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Abstract

We prove that the resonances of long range perturbations of the (semiclassical) Laplacian
are the zeroes of natural perturbation determinants. We more precisely obtain factorizations
of these determinants of the form

∏
w=resonances(z − w) exp(ϕp(z, h)) and give semiclassical

bounds on ∂zϕp as well as a representation of Koplienko’s regularized spectral shift function.
Here the index p ≥ 1 depends on the decay rate at infinity of the perturbation.

1 Introduction and results

One of the main purposes of Scattering Theory is the study of selfadjoint operators with abso-
lutely continuous (AC) spectrum. This corresponds physically to extended or delocalized states,
by opposition to the localized or confined states which give rise to discrete spectrum. A typical
mathematical example of confining system is given by the Laplacian ∆g (or more general elliptic
operators) on a compact riemannian manifold: here, the states (ie the eigenfunctions) are clearly
localized by the compactness assumption and the spectrum is a non decreasing sequence of eigen-
values tending to infinity.

Quite naively, ∆g can be viewed as an infinite dimensional analogue of an hermitian matrix
A = A∗ on CN . In that case, the spectrum of A is given by the roots of the characteristic
polynomial Det(A− z). It is elementary to check that, for z in the upper half plane,

Det(A− z) = exp
(
∂str(A− z)s|s=0

)
, (1.1)

so Det(A − z) can be defined as the analytic continuation (with respect to z) of the right hand
side of (1.1) to the complex plane. This is an elementary version of the classical definition of
determinants via a Zeta function (here tr(A − z)s), which is used in infinite dimension, typically
for elliptic operators on compact manifolds as initially introduced by Ray and Singer [25]. Avoiding
any technical point at this stage, we simply recall that such a definition is build from an analytic
continuation of s 7→ tr(∆g − z)s, using that (∆g − z)s is trace class at least for Re(s) sufficiently
negative, which uses crucially the discreteness of the spectrum of ∆g.
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In this spirit, the first goal of this paper is to realize the resonances of Schrödinger operators
with AC spectrum, as the zeroes of a determinant defined via a certain Zeta function.

Let us informally recall that, if H = H0 + V with H0 = −∆ on Rd and V a perturbation
tending to 0 at infinity, the resonances are the natural discrete spectral datum of the problem.
They can be defined as the poles of some meromorphic continuation of the resolvent of H and thus
can be considered as the analogues of the eigenvalues for confining systems. Notice however that,
apart from possible real eigenvalues, resonances usually refer to complex poles.

The problem of defining resonances as zeroes of determinants is very natural and has already
been considered by several authors, in connection with the important question of their distribution
[36, 33, 11, 12, 23, 24, 28, 16, 5, 4, 15]. In these references, various determinants are used such as
absolute determinants or relative determinants, determinants of the scattering matrices. In this
paper we will basically study relative determinants. The corresponding construction is fairly well
known in the relatively trace class situation, ie when (H − z)−k − (H0− z)−k is of trace class, that
is when V decays sufficiently fast at infinity and we refer to [22] for a nice review on this case. The
main point in this paper is to consider determinants for slowly decreasing perturbations of long
range type. We first recall some well known facts.

When V = V (x) is a potential (or possibly a first order differential operator), a natural candi-
date for our purpose can be the so called perturbation determinant (see [35]) defined by

Dp(z) = Dp(H0, H; z) := Detp
(
(H − z)(H0 − z)−1

)
= Detp

(
I + V (H0 − z)−1

)
, (1.2)

where Detp is the Fredholm determinant of order p which is defined as follows (see [14, 35] for more
details). Given a separable Hilbert space (here L2(Rd)), one defines the Schatten class of order
p ≥ 1 as the space Sp of compact operators K whose singular numbers1 form a sequence in lp(N)
(for p =∞, S∞ is the class of compact operators). The most classical examples are S1, the trace
class, and S2, the Hilbert-Schmidt class. Then, if K ∈ Sp, the spectrum of K is also in lp(N) and,
if p is an integer, one sets

Detp(I +K) :=
∏
k≥0

(1 + λk) exp

p−1∑
j=1

(−1)j

j
λjk

 , (λk)k≥0 = spec(K), (1.3)

where the product is convergent since the Weierstrass function on the right hand side is 1+O(λpk).
If V tends to zero with rate ρ > 0, ie

|V (x)| ≤ C〈x〉−ρ, (1.4)

it is classical that

V (H0 − z)−1 ∈ Sp if min(2, ρ) > d/p. (1.5)

For instance, in dimension d = 1 with V of short range, ie ρ > 1, V (H0−z)−1 is trace class and one
can define D1(H0, H; z), which is essentially the framework of [11, 28]. The Fredholm determinant
of order 1 is a rather popular tool for several reasons. For instance, it satisfies the formula

Det1 ((I +K1)(I +K2)) = Det1 (I +K1) Det1 (I +K2) ,

as in finite dimension. This formula doesn’t hold for p ≥ 2 (one needs then to add correction
factors). Also, formula (1.3) shows that for p = 1, we have a ’pure’ factorization of the determinant

1ie the spectrum of |K| := (K∗K)1/2
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of I +K by its eigenvalues 1 + λk. It is nevertheless necessary to consider Fredholm determinants
of higher order. Indeed, even for compactly supported potentials, V (H0− z)−1 is not of trace class
in general when d ≥ 2 (basically V (H0 − z)−k ∈ S1 if k > d/2 and ρ > d). Furthermore, even for
d = 1, one also needs to consider p 6= 1 to deal with long range potentials, ie when 0 < ρ ≤ 1.

There is in addition a major drawback in the definition (1.2): it is restricted to relatively
compact perturbations. In particular, we can not consider V that are second order differential
operators.

One can overcome this difficulty by defining relative determinants via relative Zeta functions.
This construction was first introduced for relatively trace class perturbations, ie basically for per-
turbations with coefficients decaying like (1.4) with ρ > d (see [22] for references) and was then
extended in [6, 7] to general ρ > 0, using an original idea of Koplienko [19]. We recall this
construction. Let V be a differential operator of the form

V =
∑
|α|≤2

vα(x)Dα, D = −i∂x,

symmetric on L2(Rd) such that −∆ + