localize at high frequencies the solutions (and
the initial data) of partial differential equations involving the Laplacian such as the Schrödinger
equation i∂tu = ∆gu or the wave equation ∂2

t u = ∆gu, using that ϕ(−h2∆g) commutes with
∆g. For instance, estimates of the form (1.3) have been successfully used in [5] to prove Strichartz
estimates for the Schrödinger equation on compact manifolds. The article [5] was the first source of
inspiration of the present paper, a part which is to prove (1.3) for non compact manifolds. Another
motivation came from the fact that, rather surprisingly, we were unable to find in the literature
a reference for the equivalence (1.4) in reasonable cases such as asymptotically conical manifolds
(the latter is certainly clear to specialists).

We point out that the equivalence (1.4) actually holds on compact manifolds, but (1.3) is
sufficient to get Strichartz estimates. Moreover (1.3) is rather robust and still holds in many cases
where (1.4) does not. For instance, on asymptotically hyperbolic manifolds where the volume of
geodesic balls grows exponentially (with respect to their radii), (1.4) is not expected to hold, but, as
a consequence of the results of the present paper, we have nevertheless (1.3). We will briefly recall
the application of (1.3) to Strichartz estimates, and more precisely a spatially localized version
thereof, after Theorem 1.7.

Littlewood-Paley inequalities on Riemannian manifolds are subjects of intensive studies. There
is a vast literature in harmonic analysis studying continuous analogues of the square function (1.2),
the so-called Littlewood-Paley-Stein functions defined via integrals involving the Poisson and heat
semigroups [13]. An important point is to prove Lp → Lp bounds related to these square functions
(see for instance [8] and [6]). However, as explained above, weaker estimates of the form (1.3) are
often highly sufficient for applications to PDEs. Moreover, square functions of the form (1.2) are
particularly convenient in microlocal analysis since they involve compactly supported functions of
the Laplacian, rather than fast decaying ones. To illustrate heuristically this point, we consider
the linear Schrödinger equation i∂tu = ∆gu: if the initial data is spectrally localized at frequency
2k/2, ie ϕ(−2−k∆g)u(0, .) = u(0, .), there is microlocal finite propagation speed stating that the
microlocal support (or wavefront set) of u(t, .) is obtained by shifting the one of u(0, .) along the
geodesic flow at speed ≈ 2k/2. This property, which is very useful in the applications, fails if ϕ is
not compactly supported (away from 0). Another similar interest of compactly supported spectral
cutoffs for the Schrödinger equation is that high frequency asymptotics like the geometric optics
approximation are much easier to obtain for spectrally localized data.

As far as dyadic decompositions associated to non constant coefficients operators are concerned,
we have already mentioned [5]. We also have to quote the papers [7] and [10]. In [7], the authors
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develop a dyadic Littlewood-Paley theory for tensors on compact surfaces with limited regularity
(but in low dimension) which is of great interest for nonlinear applications. In [10], the Lp equiva-
lence of norms for dyadic square functions (including small frequencies) associated to Schrödinger
operators are proved for a restricted range of p. See also the recent survey [9] for Schrödinger
operators on Rn.

In the present paper, we shall use the analysis of ϕ(−h2∆g) for h ∈ (0, 1], obtained in [1], to
derive Littlewood-Paley inequalities on manifolds with ends. We can summarize our results in a
model case as follows (see Definition 1.1 for the general manifolds considered here). Assume for
simplicity that a neighborhood of infinity of (M, g) is isometric to

(
(R,∞)× S, dr2 + dθ2/w(r)2

)
,

with (S, dθ2) a compact manifold and w(r) > 0 a smooth bounded positive function. For instance
w(r) = r−1 corresponds to conical ends, and w(r) = e−r to hyperbolic ends. We first show that by
considering the modified measure d̃g = w(r)1−ndg ≈ drdθ and the associated modified Laplacian
∆̃g = w(r)(1−n)/2∆gw(r)(n−1)/2, we always have the equivalence of norms

||S−∆̃g
u||

Lp(M,d̃g)
≈ ||u||

Lp(M,d̃g)
,

for 1 < p < ∞, the square function S−∆̃g
being defined by changing ∆g into ∆̃g in (1.2). By

giving weighted version of this equivalence, we recover (1.4) when w−1 is of polynomial growth.
Nevertheless, we emphasize that (1.4) can not hold in general for it implies that ϕ(−∆g) is bounded
on Lp(M, dg) which may fail for instance in the hyperbolic case (see [15]). Secondly, we prove that
more robust estimates of the form (1.3) always hold and can be spatially localized (see Theorem
1.7).

Here are the results.

Definition 1.1. The manifold (M, g) is called almost asymptotic if there exist a compact set
K b M, a real number R, a compact manifold S, a function r ∈ C∞(M,R) and a function
w ∈ C∞(R, (0,+∞)) with the following properties:

1. r is a coordinate near M\K and

r(x)→ +∞, x→∞,

2. for some rK > 0, there is a diffeomorphism

M\K → (rK,+∞)× S, (1.5)

through which the metric reads in local coordinates

g = Gunif

(
r, θ, dr, w(r)−1dθ

)
(1.6)

with
Gunif(r, θ, V ) :=

∑
1≤j,k≤n

Gjk(r, θ)VjVk, V = (V1, . . . , Vn) ∈ Rn,

if θ = (θ1, . . . , θn−1) are local coordinates on S.

3. The symmetric matrix (Gjk(r, θ))1≤j,k≤n has smooth coefficients such that, locally uniformly
with respect to θ, ∣∣∂jr∂αθ Gjk(r, θ)

∣∣ . 1, r > rK, (1.7)

and is uniformly positive definite in the sense that, locally uniformly in θ,

Gunif(r, θ, V ) ≈ |V |2, r > rK, V ∈ Rn. (1.8)
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4. The function w is smooth and satisfies, for all k ∈ N,

w(r) . 1, (1.9)
w(r)/w(r′) ≈ 1, if |r − r′| ≤ 1 (1.10)∣∣dkw(r)/drk

∣∣ . w(r), (1.11)

for r, r′ ∈ R.

Typical examples are given by asymptotically conical manifolds for which w(r) = r−1 (near
infinity) or asymptotically hyperbolic ones for which w(r) = e−r. We note that (1.10) is equivalent
to the fact that, for some C > 0,

C−1e−C|r−r
′| ≤ w(r)

w(r′)
≤ CeC|r−r

′|, r, r′ ∈ R. (1.12)

In particular, this implies that w(r) & e−Cr.
We recall that, if θ = (θ1, . . . , θn−1) are local coordinates on S and (r, θ) are the corresponding

ones on M\K, the Riemannian measure takes the following form near infinity

dg = w(r)1−nb(r, θ)drdθ1 . . . dθn−1 (1.13)

with b(r, θ) bounded from above and from below for r � 1, locally uniformly with respect to θ.
We also define the density

d̃g = w(r)n−1dg (1.14)

and the operator

∆̃g = w(r)(1−n)/2∆gw(r)(n−1)/2. (1.15)

The multiplication by w(r)(n−1)/2 is a unitary isomorphism between L2(M, d̃g) and L2(M, dg)
so the operators ∆g and ∆̃g, which are respectively essentially self-adjoint on L2(M, dg) and
L2(M, d̃g), are unitarily equivalent.

Let us denote by P either −∆g or −∆̃g. For u ∈ C∞0 (M), we define the square function SPu
related to the partition of unit (1.1) by

SPu(x) :=

|ϕ0(P )u(x)|2 +
∑
k≥0

|ϕ(2−kP )u(x)|2
1/2

, x ∈M. (1.16)

Our first result is the following one.

Theorem 1.2. For all 1 < p <∞, the following equivalence of norms holds

||u||
Lp(M,d̃g)

≈ ||S−∆̃g
u||

Lp(M,d̃g)
.

This theorem implies in particular that ϕ0(−∆̃g) and ϕ(−2k∆̃g) are bounded on Lp(M, d̃g).
For the Laplacian itself, it is known that compactly supported functions of ∆g are in general not
bounded on Lp(M, dg) (see [16]) so we can not hope to get the same property. We however have
the following result.
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Theorem 1.3. For all 2 ≤ p <∞ and all M ≥ 0,

||u||Lp(M,dg) . ||S−∆g
u||Lp(M,dg) + ||(1−∆g)−Mu||L2(M,dg).

Using the fact that, for p ≥ 2, ||(
∑
k |uk|2)1/2||Lp ≤ (

∑
k ||uk||2Lp)1/2, we obtain in particular:

Corollary 1.4. For all p ∈ [2,∞),

||u||
Lp(M,d̃g)

.

∑
k≥0

||ϕ(−2k∆̃g)u||2Lp(M,d̃g)

1/2

+ ||ϕ0(−∆̃g)u||Lp(M,d̃g)
, (1.17)

||u||Lp(M,dg) .

∑
k≥0

||ϕ(−2k∆g)u||2Lp(M,dg)

1/2

+ ||u||L2(M,dg). (1.18)

Note the two different situations. In (1.18), we have an L2 remainder which comes essentially
from the Sobolev injection

(1−∆g)−n/2−ε : L2(M, dg)→ L∞(M). (1.19)

The translation of (1.19) in terms of ∆̃g is that w(r)(n−1)/2(1 − ∆̃g)−n/2−ε is bounded from
L2(M, d̃g) to L∞(M) which of course doesn’t imply in general that (1 − ∆̃g)−n/2−ε is bounded
from L2(M, d̃g) to L∞(M). In particular, one can not clearly replace the last term of (1.17) by
||u||

L2(M,d̃g)
. We may however notice that, by the results of [1], C∞0 functions of ∆̃g are bounded

on Lp(M, d̃g), for 1 < p <∞.
Actually, we have a result which is more general than Theorem 1.2. Consider a temperate

weight W : R→ (0,+∞), that is a positive function such that, for some C,M > 0,

W (r′) ≤ CW (r)(1 + |r − r′|)M , r, r′ ∈ R. (1.20)

Theorem 1.5. For all 1 < p <∞, we have the equivalence of norms

||W (r)u||
Lp(M,d̃g)

≈ ||W (r)S−∆̃g
u||

Lp(M,d̃g)
.

This is a weighted version of Theorem 1.2. Then, using that

Lp(M, dg) = w(r)
n−1
p Lp(M, d̃g), p ∈ [1,∞), (1.21)

and that products or (real) powers of weight functions are weight functions, we deduce the following
result.

Corollary 1.6. If w is a temperate weight, then for all 1 < p < ∞, we have the equivalence of
norms

||W (r)u||Lp(M,dg) ≈ ||W (r)S−∆g
u||Lp(M,dg).

Naturally, this result holds with W = 1 and we obtain (1.4) if w is a temperate weight. In
particular, in the case of asymptotically euclidean manifolds, this provides a justification of Lemma
3.1 of [4].

As noted previously, Theorems 1.2 and 1.3 are interesting to localize some PDEs in frequency.
In practice, it is often interesting to localize the datas both spatially and spectrally. For the latter,
one requires additional knowledge on the spectral cutoffs, typically commutator estimates. Such
estimates are rather straightforward consequences of the analysis of [1] and allow to prove the
following localization property.
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Theorem 1.7. Let χ ∈ C∞(M) be constant outside a compact set (typically χ or 1−χ compactly
supported). Assume that p ∈ [2,∞) and that

0 ≤ n

2
− n

p
≤ 1. (1.22)

Then

||χu||Lp(M,dg) .

∑
k≥0

||χϕ(−2k∆g)u||2Lp(M,dg)

1/2

+ ||u||L2(M,dg). (1.23)

This theorem could be generalized by considering for instance more general cutoffs, or even
differential operators. We give only this simple version, which will be used in [2] to prove Strichartz
estimates at infinity using semi-classical methods in the spirit of [3]. To make such applications
of Theorem 1.7 clearer, we recall very briefly the interest of the estimate (1.23) for the proof
of (spatially localized) Strichartz estimates. We follow [5]. If u(t) = eit∆gu0 is the solution
to the homogeneous linear Schrödinger equation with initial condition u0 ∈ L2(M, dg), and if
(p1, p2) 6= (2,∞) is a Schrödinger admissible pair of exponents, ie such that

2
p1

+
n

p2
=
n

2
, p1 ≥ 2, p2 ≥ 2,

then p2 satisfies (1.22) and (1.23) gives

||χeit∆gu0||Lp2 (M,dg) .

∑
k≥0

||χeit∆gϕ(−2k∆g)u0||2Lp2 (M,dg)

1/2

+ ||u0||L2(M,dg). (1.24)

If we are able to prove Strichartz estimates for spectrally localized data, ie(∫ 1

0

||χeit∆gϕ(−2k∆g)u0||p1Lp2 (M,dg)dt

)1/p1

≤ C||u0||L2(M,dg), (1.25)

with C independent of k (and u0 of course), then we can assume that the term u0 is spectrally
localized too, by applying a spectral cutoff ϕ̃(−2−k∆g) with ϕ̃ϕ = ϕ. Proving (1.25) is a different
topic, but we point out that the spectral localization simplifies significantly the analysis. We then
automatically obtain the non spectrally localized version(∫ 1

0

||χeit∆gu0||p1Lp2 (M,dg)dt

)1/p1

≤ C||u0||L2(M,dg),

by squaring (1.25) with a spectrally localized right hand side, and summing over k; the L2 norms
in the right hand side can be summed by almost orthogonality, and for the left hand side, one uses
(1.24) to get(∫ 1

0

||χeit∆gu0||
2
p1
2

Lp2 (M,dg)dt

) 2
p1

.
∑
k

(∫ 1

0

||χeit∆gϕ(−2k∆g)u0||
2
p1
2

Lp2 (M,dg)dt

) 2
p1

+ ||u0||2L2(M,dg),

since p1 ≥ 2 and where the sum converges since each term is controlled by ||ϕ̃(−2k∆g)u0||2L2 , using
(1.25).
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1.2 Outline of the proofs

In this subsection, we summarize the analysis of the next sections by giving the main tools leading
to our Littlewood-Paley estimates and, as an illustration, by proving Theorem 1.3 and Corollary
1.6, in the slightly simpler situation where W = 1. The first tool relies on the results of [1] and
the second one is the core of the present paper.

For simplicity, we denote by Ak the operators

A0 = ϕ0(P ), Ak = ϕ(21−kP ), k ≥ 1, (1.26)

and by
fk : [0, 1]→ {−1, 1}, k ≥ 0,

the usual Rademacher sequence (see Section 5).

1st tool. Parametrix of the Ak. It consists in getting a decomposition of the operators Ak of
the form

Ak = Ψk +Rk, k ≥ 0, (1.27)

where Ψk is a properly supported pseudo-differential operator (with kernel supported close to
the diagonal) and Rk is a remainder satisfying good properties. More explicitly, we will use the
following properties of the sequence (Rk)k≥0:

1. If w is a temperate weight, then for all p1 ∈ (1, 2]∑
k

||Rk||Lp1 (M,dg)→Lp1 (M,dg) <∞. (1.28)

This actually holds for all 1 < p1 <∞ but we shall not need this property for p1 > 2.

2. In the general case, if w is not necessarily temperate, then for all M ≥ 0,∑
k

||(1−∆g)MRk(1−∆g)M ||L2(M,dg)→L2(M,dg) <∞. (1.29)

This means more precisely that, for all M ≥ 0, we can split Ak according to (1.27) with
Ψk = Ψk(M) and Rk = Rk(M) both depending on M with (Rk(M))k≥0 satisfying (1.29).

This description is sufficient here. In Section 2, we will recall more precisely the results of [1]
that will be used in this paper.

2nd tool: Singular integral estimates on the diagonal term. Using the precise description
of the operators Ψk, we will show that, for all p1 ∈ (1, 2],

||
k∑
k=0

fk(t)Ψk||Lp1 (M,dg)→Lp1 (M,dg) .p1 1, t ∈ [0, 1], k ∈ N. (1.30)

As usual, this will come from an interpolation between a trivial L2 bound and a non trivial
weak L1 bound. The L2 bound, ie (1.30) with p1 = 2, is obtained by writing Ψk = Ak − Rk and
by using the almost orthogonality of the operators Ak and the L2 summability of the Rk (ie (1.29)
with M = 0). The weak L1 estimate will use a suitable Calderón-Zygmund decomposition which
we now describe.
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We first explain how to transfer the analysis to an open subset of Rn of the form

Ω = (rK,+∞)r × Rn−1
θ , (1.31)

equipped with the measure
ν = w(r)1−ndrdθ,

where dθ is the Lebesgue measure on Rn−1. We simply use that M can be covered by finitely
many coordinate patches Uι such that

Ψk =
∑
ι

Ψk,ι,

where each Ψk,ι has a Schwartz kernel supported in Uι × Uι. Thus, for each ι, the operators∑
k≤k fk(t)Ψk,ι are fully described in the single chart Uι and, using local coordinates, we are left

with operators acting on Ω and with kernels supported on Ω×Ω. The measure ν is the expression
of dg in coordinates, up to factor bounded from above and below (see (1.13)). Note that this kind
of local charts are typically relevant in the neighborhood of infinity ofM but compactly supported
charts, and the expression of dg therein, can be artificially put under this form too.

Our Calderón-Zygmund decomposition for a function u ∈ L1(Ω, dν) will be of the form u =
ũ+

∑
j uj where ũ ∈ L∞(Ω, dν)∩L1(Ω, dν) is the good part, and the uj form the bad parts which

will be supported either in ‘small balls’ of the form

B(r0, θ0, t0) =
{

(r, θ) | |r − r0|+
|θ − θ0|
w(r0)

≤ t0
}
, (1.32)

with t0 ≤ 1, or in ‘large cylinders’ of the form

C(r0, θ0, t0) =
{

(r, θ) | |r − r0| ≤ 1 and
|θ − θ0|
w(r0)

≤ t0
}
, (1.33)

with t0 > 1. The reason for considering those sets is that the measure dν is non doubling in
general, in the sense that ν(B(r0, θ0, Dt0)) can not be estimated by Dmν(B(r0, θ0, t0)) (for some
m) uniformly with respect to (r0, θ0, t0) if we allow large t0. This is easily seen when w(r) = e−r

for instance. We shall however exploit that, if we set

B∗D(r0, θ0, t0) =
{

(r, θ) | |r − r0|+
|θ − θ0|
w(r0)

≤ Dt0
}
, (1.34)

C∗D(r0, θ0, t0) =
{

(r, θ) | |r − r0| ≤ 2 and
|θ − θ0|
w(r0)

≤ Dt0
}
, (1.35)

we have the doubling property on the sets of small balls and large cylinders ie

Q := {B(r, θ, t) | (r, θ) ∈ Ω, 0 < t ≤ 1} ∪ {C(r, θ, t) | (r, θ) ∈ Ω, t > 1} . (1.36)

This is the meaning of the following proposition.

Proposition 1.8. For all ’doubling’ parameter D > 1, there exists C = C(n,w,D) such that

ν(Q∗D) ≤ C(n,w,D)ν(Q), Q ∈ Q,

where Q∗D = B∗D(r0, θ0, t0) if Q = B(r0, θ0, t0) or C∗D(r0, θ0, t0) if Q = C(r0, θ0, t0).
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Proof. Consider a cylinder Q = C(r0, θ0, t0). If ωn−1 is the volume of the unit euclidean ball on
Rn−1, then

ν(Q) =
∫ r0+1

r0−1

w(r)1−ndr

∫
|θ−θ0|≤t0w(r0)

dθ = ωn−1t
n−1
0

∫ r0+1

r0−1

(
w(r0)
w(r)

)n−1

dr (1.37)

and, similarly,

ν(Q∗D) = ωn−1D
n−1tn−1

0

∫ r0+2

r0−2

(
w(r0)
w(r)

)n−1

dr.

The result in this case follows from the fact that, by (1.12), w(r0)/w(r) is bounded from above
and below, uniformly with respect to r0 and r ∈ [r0 − 2, r0 + 2]. The case of balls is similar : if
Q = B(r0, θ0, t0) with t0 ≤ 1, then

ν(Q) =
∫ ∫
|r−r0|+|θ−θ0|/w(r0)≤t0

w(r)1−ndrdθ =
∫ ∫
|s|+|α|≤t0

(
w(r0)

w(r0 + s)

)n−1

drdα (1.38)

and

ν(Q∗D) = Dn

∫ ∫
|s|+|α|≤t0

(
w(r0)

w(r0 +Ds)

)n−1

drdα.

The result comes again from (1.12) which shows that w(r0)/w(r0 + sD) and w(r0)/w(r0 + s) are
uniformly bounded from above and below, with respect to |s| ≤ t0 ≤ 1 and r0 ∈ R. �

That the elements of Q will be enough for our purpose relies strongly on the proper support
property of the operators.

We shall then obtain the weak L1 estimate by adapting suitably the usual proof whose crucial
point is the following. Let us denote by K = Kk,t the expression in local coordinates of the kernel
of
∑
k≤k fk(t)Ψk,ι, with respect to dν. If, for each Q ∈ Q centered at (r0, θ0), we define by ΨQ the

operator with kernel K(r, θ, r′, θ′)−K(r, θ, r0, θ0), then we will see that, at least for some D > 1,

sup
Q∈Q
||
(
1− χQ∗D

)
ΨQχQ||L1(Ω,dν)→L1(Ω,dν) <∞, (1.39)

where χE denotes the characteristic function of the set E. More precisely this supremum will also
be uniformly bounded with respect to the parameters k and t of (1.30).

We now explain the simple derivation of Theorem 1.3 and Corollary 1.6 from (1.28)/(1.29) and
(1.30) above. For a sequence of operators B = (Bk)k≥0 (typically (Ak), (Ψk) and (Rk)), it will be
convenient to denote

SBu :=
(∑
k≥0

|Bku|2
)1/2

,

say for u ∈ C∞0 (M). For instance, SA is exactly the square function S−∆g
in (1.2).

Proof of Corollary 1.6. Using (1.28) and (1.30), we get

||
k∑
k=0

fk(t)Ak||Lp1 (M,dg)→Lp1 (M,dg) .p1 1, t ∈ [0, 1], k ∈ N, (1.40)
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first for all p1 ∈ (1, 2] and then automatically for all p1 ∈ (1,∞) by taking the adjoint, since∑
k≤k fk(t)Ak is selfadjoint. Once we have (1.40), the proof goes exactly as the usual one on Rn.

We recall this proof to emphasize the difference with Theorem 1.3. By Khinchine’s inequality,
(1.40) implies that

||SAu||Lp(M,dg) .p ||u||Lp(M,dg), (1.41)

for all p ∈ (1,∞), which is the expected upper bound on S−∆g . To get the lower bound, one writes

(u1, u2) :=
∫
M
u1u2dg =

∑
k1,k2≥0
|k1−k2|≤1

∫
Ak1u1 Ak2u2 dg, (1.42)

using the partition of unity
∑
k Ak = 1 and its almost orthogonality, ie Ak1Ak2 = 0 for |k1−k2| ≥ 2.

Then, if p1, p2 ∈ (1,∞) are conjugate exponents, Hölder’s inequality in (1.42) and the upper bound
(1.41) give

|(u1, u2)| ≤ 3||SAu1||Lp1 (M,dg)||SAu2||Lp2 (M,dg)

.p1 ||u1||Lp1 (M,dg)||SAu2||Lp2 (M,dg),

from which one clearly deduces the lower bound ||u2||Lp2 (M,dg) .p2 ||SAu2||Lp2 (M,dg).

Proof of Theorem 1.3. Using (1.30) and Khinchine’s inequality, we get for all p1 ∈ (1, 2]

||SΨu||Lp1 (M,dg) .p1 ||u||Lp1 (M,dg). (1.43)

Denote by p2 ∈ [2,∞) the conjugate exponent of p1. For u1, u2 ∈ C∞0 (M), we expand Akjuj =
(Ψkj +Rkj )uj into the right hand side of (1.42) and using again the Hölder inequality, we obtain

|(u1, u2)| ≤ 3||SΨu1||Lp1 (M,dg)

(
||SΨu2||Lp2 (M,dg) + ||SRu2||Lp2 (M,dg)

)
+ ||u1||Lp1 (M,dg)

 ∑
|k1−k2|≤1

||R∗k1Ψk2u2||Lp2 (M,dg) + ||R∗k1Rk2u2||Lp2 (M,dg)

 .

By writing R∗k1Ψk2 = R∗k1Ak2−R
∗
k1
Rk2 , where Ak2 commutes with ∆g, and combining the Sobolev

injection (1.19) with (1.29) (which of course holds also for R∗k) with M large enough, we have∑
|k1−k2|≤1

||R∗k1Ψk2u2||Lp2 (M,dg) + ||R∗k1Rk2u2||Lp2 (M,dg) .p2 ||(1−∆g)−Mu2||L2(M,dg).

We also note that (1.19) and (1.29) give

||SRu2||Lp2 (M,dg) .p2 ||(1−∆g)−Mu2||L2(M,dg).

Now, since

||SΨu2||Lp2 (M,dg) ≤ ||S−∆gu2||Lp2 (M,dg) + ||SRu2||Lp2 (M,dg),

and using the upper bound (1.43), all this implies that

|(u1, u2)| .p2 ||u1||Lp1 (M,dg)

(
||S−∆gu2||Lp2 (M,dg) + ||(1−∆g)−Mu2||L2(M,dg)

)
,

which yields

||u2||Lp2 (M,dg) .p2 ||S−∆gu2||Lp2 (M,dg) + ||(1−∆g)−Mu2||L2(M,dg).
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2 Functional calculus

In this short section, we recall some results from [1] that will be used later in the paper. It will
also serve as a motivation for the introduction of the operators studied in Sections 3 and 4.

We fix φ ∈ C∞0 (R) and consider a semiclassical parameter h ∈ (0, 1]. In the applications φ will
be either ϕ0 or ϕ and h2 will be of the form 2−k (if φ = ϕ0 we shall only consider h = 1).

In the following theorem, P will denote either −∆g or −∆̃g when similar statements hold for
both operators (this notation is already used in (1.16)). Otherwise we will give separate statements
for each operator.

We recall that Sm = Sm(Rd×Rd) denotes the space of symbols of order m, ie functions a such
that |∂αx ∂

β
ξ a(x, ξ)| . 〈ξ〉m−|β|, and that S−∞ = ∩mSm.

Theorem 2.1. [1] For all N ∈ N, φ(h2P ) can be decomposed into

φ(h2P ) =
∑
j<N

hjΦj(P, h) + hNRN (P, h),

where

• each Φj(P, h) is a finite sum1 of operators whose kernels (with respect to w(r)1−ndrdθ) are,
in local coordinates, of the form

h−nâ

(
r, θ,

r − r′

h
,
θ − θ′

hw(r)

)
ζ(r − r′, θ − θ′) (2.1)

where ζ ∈ C∞0 (Rd) is supported in the unit ball and â is the Fourier transform with respect
to ξ of a symbol a(r, θ, ξ) ∈ S−∞(Rnr,θ × Rnξ ) which is compactly supported with respect to ξ
and furthermore such that

0 /∈ supp(φ) ⇒ supp(a) ⊂ Rd × {c ≤ |ξ| ≤ C}, (2.2)

for some C > c > 0. Furthermore, for each j < N and p ∈ [2,∞], we have

||Φj(−∆g, h)||Lp(M,dg)→Lp(M,dg) . 1, (2.3)

||Φj(−∆g, h)||L2(M,dg)→Lp(M,dg) . h
n
p−

n
2 , (2.4)

for h ∈ (0, 1].

• The remainder RN (P, h) satisfies

1. if P = −∆g: for all p ∈ [2,∞] and all M ≥ 0,∣∣∣∣(1−∆g)MRN (−∆g, h)(1−∆g)M
∣∣∣∣
L2(M,dg)→Lp(M,dg)

. h−n( 1
2−

1
p )−4M , (2.5)

2. if P = −∆̃g: for all temperate weight W (see (1.20)) and all 1 < p <∞,∣∣∣∣∣∣W (r)−1RN (−∆̃g, h)W (r)
∣∣∣∣∣∣
Lp(M,d̃g)→Lp(M,d̃g)

. 1, (2.6)

for all h ∈ (0, 1].

Operators with kernels of the form (2.1), and sums of such kernels, will play a great role in the
sequel. We shall study some of their elementary properties in Section 4.

1the number of terms is simply the one of a finite cover of the manifold by coordinate charts
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3 A Calderón-Zygmund type theorem

An important consequence of the usual Calderón-Zygmund theorem is that pseudo-differential op-
erators of order 0 are bounded on Lp(Rn), for all 1 < p < ∞ (see for instance [13, 12, 16]). The
purpose of this section is to show a similar result for pseudo-differential operators with symbols of
the form aw(r, θ, ρ, η) = a(r, θ, ρ, w(r)η), with a ∈ S0, and with kernel cutoff outside a neighbor-
hood of the diagonal to be properly supported. Recall that w may not be bounded from below
(see Definition 1.1) so aw doesn’t belong to S0 in general.

We use the same notation as in Subsection 1.2, namely

Ω = (rK,+∞)× Rn−1, ν = w(r)1−ndrdθ,

and recall that ν (or dν) is essentially the expression of dg in charts near infinity, ie they coincide
up to a positive factor which is bounded from above and below and thus irrelevant for Lp estimates.
For convenience and with no loss of generality, we assume that rK ∈ N (see Appendix A).

The following proposition is a version of the Calderón-Zygmund covering lemma adapted to
the measure dν (and to the underlying metric dr2 + w(r)−2dθ2). We will use the balls B(r, θ, t)
and the cylinders C(r, θ, t) introduced in Subsection 1.2.

Proposition 3.1. There exists C0 = C0(n,w) such that, for all λ > 0, any u ∈ L1(Ω, dν) can be
decomposed as

u = ũ+
∑
j∈N

uj , (3.1)

for some ũ ∈ L1(Ω, dν) ∩ L∞(Ω, dν) and some sequence (uj)j∈N of L1(Ω, dν) such that

||ũ||L1(Ω,dν) +
∑
j

||uj ||L1(Ω,dν) ≤ C0||u||L1(Ω,dν), (3.2)

||ũ||L∞(Ω) ≤ C0λ, (3.3)

and such that, for some sequence of subsets (Qj)j∈N of Ω of the form

Qj =


B(rj , θj , tj) with tj < 1,
or
C(rj , θj , tj) with tj ≥ 1,

for some (rj , θj) ∈ Ω, (3.4)

we also have ∫
ujdν = 0, supp(uj) ⊂ Qj , (3.5)∑
j

ν(Qj) ≤ C0λ
−1||u||L1(Ω,dν). (3.6)

Proof. See Appendix A . �

Consider next a smooth function K of the form

K(r, θ, r′, θ′) = κ

(
r, θ, r − r′, θ − θ

′

w(r)

)
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with κ smooth on R2d and satisfying∣∣∣∂ξ̂κ(r, θ, ξ̂)
∣∣∣ ≤ |ξ̂|−1−n, (r, θ) ∈ Ω, ξ̂ ∈ Rn \ {0}, (3.7)

supp(κ) ⊂ Ω× {|ξ̂| < 1}. (3.8)

We then define the operator Ψ by

(Ψu)(r, θ) =
∫

Ω

K(r, θ, r′, θ′)u(r′, θ′)dν(r′, θ′). (3.9)

The assumption (3.8) states that this operator is properly supported. Using the notation of The-
orem 2.1 with h = 2−k/2, we shall see that kernels of the form

Kk,t(r, θ, r
′, θ′) =

k∑
k=0

fk(t)2kn/2â
(
r, θ, 2k/2(r − r′), 2k/2 θ − θ

′

w(r)

)
ζ

(
r − r′, θ − θ

′

w(r)

)
, (3.10)

satisfy the conditions (3.7) and (3.8) uniformly with respect to k and t. This will be checked in
Section 4. We will also see that the kernel (3.10) is very close to the expression in local coordinates
of the kernel of

∑
k≤k fk(t)Ψk (see (1.27) for Ψk).

In the rest of the present section, we consider the problem of the boundedness of Ψ on Lp(Ω, dν).

Theorem 3.2. There exists C such that, for all Ψ as above satisfying the additional condition

||Ψ||L2(Ω,dν)→L2(Ω,dν) ≤ 1, (3.11)

we have: for all u ∈ L1(Ω, dν) and all λ > 0

ν ({|Ψu| > λ}) ≤ Cλ−1||u||L1(Ω,dν).

In other words, B is of weak type (1, 1) relatively to dν. The proof is very close to the usual
one for singular integrals on Rn and rests on Proposition 3.4 below (which was already stated in
(1.39)). The main difference with the case of Rn is that the sets Q do not need to describe the
whole set of dyadic cubes of arbitrary sides, but only the set Q of small balls and large cylinders
defined in (1.36).

We first need to recall the following well known lemma on singular integrals.

Lemma 3.3. There exists a constant cn such that, for all t > 0, for all K̃ ∈ C1(R2n) satisfying

|∂yK̃(x, y)| ≤ |x− y|−n−1, x 6= y, x, y ∈ Rn, (3.12)

and for all continuous function

Y : {|x| > 2t} → {|y| < t},

we have ∫
|x|>2t

|K̃(x, Y (x))− K̃(x, 0)|dx ≤ cn. (3.13)
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Note that, in the usual form of this lemma, the function Y is simply given by Y (x) = y with
|y| < t independent of x. Of course, if (3.12) is replaced by |∂yK̃(x, y)| ≤ C|x− y|−n−1 one has to
replace cn by cnC in the final estimate. For completeness, we recall the simple proof.

Proof. By the Taylor formula and (3.12), the left hand side of (3.13) is bounded by∫
|x|>2t

t||x| − t|−n−1dx = vol(Sn−1)
∫ ∞

2t

trn−1(r − t)−n−1dr

where the change of variable r̃ = r/t shows that the last integral is finite and independent of t. �

If Q = B(r0, θ0, t0) or C(r0, θ0, t0), we define the operator ΨQ by

(ΨQu)(r, θ) =
∫

(K(r, θ, r′, θ′)−K(r, θ, r0, θ0))u(r′, θ′)dν(r′, θ′).

We have the following result.

Proposition 3.4. There exists D(n,w) > 1 such that, for all D ≥ D(n,w) and for all operator
Ψ of the form (3.9),

sup
Q∈Q
||(1− χQ∗D )ΨQχQ||L1(Ω,dν)→L1(Ω,dν) ≤ cn,

with the same cn as in Lemma 3.3.

The following lemma states that large cylinders do not contribute to the supremum.

Lemma 3.5. There exists D′(n,w) > 1 such that, for all D ≥ D′(n,w) and all Q of the form
C(r0, θ0, t0) with t0 > 1,

(1− χQ∗D )ΨχQ = (1− χQ∗D )ΨQχQ = 0.

Proof. It is sufficient to show that, if D is large enough,

(1− χQ∗D )(r, θ)K(r, θ, r′, θ′)χQ(r′, θ′) = 0.

This will give the statement for Ψ and then automatically for ΨQ since χQ(r0, θ0) = 1. If
(r, θ, r′, θ′) ∈ supp(K) with (r′, θ′) ∈ Q, we have |r− r0| ≤ |r− r′|+ |r′ − r0| ≤ 2. Therefore, if we
consider (r, θ) /∈ Q∗D, we necessarily have

|θ − θ0|
w(r0)

> Dt0,

so that |θ − θ′| > (D − 1)t0w(r0). Since |r − r0| ≤ 2, there exists C depending only on w and n

such that |θ − θ′| > C(D − 1)t0w(r). Thus |θ−θ
′|

w(r) > C(D − 1)t0 > 1 if D is large enough so that
K must actually vanish and we get the result. �

Proof of Proposition 3.4. By Lemma 3.5, we only have to consider Q = B(r0, θ0, t0) with t0 ≤ 1.
For D > 1, let us set

IQ,D(r′, θ′) =
∫

Ω\Q∗D
|K(r, θ, r′, θ′)−K(r, θ, r0, θ0)| dν(r, θ),
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so that the Schur Lemma yields the estimate

||(1− χQ∗D )ΨQχQ||L1(Ω,dν)→L1(Ω,dν) ≤ sup
(r′,θ′)∈Q

IQ,D(r′, θ′).

Using the change of variables

(r, θ) 7→ (r̃, θ̃) =
(
r − r0,

θ − θ0

w(r)

)
,

we have

IQ,D(r′, θ′) =
∫
|r̃|+w(r0+r̃)

w(r0) |θ̃|>Dt0

∣∣∣∣Kr0,θ0

(
r̃, θ̃, r′ − r0,

θ′ − θ0

w(r̃ + r0)

)
−Kr0,θ0(r̃, θ̃, 0, 0)

∣∣∣∣ dr̃dθ̃,
with

Kr0,θ0(r̃, θ̃, r′, θ′) = κ
(
r̃ + r0, w(r̃ + r0)θ̃ + θ0, r̃ − r′, θ̃ − θ′

)
.

Now observe that for any (r′, θ′) ∈ B(r0, θ0, t0) and (r̃, θ̃) ∈ Rd, we have

Kr0,θ0

(
r̃, θ̃, r′ − r0,

θ′ − θ0

w(r̃ + r0)

)
6= 0 ⇒ |r̃| ≤ |r̃ − (r′ − r0)|+ |r′ − r0| ≤ 2.

In particular, we have w(r0+r̃)
w(r0) ≈ 1 so there exists C1 ≥ 1, depending only on n and w, such that

IQ,D(r′, θ′) ≤
∫
|r̃|+|θ̃|> D

C1
t0

∣∣∣∣Kr0,θ0

(
r̃, θ̃, r′ − r0,

θ′ − θ0

w(r̃ + r0)

)
−Kr0,θ0(r̃, θ̃, 0, 0)

∣∣∣∣ dr̃dθ̃.
Similarly, there exists C2 depending only on n and w such that

|r′ − r0|+
|θ′ − θ0|
w(r̃ + r0)

≤ |r′ − r0|+ C2
|θ′ − θ0|
w(r0)

≤ C2t0,

thus, if D ≥ 2C1C2, (3.7) and Lemma 3.3 show that, for all (r′, θ′) ∈ B(r0, θ0, t0),

IQ,D(r′, θ′) ≤ cn,

and the result follows. �

Proof of Theorem 3.2. We use the decomposition (3.1) and set v =
∑
j uj . We have

ν ({|Ψu| > λ}) ≤ ν ({|Ψũ| > λ/2}) + ν ({|Ψv| > λ/2}) .

Since
||Ψũ||2L2(Ω,dν) ≤ ||ũ||

2
L2(Ω,dν) ≤ C

2
0λ||u||L1(Ω,dν),

the second inequality being due to (3.3) and (3.2), the Tchebychev inequality yields

ν ({|Ψũ| > λ/2}) ≤ 4λ−2||Ψũ||2L2(Ω,dν) ≤ 4C2
0λ
−1||u||L1(Ω,dν).

We now consider v by studying the contribution of each function uj . Using the notation of Propo-
sitions 3.4, we fix D > D(n,w). Since uj has zero mean and is supported in Qj = B(rj , θj , tj) or
C(rj , θj , tj) , we have

Ψuj = ΨQjuj ,
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which implies, by Proposition 3.4, that∣∣∣∣Ψuj∣∣∣∣L1(Ω\(Qj)∗D,dν)
=
∣∣∣∣(1− χ(Qj)∗D

)ΨQjuj
∣∣∣∣
L1(Ω,dν)

≤ cn||uj ||L1(Ω,dν). (3.14)

Now, if we set
O = ∪j(Qj)∗D,

then Proposition 1.8 and (3.6) show that

ν(O) ≤ C(n,w,D)C0λ
−1||u||L1(Ω),dν . (3.15)

On the other hand, (3.14) imply that ||Ψuj ||L1(Ω\O,dν) ≤ cn||uj ||L1(Ω,dν) so, using (3.2), we get

||Ψv||L1(Ω\O,dν) ≤ cnC0||u||L1(Ω,dν), (3.16)

and then

ν ({|Ψv| > λ/2}) ≤ ν(O) + ν
(
{|χΩ\OΨv| > λ/2}

)
≤ Cλ−1||u||L1(Ω,dν),

using (3.15) and (3.16). This completes the proof. �

The boundedness on Lp is then a classical consequence of the Marcinkiewicz interpolation
theorem (see for instance [13, 16]) and we obtain the following corollary.

Corollary 3.6. For all p ∈ (1, 2], there exists Cp such that, for all Ψ of the form (3.9), with κ
satisfying (3.7) and (3.8), such that (3.11) holds, we have

||Ψ||Lp(Ω,dν)→Lp(Ω,dν) ≤ Cp.

4 Pseudo-differential operators

In this part, we study elementary properties of certain properly supported pseudo-differential
operators. The main goal is to prove that kernels of the form (3.10) satisfy the assumptions (3.7)
and (3.8). We will also see that the associated operator is bounded on L2(Ω, dν) and hence on
Lp(Ω, dν) for 1 < p ≤ 2 by Corollary 3.6. We shall even see that this remains true on weighted
spaces.

To put it in a slightly more general framework, we consider a bounded sequence (ak)k∈N in
S−∞, namely such that for all j ∈ N, α ∈ Nn−1, β ∈ Nn and all m > 0,∣∣∣∂jr∂αθ ∂βξ ak(r, θ, ξ)

∣∣∣ ≤ Cjαβm(1 + |ξ|)−m, (4.17)

with a constant independent of k. Assume that these symbols are supported in Ω×Rn where Ω is
given by (1.31). We also use a cutoff ζ ∈ C∞0 (Rn), supported in the unit ball, and such that ζ ≡ 1
near 0.

For all k ≥ 0, consider the kernel

K(k)(r, θ, r
′, θ′) =

k∑
k=0

2kn/2âk

(
r, θ, 2k/2(r − r′), 2k/2 θ − θ

′

w(r)

)
ζ(r − r′, θ − θ′), (4.18)
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where âk is the partial Fourier transform of a with respect to ξ. Notice that (3.10) is not exactly
of this form, due to the form of the cutoff near the diagonal. Lemma 4.2 below will prove that this
makes essentially no difference, as far as the Lp boundedness is concerned.

Example. The typical example of operator with kernel of the form (4.18) is given by
∑
k≤k fk(t)Ψk,

using (1.27). This follows clearly from Theorem 2.1 since we have to consider ak of the form fk(t)a
with a as in Theorem 2.1 (with h = 2−k/2).

Consider next the associated operator

(Ψ(k)u)(r, θ) =
∫

Ω

K(k)(r, θ, r
′, θ′)u(r′, θ′)dν(r′, θ′). (4.19)

Throughout this section, we fix a positive function W defined on R such that, for some C > 0,

W (r) ≤ CW (r′), for all r, r′ ∈ R such that |r − r′| ≤ 1. (4.20)

Temperate weights satisfy clearly this condition but also powers of w, although w may not be a
temperate weight.

The section is devoted to the proof of the following result.

Proposition 4.1. Let (ak)k∈N be a family of symbols supported in Ω × Rn satisfying (4.17). If
moreover there exists C > 0 such that, for all k ≥ C,

(r, θ, ρ, η) = (r, θ, ξ) ∈ supp(ak)⇒ C−1 ≤ |ρ|+ |η| ≤ C, (4.21)

then, for all positive function W satisfying (4.20) and all p ∈ (1, 2],

||W (r)Ψ(k)W (r)−1||Lp(Ω,dν)→Lp(Ω,dν) . 1, k ∈ N.

The proof is divided into the next four lemmas.

Lemma 4.2. Denote by % the function

%(r, θ, r′, θ′) = ζ(r − r′, θ − θ′)− ζ
(
r − r′, θ − θ

′

w(r)

)
and by Jk the function

Jk(r, θ, r′, θ′) = 2kn/2âk

(
r, θ, 2k/2(r − r′), 2k/2 θ − θ

′

w(r)

)
%(r, θ, r′, θ′).

Define the operator Γk by

Γku(r, θ) =
∫

Ω

Jk(r, θ, r′, θ′)u(r′, θ′)dν(r′, θ′).

Then, for all p ∈ [1,∞],∑
k≥0

∣∣∣∣W (r)ΓkW (r)−1
∣∣∣∣
Lp(Ω,dν)→Lp(Ω,dν)

<∞. (4.22)
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Note that (4.22) can be written equivalently as∑
k≥0

∣∣∣∣∣∣W (r)w(r)
1−n
p ΓkW (r)−1w(r)

n−1
p

∣∣∣∣∣∣
Lp(Ω,drdθ)→Lp(Ω,drdθ)

<∞. (4.23)

using the Lebesgue measure drdθ (with the convention that (n− 1)/p = 0 if p =∞).

Proof. Let us prove (4.23). For all γ ∈ R, (1.10) implies that Wwγ also satisfies an estimate of the
form (4.20). We may therefore replace Ww(1−n)/p by W with no loss of generality. Then

(W (r)ΓkW (r)−1u)(r, θ) =
∫ ∫

J̃k(r, θ, r′, θ′)u(r′, θ′)dr′dθ′

with

J̃k(r, θ, r′, θ′) = w(r)1−nJk(r, θ, r′, θ′)× W (r)
W (r′)

.

Since ζ ≡ 1 near 0 and w is bounded, there exists c > 0 such that,

|r − r′|+ |θ − θ
′|

w(r)
≥ c, on the support of %. (4.24)

Integrating by part in the integral defining âk, one sees that, for all N ≥ 0, Jk takes the following
form

(−1)N2−(2N−n)k/2∆̂N
ρ,ηak

(
r, θ, 2k/2(r − r′), 2k/2 θ − θ

′

w(r)

)(
|r − r′|2 +

|θ − θ′|2

w(r)2

)−N
%(r, θ, r′, θ′).

By the uniform estimates in k (4.17), (4.20) and (4.24), this implies that, for all N , there exists
CN such that

|J̃k(r, θ, r′, θ′)| ≤ CN2−Nkw(r)1−n
(

1 + |r − r′|+ |θ − θ
′|

w(r)

)−N
for all (r, θ), (r′, θ′) ∈ Ω and all k ∈ N. The result follows then from the usual Schur Lemma. �

By Lemma 4.2, the Lp boundedness of W (r)Ψ(k)W (r)−1 is thus equivalent to the one of

W (r)Ψ̃(k)W (r)−1 with Ψ̃(k) defined similarly to (4.19) by the kernel

K̃(k)(r, θ, r
′, θ′) =

k∑
k=0

2kn/2âk

(
r, θ, 2k/2(r − r′), 2k/2 θ − θ

′

w(r)

)
ζ

(
r − r′, θ − θ

′

w(r)

)
.

We can then write(
W (r)Ψ̃(k)W (r)−1u

)
(r, θ) =

∫
Ω

κ̃(k)

(
r, θ, r − r′, θ − θ

′

w(r)

)
u(r′, θ′)dν(r′, θ′)

where κ̃(k) is defined by

κ̃(k)(r, θ, ρ̂, η̂) =
∑
k≤M

2kn/2âk(r, θ, 2k/2ρ̂, 2k/2η̂)ζ(ρ̂, η̂)× W (r)
W (r − ρ̂)

.
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To interpret this operator as an operator of the form (3.9), with a symbol satisfying (3.7), we
need W to be smooth. We thus assume for a while that, for all j ≥ 0,

|djW (r)/drj | .W (r). (4.25)

We shall see further on that this smoothness condition can be removed.

Lemma 4.3. Assume (4.20) and (4.25). There exists C > 0 such that, for all k ≥ 0,

|∂ρ̂,η̂κ̃(k)(r, θ, ρ̂, η̂)| ≤ C(|ρ̂|+ |η̂|)−n−1. (4.26)

Proof. It is standard. We recall it for completeness. Thanks to the cutoff ζ, it is sufficient to
consider the region where |ρ̂|+ |η̂| < 1. By (4.17), âk(r, θ, ., .) is bounded in the Schwartz space as
(r, θ) and k vary and, by (1.10), (1.11) and (4.25), W (r)/W (r − ρ̂) is bounded on the support of
ζ together with its derivatives. Thus, for all N > 0,

|∂ρ̂,η̂κM,W (r, θ, ρ̂, η̂)| ≤ CN
∑
k≥0

2
k
2 (n+1)(1 + 2k/2|ρ̂|+ 2k/2|η̂|)−N

≤ CN
∑
k≤k0

2
k
2 (n+1) + CN

∑
k>k0

2
k
2 (n+1)2

(k0−k)
2 N ≈ CN2

k0
2 (n+1)

with k0 = k0(ρ̂, η̂) such that 2−
k0+1

2 ≤ |ρ̂|+ |η̂| < 2−
k0
2 . The result follows. �

We next consider the L2 boundedness.

Lemma 4.4. Assume (4.20), (4.25) and the existence of C > 1 such that, for all k ≥ C, we have
and (4.21). Then there exists C ′ > 0 such that, for all k ≥ 0,

||W (r)Ψ(k)W (r)−1||L2(Ω,dν)→L2(Ω,dν) ≤ C ′. (4.27)

Proof. The uniform boundedness of the family (W (r)Ψ(k)W (r)−1)k≥0 on L2(Ω, dν) is equivalent
to uniform boundedness, on L(L2(Rn, drdθ)), of the family of pseudo-differential operators with
kernels ∫ ∫

e−i(r−r
′)ρ−i(θ−θ′)·ηã(k)(r, r

′, θ, θ′, ρ, η)dρdη

where

ã(k)(r, r
′, θ, θ′, ρ, η) =

W (r)w(r)
n−1

2

W (r′)w(r′)
n−1

2

ζ(r − r′, θ − θ′)
∑
k≤k

ak(r, θ, 2−k/2ρ, 2−k/2w(r)η).

The function in front of the sum is smooth and bounded as well as its derivatives, by (1.10), (1.11),
(4.20), (4.25) and the compact support of ζ. The result is then a consequence of the Calderón-
Vaillancourt Theorem since all derivatives of ã(k) are bounded, uniformly with respect to k, which
is a consequence of the estimate

|∂αx ∂
β
ξ

∑
C<k≤k

ak(x, 2−k/2ξ)| ≤ Cαβ k > 0, (x, ξ) = (r, θ, ρ, η) ∈ R2n.

This follows from the uniform estimates (4.17) and the fact that the above sum contains a finite
number of terms, independent of x, ξ and k since, by (4.21), 2−k/2|ξ| belongs to [C−1, C] (in
particular |ξ| & 1) and

2−k/2|ξ| ∈ [C−1, C] ⇒ k/2 ∈
[
ln2 |ξ| − ln2 C, ln2 |ξ| − ln2 C

−1
]
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where the number of half integer points in the last interval is bounded. The proof is complete. �

The following lemma shows that we can assume that W also satisfies (4.25).

Lemma 4.5. We can find W̃ satisfying (4.20), (4.25) and such that, for some C > 1,

W (r)/C ≤ W̃ (r) ≤ CW (r). (4.28)

Proof. Choose a non zero, non negative ω ∈ C∞0 (−1, 1) and set W̃ (r) =
∫
W (r − s)ω(s)ds. Since

C−1 ≤W (r − s)/W (r) ≤ C, s ∈ (−1, 1),

we obtain (4.28), which implies in turn that (4.20) holds for W̃ since

W̃ (r)

W̃ (r′)
=
W̃ (r)
W (r)

W (r)
W (r′)

W (r′)

W̃ (r′)

is bounded if |r − r′| ≤ 1. This implies that

|W̃ (j)(r)| = |
∫
W (r − s)ω(j)(s)ds| .W (r) . W̃ (r),

which shows that (4.25) holds for W̃ . �

Proof of Proposition 4.1. By (4.28), the result holds if and only if it holds with W̃ instead of W .
We may therefore assume that W satisfies (4.25). By Lemma 4.4, the estimate is true with p = 2.
Then, by Lemma 4.2, it is also true for Ψ̃(k) with p = 2 . By Lemma 4.3, we can apply Corollary

3.6 to obtain the estimate for all 1 < p ≤ 2 with Ψ̃(k) instead of Ψ(k) and we conclude using again
Lemma 4.2. �

5 Proofs of the main results

In this section, P and dµ denote either −∆g and dg or −∆̃g and d̃g. Using the partition of unit
(1.1), we denote as in Subsection 1.2,

A0 = ϕ0(P ), Ak = ϕ(2−(k−1)P ), k ≥ 1,

so that, in the strong sense on L2(M, dµ), we have∑
k≥0

Ak = 1, (5.1)

and the square function (1.16) reads

SPu(x) = (
∑
k

|Aku(x)|2)1/2, x ∈M.

In the next subsections, we will use the following classical result of harmonic analysis. Recall
first the definition of the usual Rademacher sequence (fk)k≥0. For k = 0, f0 is the function given
on [0, 1) by

f0(t) =

{
1 if 0 ≤ t ≤ 1/2
−1 if 1/2 < t < 1

,
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and then extended on R as a 1 periodic function. If k ≥ 1, fk(t) = f(2kt), for all t ∈ R. These
functions are orthonormal in L2([0, 1]). Given a sequence of complex numbers (ak)k≥0, if we set

F (t) =
∑
k≥0

akfk(t),

then, for all 1 < p <∞, the key estimate related to the Rademacher functions is the following well
known Khinchine inequality (see for instance [11, p. 54] or [13, p. 276]),

||F ||L2([0,1]) =
(∑
k≥0

|ak|2
)1/2 ≤ Cp||F ||Lp([0,1]). (5.2)

As an immediate consequence of (5.2), we have the following result.

Proposition 5.1. Let (Bk)k≥0 be a family of operators from C∞0 (M) to Lp(M, dµ), for some
1 < p <∞. Define the associated square function SBu by

SBu(x) =
(∑
k≥0

∣∣(Bku)(x)
∣∣2)1/2, x ∈M.

Then we have

||SBu||Lp(M,dµ) ≤ Cp sup
k∈N

sup
t∈[0,1]

∣∣∣∣∑
k≤k

fk(t)Bku
∣∣∣∣
Lp(M,dµ)

. (5.3)

In particular, if∣∣∣∣∑
k≤k

fk(t)Bku
∣∣∣∣
Lp(M,dµ)

. ||u||Lp(M,dµ), t ∈ [0, 1], u ∈ C∞0 (M), k ≥ 0,

then

||SBu||Lp(M,dµ) . ||u||Lp(M,dµ), u ∈ C∞0 (M).

5.1 Proof of Theorems 1.2 and 1.5

In this part P = −∆̃g, dµ = d̃g and W is a temperate weight. Using Theorem 2.1, in particular
(2.6) for the remainder, and Proposition 4.1 (see also the Example between (4.18) and (4.19)), we
obtain the following proposition.

Proposition 5.2. For all N ≥ 0, we can write

Ak = Ψk +Rk,

with Ψk such that, for all 1 < p ≤ 2,∣∣∣∣∑
k≤k

fk(t)W (r)Ψku
∣∣∣∣
Lp(M,dµ)

. ||W (r)u||Lp(M,dµ), t ∈ [0, 1], u ∈ C∞0 (M), k ≥ 0,

and Rk such that, for all 1 < p <∞,∣∣∣∣W (r)RkW (r)−1
∣∣∣∣
Lp(M,dµ)→Lp(M,dµ)

. 2−Nk, k ≥ 0.
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We can now prove Theorem 1.5 (Theorem 1.2 corresponds to the special case W ≡ 1). This
proof is the standard one to establish the equivalence of norms of u and SPu for the usual
Littlewood-Paley decomposition on Rn (see for instance [12, 13, 16]). This is a weighted version
of the proof of Corollary 1.6 displayed in Subsection 1.2 for W = 1.

Proof of Theorem 1.5. Define AWk = W (r)AkW (r)−1. By Proposition 5.2, we have∣∣∣∣∑
k≤k

fk(t)AWk u
∣∣∣∣
Lp(M,dµ)

. ||u||Lp(M,dµ), k ≥ 0, t ∈ [0, 1], u ∈ C∞0 (M), (5.4)

first for 1 < p ≤ 2, and then for all 1 < p < ∞ by taking the adjoint in the above estimate and
replacing W by W−1. By Proposition 5.1, this implies that

||W (r)SPu||Lp(M,dµ) . ||W (r)u||Lp(M,dµ), u ∈ C∞0 (M), (5.5)

for 1 < p <∞. By the Cauchy-Schwarz inequality in the sum (1.42), Hölder’s inequality and (5.5)
with W−1 instead of W , we obtain∣∣∣∣∫

M
u1u2dµ

∣∣∣∣ ≤ 3||W (r)SPu1||Lp(M,dµ)||W (r)−1SPu2||Lp′ (M,dµ)

. ||W (r)SPu1||Lp(M,dµ)||W (r)−1u2||Lp′ (M,dµ)

for 1 < p <∞, p′ being its conjugate exponent. This then yields the lower bound

||W (r)u1||Lp(M,dµ) . ||W (r)SPu1||Lp(M,dµ), u1 ∈ C∞0 (M),

which completes the proof. �

5.2 Proof of Theorem 1.3

In this part P = −∆g and dµ = dg. We refer to Subsection 1.2 for the proof of Theorem 1.3 itself
and only record here the following proposition which is a direct consequence of Theorem 2.1 and
Proposition 4.1 (see also the Example between (4.18) and (4.19)) and which completely justifies
the tools used in Subsection 1.2.

Proposition 5.3. For all N,M ≥ 0, we can write

Ak = Ψk +Rk,

with Ψk satisfying, for all 1 < p ≤ 2,∣∣∣∣∑
k≤k

fk(t)Ψku
∣∣∣∣
Lp(M,dµ)

. ||u||Lp(M,dµ), t ∈ [0, 1], u ∈ C∞0 (M), k ≥ 0,

and Rk satisfying, for all 2 ≤ p ≤ ∞,∣∣∣∣(1−∆g)MRk(1−∆g)M
∣∣∣∣
L2(M,dµ)→L2(M,dµ)

. 2−Nk, k ≥ 0.
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5.3 Proof of Theorem 1.7

The proof is formally the same as the one of [3, Prop. 4.5] excepted that it uses the following
commutator estimates for properly supported operators. Fix ϕ̃ ∈ C∞0 (0,+∞) such that

ϕ̃ϕ = ϕ. (5.6)

By Theorem 2.1, we can write

ϕ(h2P ) = Φ(h) + h2R(h), ϕ̃(h2P ) = Φ̃(h) + h2R̃(h),

where Φ(h) and Φ̃(h) are finite sums of properly supported pseudo-differential operators of the
form hjΦj(−∆g, h). By (1.22) and (2.5), we may assume that

||R(h)||L2(M,dg)→L2(M,dg) . 1, ||R(h)||L2(M,dg)→Lp(M,dg) . h
−1,

and, by (1.22), (2.3) and (2.4),

||Φ(h)||Lq(M,dg)→Lq(M,dg) . 1, ||Φ(h)||L2(M,dg)→Lp(M,dg) . h
−1,

for each q ∈ [2,∞]. Of course, the same estimates holds for R̃(h) and Φ̃(h) respectively. These
estimates imply easily that

||[h2R(h), χ]||L2(M,dg)→Lp(M,dg) . h, (5.7)

and that ∣∣∣∣∣∣[ϕ̃(−h2∆g),
[
ϕ(−h2∆g), χ

]]
−
[
Φ̃(h), [Φ(h), χ]

]∣∣∣∣∣∣
L2(M,dg)→Lp(M,dg)

. h. (5.8)

We have also the commutator estimates

||[Φ(h), χ]||L2(M,dg)→Lp(M,dg) . 1, (5.9)∣∣∣∣∣∣[Φ̃(h), [Φ(h), χ]
]∣∣∣∣∣∣

L2(M,dg)→Lp(M,dg)
. h, (5.10)

although they don’t obviously follow from Theorem 2.1. We shall prove them below but show first
how they lead to Theorem 1.7.

Proof of Theorem 1.7. By (1.18) in Corollary 1.4, we have

||χu||Lp(M,dg) .

∑
k≥0

||ϕ(−2k∆g)χu||2Lp(M,dg)

1/2

+ ||u||L2(M,dg). (5.11)

Using (5.6), we can write ϕ(−h2∆g)χ as the sum of the following three terms

Q1(h) = ϕ̃(−h2∆g)χϕ(−h2∆g),
Q2(h) =

[
ϕ(−h2∆g), χ

]
ϕ̃(−h2∆g),

Q3(h) =
[
ϕ̃(−h2∆g),

[
ϕ(−h2∆g), χ

]]
.

Since ϕ̃(−h2∆g)χϕ(−h2∆g) = Φ̃(h)χϕ(−h2∆g) + h2R̃(h) where Φ̃(h) is uniformly bounded on
Lp(M, dg) and ||h2R̃(h)||L2(M,dg)→Lp(M,dg) . h, we have

||Q1(h)u||Lp(M,dg) . ||χϕ(−h2∆g)||Lp(M,dg) + h||u||L2(M,dg). (5.12)

23



Using (5.7) and (5.9), we also have

||Q2(h)u||Lp(M,dg) . ||ϕ̃(−h2∆g)u||L2(M,dg), (5.13)

and, by (5.8) and (5.10),

||Q3(h)u||Lp(M,dg) . h||u||L2(M,dg). (5.14)

The result then follows from (5.11), (5.12), (5.13), (5.14) and∑
h2=2−k,k∈N

||ϕ̃(−h2∆g)u||2L2(M,dg) . ||u||
2
L2(M,dg)

by almost orthogonality, since ϕ̃ is supported away from 0, and the Spectral Theorem. �

It remains to prove (5.9) and (5.10).

Proof of (5.9). By working in local coordinates, the study of Φ(h) is reduced to operators with
kernels of the form (2.1). If χ1(r, θ) is the expression in local coordinates of χ, the kernel of [Φ(h), χ]
is of the form

(2πh)−d (χ1(r, θ)− χ1(r′, θ′))
∫ ∫

e
i
h (r−r′)ρ+ i

h (θ−θ′)·ηa(r, θ, ρ, w(r)η)dρdηζ(r − r′, θ − θ′),

which, by expanding χ1(r, θ)−χ1(r′, θ′) according to Taylor’s formula and by integrating by parts
in the integral above, is the sum of

h× (2πh)−d
∫ ∫

e
i
h (r−r′)ρ+ i

h (θ−θ′)·ηa1(r, θ, ρ, w(r)η)dρdη, (5.15)

and of a remainder of the form

h2 × (2πh)−d
∫ ∫

e
i
h (r−r′)ρ+ i

h (θ−θ′)·ηA2(r, θ, r′, θ′, ρ, w(r)η)dρdη, (5.16)

with symbols a1 ∈ S−∞(R2n) and A2 ∈ S−∞(R3n), ie such that, for all m > 0, γ ∈ N2n and
Γ ∈ N3n,

|∂γa1(r, θ, ρ, η)| ≤ Cm,γ(1 + |ρ|+ |η|)−m,
|∂ΓA2(r, θ, r′, θ′, ρ, η)| ≤ Cm,Γ(1 + |ρ|+ |η|)−m.

These estimates use that all the derivatives of χ1 are bounded, which is clear if χ is constant
outside a compact set but would also holds for many other functions χ. The estimate (5.9) would
therefore follow from the following lemma.

Lemma 5.4. Let A ∈ S−∞(R3n) be supported in {r > R, r′ > R}. Then, the operator A(h) with
kernel

(2πh)−d
∫ ∫

e
i
h (r−r′)ρ+ i

h (θ−θ′)·ηA(r, θ, r′, θ′, ρ, w(r)η)dρdηζ(r − r′, θ − θ′),

satisfies
||A(h)||L2((R,∞)×Rn−1,w(r)1−ndrdθ)→Lq((R,∞)×Rn−1,w(r)1−ndrdθ) . h

n
q−

n
2 ,

for each q ≥ 2.
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Proof. It follows by interpolation between the case q = 2 and q =∞ as in Lemma 2.3 and Lemma
2.4 of [1]. �

This lemma implies clearly (5.9) since both a1 and A2, respectively in (5.15) and (5.16), belong
to S−∞(R3n). �

Proof of (5.10). If we denote by h2AM2 (h) the pullback on the manifold of the operator with
kernel (5.16), it follows from Lemma 5.4 and the uniform boundedness of Φ̃(h) on L2(M, dg) and
Lp(M, dg) that

||[Φ̃(h), h2AM2 (h)]||L2(M,dg)→Lp(M,dg) . h.

Therefore, to prove (5.10), it remains to show that

||[Φ̃(h), hAM1 (h)]||L2(M,dg)→Lp(M,dg) . h, (5.17)

with hAM1 (h) the pullback on the manifold of the operator with kernel (5.15). In other words, we
only have to consider commutators of operators with kernels of the form (2.1). This is the purpose
of what follows.

We recall first a composition formula for properly supported differential operators. Let B1(h)
and B2(h) be properly supported pseudo-differential operators on Rn defined by the Schwartz
kernels

Kj(x, y, h) = (2πh)−n
∫
e
i
h (x−y)·ξbj(x, ξ)dξχj(x− y), j = 1, 2, (5.18)

where χj ∈ C∞0 (Rn), χj ≡ 1 near 0 and bj symbols in a class that will be specified below and
which guarantees the convergence of the integrals. The kernel K(x1, x3, h) of B1(h)B2(h) is

(2πh)−2n

∫ ∫ ∫
e
i
h (x1−x2)·ξ1+ i

h (x2−x3)·ξ2b1(x1, ξ1)χ(x1 − x2)b2(x2, ξ2)χ2(x2 − x3)dξ1dξ2dx2,

that is, using the change of variables ξ1 = ξ2 + τ , x2 = x1 + t,

K(x1, x3, h) = (2πh)−n
∫
e
i
h (x1−x3)·ξ2b(x1, x3, ξ2, h)dξ2,

with

b(x1, x3, ξ2, h) = (2πh)−n
∫ ∫

e−
i
h t·τ b1(x1, ξ2 + τ)χ1(−t)b2(x1 + t, ξ2)χ2(x1 + t− x3)dtdτ.

Since χ1 and χ2 are compactly supported, we can clearly choose χ3 ∈ C∞0 (Rn) equal to 1 near 0
such that, for all t, x1, x3 ∈ Rn,

χ1(−t)χ2(x1 + t− x3) = χ3(x1 − x3)χ1(−t)χ2(x1 + t− x3),

which shows that
K(x1, x3, h) = K(x1, x3, h)χ3(x1 − x3).

Assume now that the symbols bj(x, ξ) are of the form

bj(x, ξ) = aj(r, θ, ρ, w(r)η), aj ∈ S−∞(Rn × Rn), (5.19)
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with x = (r, θ) and ξ = (ρ, η). Writing t = (tr, tθ) and τ = (τρ, τη), we then have

b1(x1, ξ2 + τ)b2(x1 + t, ξ2) = a1(r1, θ1, ρ2 + τρ, w(r1)(η2 + τη))×
a2(r1 + tr, θ1 + tθ, ρ2, w(r1 + tr)η2)

= A12(r1, θ1, t, τ, ρ2, w(r1)η2)

with

A12(r, θ, t, τ, ρ, η) = a1(r, θ, ρ+ τρ, η + w(r)τη)a2

(
r + tr, θ + tθ, ρ,

w(r + tr)
w(r)

η

)
.

Setting finally

A(r1, θ1, r3, θ3, t, τ, ρ, η) = A12(r1, θ1, t, τ, ρ, η)χ1(−t)χ2((r1, θ1)− t− (r3, θ3)),

we have proved the main part of the following result.

Lemma 5.5. Let B1(h), B2(h) be pseudo-differential operators with kernels of the form (5.18)
and with symbols of the form (5.19). Then the kernel of B1(h)B2(h) is of the form

(2πh)−n
∫ ∫

e
i
h (r1−r3)ρ+ i

h (θ1−θ3)·ηa(r1, θ1, r3, θ3, ρ, w(r1)η, h)dρdηχ3 ((r1, θ1)− (r3, θ3)) , (5.20)

with
a(r1, θ1, r3, θ3, ρ, η, h) = (2πh)−n

∫ ∫
e−

i
h t·τA(r1, θ1, r3, θ3, t, τ, ρ, η)dtdτ.

Furthermore,

a(r1, θ1, r3, θ3, ρ, η, h) = a1(r1, θ1, ρ, η)a2(r1, θ1, ρ, η) + hãh(r1, θ1, r3, θ3, ρ, η, h), (5.21)

with ãh bounded in S−∞(R3n).

Proof. It remains to prove (5.21) which is standard. We first insert a compactly supported cutoff
equal to 1 close to τ = 0 in the integral defining a. In the remaining integral, corresponding
to |τ | & 1, we can use standard non stationary phase estimates to get integrability with respect
to τ as well as arbitrary large powers of h, showing that it is O(h∞) in S−∞(R3n) since A and
all its derivatives are of rapid decay with respect to (ρ, η). For the latter, we simply use that
w(r+ tr)/w(r) is bounded from above and below since |t| . 1. The ’main’ integral, where |τ | ≤ 1,
is then clearly in S−∞(R3n) by the decay of A again. Furthermore, thanks to the compact support
with respect to (t, τ), we can use the stationary phase theorem and this gives (5.21). �

As a direct consequence of Lemma 5.5, we obtain that [B1(h), B2(h)] = hB(h), where B(h) has
a kernel as in Lemma 5.4. Therefore, using Lemma 5.4, we have

||[Φ̃(h),AM1 (h)]||L2(M,dg)→Lp(M,dg) . h× h
n
p−

n
2 . 1,

which proves (5.17) and completes the proof of (5.10). �
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A Proof of Proposition 3.1

We first define special families of partitions of Ω. Given n0 ∈ N and k ≥ −n0 an integer, we denote
by P(k) a countable partition of Ω, i.e.

P(k) = (Pl(k))l∈N, Ω = tl∈NPl(k).

In the sequel, the sets Pl(k) will always be measurable and bounded.
Given a family of partitions P := (P(k))k≥−n0 , we shall say that

• P is non increasing if: for all k ≥ 1− n0 and all l ∈ N, there exists l′ ∈ N such that

Pl(k) ⊂ Pl′(k − 1), (A.22)

• P is locally finite if: for all compact subset K ⊂ Ω there exists a compact subset K ′ ⊂ Ω
such that, for all k ≥ −n0, ⊔

l∈N
Pl(k)∩K 6=∅

Pl(k) ⊂ K ′ (A.23)

• P is of vanishing diameter if: there exists a sequence εk → 0 such that, for all k ≥ −n0 and
all l ∈ N there exists xk,l ∈ Ω such that

Pl(k) ⊂ {x ∈ Ω | |x− xk,l| ≤ εk}.

The following useful remarks are easy to check.

Remarks. 1. If P is non increasing, in (A.22), l′ is uniquely defined by l and k.
2. If P is non increasing, then it is locally finite if and only if for all compact subset K there exists
another compact subset K ′ such that (A.23) holds for k = −n0.
3. If P is non increasing, it follows by a simple induction that if Pl1(k1) ∩ Pl2(k2) 6= ∅ for some
k2 ≥ k1 ≥ −n0 and l1, l2 ∈ N, then Pl2(k2) ⊂ Pl1(k1).

Definition A.1. A family of partitions (P(k))k≥−n0 is admissible if it is non increasing, locally
finite and of vanishing diameter.

The proof of Proposition 3.1 is based on a suitable choice of admissible partitions which we
now describe.

Construction of a family of admissible partitions. For m = (m1, . . . ,mn−1) ∈ Zn−1, we set

�m = [m1,m1 + 1)× · · · × [mn−1,mn−1 + 1)

and for τ > 0, we set τ�m = {τθ ; θ ∈ �m} so that tm∈Zn−1τ�m = Rn−1 is a decomposition of
Rn−1 into cubes of side τ . Setting k+ = max(0, k), we can define, for all k ∈ Z,

P(i,m)(k) = 2−k+(i, i+ 1]× 2−kw([2−k+i])�m (A.24)

for all i ∈ N ∩ [2k+rK,∞) and m ∈ Zn−1. Here [2−k+i] denotes the integer part of 2−k+i.
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For notational convenience, we then relabel (P(i,m)(k))(i,m)∈N∩[2k+rK,∞)×Zn−1 as (Pl(k))l∈N.

Let us notice that, for k ∈ Z and l ∈ N, we have

ν(Pl(k)) = 2−k(n−1)

∫ 2−k+ (i+1)

2−k+ i

(
w([2−k+i])
w(r)

)n−1

dr.

Thus, using (1.10), there exists C2 ≥ 1 such that

C1−n
2 2−k(n−1) ≤ ν(Pl(k)) ≤ Cn−1

2 2−k(n−1) if k ≤ 0, (A.25)
C1−n

2 2−kn ≤ ν(Pl(k)) ≤ Cn−1
2 2−kn if k ≥ 1. (A.26)

Lemma A.2. For all n0 ∈ N, (P(k))k≥−n0 ≡
(
(Pl(k))l∈N

)
k≥−n0

(defined by (A.24)) is an admis-
sible family of partitions of Ω. Furthermore, there exists C3 > 1 independent of n0 such that, for
all k ≥ 1− n0 and all l ∈ N,

C−1
3 ≤ ν(Pl(k))

ν(Pl′(k − 1))
≤ C3, (A.27)

with l′ = l′(k, l) the unique integer satisfying (A.22).

Let us already point out that our family of admissible partitions has been designed in order to
have (A.27) which will be crucial in the proof of Lemma A.4 below.

Proof. For each k ≥ −n0, P(k) = (Pl(k))l∈N is obviously a partition of Ω. Since w is bounded,
the family P = (P(k))k≥−n0 is of vanishing diameter (εk ≈ 2−k). Let us prove that P is non
increasing. If k ≤ 0, we have

(i, i+ 1]× 2−kw(i)�m ⊂ (i′, i′ + 1]× 21−kw(i′)�m′

provided i = i′ and �m ⊂ 2�m′ , which clearly holds for some m′ ∈ Zn−1. Thus (A.22) holds if
k ≤ 0. If k ≥ 1, we remark that if

2−k(i, i+ 1] ⊂ 21−k(i′, i′ + 1] (A.28)

then [2−ki] = [21−ki′]. This follows easily from the fact that 2−k(i, i+1)∩N = 21−k(i′, i′+1)∩N = ∅.
Thus

2−k(i, i+ 1]× 2−kw([2−ki])�m ⊂ 21−k(i′, i′ + 1]× 21−kw([21−ki′])�m′

with i′ such that (A.28) holds and m′ such that �m ⊂ 2�m′ . Therefore P is non increasing. Using
Remark 2, it is then easy to check that P is locally finite and hence admissible. The estimate
(A.27) follows from (A.25) and (A.26). �

We now recall a basic result which is a version of Lebesgue’s Lemma.

Lemma A.3. Let u ∈ L1(Ω, dν) and P be an admissible family of partitions of Ω. Assume that
A ⊂ Ω is a measurable subset such that there exists C > 0 satisfying: for all k ≥ −n0 and all l ∈ N

Pl(k) ∩A 6= ∅ ⇒ 1
ν(Pl(k))

∫
Pl(k)

|u(x)| dν(x) ≤ C. (A.29)

Then |u| ≤ C almost everywhere on A.
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Proof. For all v ∈ L1(Ω, dν), we set

(Ekv)(x) =
∑
l∈N

1
ν(Pl(k))

∫
Pl(k)

v(y)dν(y)χPl(k)(x),

χPl(k) being the characteristic function of Pl(k). We first remark that

lim
k→∞

Ekv = v in L1(Ω, dν). (A.30)

Indeed, since ||Ekv||L1(Ω,dν) ≤ ||v||L1(Ω,dν) for all v, we may assume that v is continuous and
compactly supported. Then, denoting by K the support of v, we have for all k ≥ −n0

||Ekv − v||L1(Ω,dν) ≤
∑
l∈N

Pl(k)∩K 6=∅

ν(Pl(k)) sup
x,y∈Pl(k)

|v(y)− v(x)|.

Using the local finiteness of P and the fact that it is of vanishing diameter, there exists a compact
subset K ′ such that

||Ekv − v||L1(Ω,dν) ≤ ν(K ′) sup
x,y∈K′
|x−y|≤2εk

|v(y)− v(x)| → 0, k →∞,

and (A.30) follows. In particular, χAEk|u| → χA|u| in L1(Ω, dν) so there exists a subsequence
χAEkj |u| converging almost everywhere to χA|u|. Using (A.29) we have

0 ≤
(
χAEkj |u|

)
(x) ≤ C, x ∈ Ω,

and the result follows. �

The next lemma contains half of Proposition 3.1. It is based on the classical stopping time
argument of the usual Calderón-Zygmund covering lemma.

Lemma A.4. For all u ∈ L1(Ω, dν) and all λ > 0, we can find n0 ∈ N, an admissible family P of
partitions of Ω, a set I ⊂ {(k, l) ∈ Z× N | k ≥ −n0} and functions (wk,l)(k,l)∈I and v satisfying

u = v +
∑
I
wk,l, (A.31)

|v(x)| ≤ C3λ, a.e., (A.32)∫
Ω

wk,l dν = 0 and supp wk,l ∈ Pl(k), (A.33)∑
I
ν(Pl(k)) ≤ λ−1||u||L1(Ω,dν), (A.34)

||v||L1(Ω,dν) +
∑
I
||wk,l||L1(Ω,dν) ≤ 3||u||L1(Ω,dν). (A.35)

The constant C3 in (A.32) is the one chosen in (A.27).

Proof. We first choose n0 ∈ N such that C1−n
2 2n0(n−1) > λ−1||u||L1(Ω,dν), using the same constant

C2 as in (A.25), and then consider the admissible family of partitions P = ((Pl(k))l∈N)k≥−n0

defined by (A.24). By (A.25), we have

ν(Pl(−n0)) > λ−1||u||L1(Ω,dν), (A.36)
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for all l ∈ N. Next, we define I1−n0 ⊂ N and B1−n0 ⊂ Ω by

I1−n0 =

{
l ∈ N |

∫
Pl(1−n0)

|u| dν ≥ λν(Pl(1− n0))

}
,

B1−n0 = tl∈I1−n0
Pl(1− n0).

By induction, we then construct Ik and Bk, for k ≥ 2− n0, by

Ik =

{
l ∈ N

∣∣ ∫
Pl(k)

|u| dν ≥ λν(Pl(k)) and Pl(k) ∩Bk−1 = ∅

}
Bk = Bk−1 t

⊔
l∈Ik

Pl(k).

Let us set B = ∪k≥1−n0Bk, A = Ω \B and I = ∪k≥1−n0{k} × Ik. We can then define

v(x) =


u(x) x ∈ A,

∑
(k,l)∈I

1
ν(Pl(k))

∫
Pl(k)

u dν χPl(k)(x), x ∈ B,
(A.37)

and, for each (k, l) ∈ I,

wk,l = (u− v)χPl(k). (A.38)

Let us now check the properties (A.31) to (A.35). First, by construction, we have

B = t(k,l)∈IPl(k) (A.39)

and this implies (A.31). To prove (A.32), we start by observing that for all k ≥ 1 − n0 and all
l ∈ N

Pl(k) ∩A 6= ∅ ⇒ 1
ν(Pl(k))

∫
Pl(k)

|u| dν < λ. (A.40)

Indeed, assume that Pl(k)∩A 6= ∅. Then l /∈ Ik otherwise Pl(k) ⊂ Bk ⊂ B. Furthermore, we have
Pl(k) ∩Bk = ∅, otherwise Pl(k) should meet Bk−1 and we could find k′ ≤ k − 1 and l′ ∈ Ik′ such
that Pl(k) ∩ Pl′(k′) 6= ∅ in which case we would have Pl(k) ⊂ Pl′(k′) (since P is non decreasing)
and then Pl(k) ⊂ B, which is excluded. Thus, if Pl(k)∩A 6= ∅, then the right hand side of (A.40)
holds by definition of Ik, since l /∈ Ik and, if k ≥ 2−n0, since Pl(k)∩Bk−1 = ∅ (since Bk−1 ⊂ Bk).
Therefore, (A.40) (which is also true for k = −n0 by (A.36)) and Lemma A.3 show that |u| ≤ λ
almost everywhere on A. Let us now prove that |v| ≤ C3λ almost everywhere on B. Using (A.27),
it is enough to show that, for all (k, l) ∈ I (ie l ∈ Ik),∫

Pl′ (k−1)

|u| dν < λν(Pl′(k − 1)). (A.41)

If k = 1 − n0, this follows from (A.36). If k ≥ 2 − n0, we first remark that l′ /∈ Ik−1 otherwise l
could not belong to Ik since we would have Pl(k) ⊂ Pl′(k − 1) ⊂ Bk−1. Therefore, by definition
of Ik−1, either (A.41) holds or Pl′(k − 1) ∩Bk−2 6= ∅. The latter is excluded, otherwise Remark 3
(before Definition A.1) would imply that Pl(k) ⊂ Pl′(k − 1) ⊂ Bk−2 ⊂ Bk−1 which would prevent
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l to belong to Ik. This completes the proof of (A.32). The property (A.33) is a straightforward
consequence of (A.37) and (A.38) . The estimate (A.34) is a direct consequence of the definition
of the sets Ik, k ≥ 1 − n0, and of the fact that the sets Pl(k)) are disjoint if (l, k) ∈ I. Finally,
(A.37) shows that

∫
|v|dν ≤

∫
|u|dν and (A.38) that

∫
|wk,l|dν ≤

∫
Pl(k)

|u|dν +
∫
Pl(k)

|v|dν , and
these inequalities clearly imply (A.35). �

Proof of Proposition 3.1. We relabel the family (Pl(k))(k,l)∈I obtained in Lemma A.4 as
(Plj (kj))j∈N and define accordingly the functions ũ = v and uj = wkj ,lj . Using Lemma A.4, (3.1),
(3.2), (3.3) and (3.5) are consequences of (A.31), (A.35), (A.32) and (A.33) respectively. It remains
to show that the sets Plj (kj) are contained in balls or cylinders of the form (3.4) which satisfy
(3.6). Let j ∈ N and consider Plj (kj), which is of the form (A.24) for some i ∈ N and m ∈ Zn−1.
Since any cube of side 2 in Rn−1 is contained in a euclidean ball of radius (n− 1)1/2, we have

Plj (kj) ⊂
{
|r − 2−kj+i| ≤ 2−kj+ and

|θ − 2−kjw([2−kj+i])m|
w(2−kj+i)

≤ 2−kj (n− 1)1/2w([2−kj+i])
w(2−kj+i)

}
.

Therefore, if we set
rj = 2−kj+i, θj = 2−kjw([2−kj+i])m

and use the fact that w([2−kj+i])/w(2−kj+i) ≤ C, by (1.10), we have Plj (kj) ⊂ B(rj , θj , tj) with

tj = 2−kj+ + C2−kj (n− 1)1/2

if this quantity is ≤ 1. Otherwise, we have Plj (kj) ⊂ C(rj , θj , tj) with

tj = max(1, C2−kj (n− 1)1/2).

Since ν(C(rj , θj , tj)) ≈ tn−1
j if tj > 1 and ν(B(rj , θj , tj)) ≈ tnj if tj ≤ 1, which follow easily from

(1.37) and (1.38), and since tj ≈ 2−kj in all cases, the estimates (A.25) and (A.26) show that
ν(Qj) . ν(Plj (kj)). Thus (3.6) follows from (A.34). �

References

[1] J. M. Bouclet Semi-classical functional calculus on manifolds with ends and weighted Lp

estimates, Ann. Inst. Fourier (Grenoble), to appear.

[2] , Strichartz estimates on asymptotically hyperbolic manifolds, Analysis & PDE, to
appear.

[3] J. M. Bouclet, N. Tzvetkov, Strichartz estimates for long range perturbations, Amer. J.
Math. vol. 129, 6, 1565-1609 (2007).

[4] , On global Strichartz estimates for non trapping metrics, J. Funct. Analysis vol.
254, 6, 1661-1682 (2008).

[5] N. Burq, P. Gérard, N. Tzvetkov, Strichartz inequalities and the non linear Schrödinger
equation on compact manifolds, Amer. J. Math. 126, 569-605 (2004).

[6] T. Coulhon, X. T. Duong, X. D. Li, Littlewood-Paley-Stein functions on complete Rie-
mannian manifolds for 1 ≤ p ≤ 2, Studia Math. 154, no. 1, 37-57 (2003).

31



[7] S. Klainerman, I. Rodnianski, A geometric approach to the Littlewood-Paley theory, Geom.
Funct. Anal. 16 No. 1, 126-163 (2006).
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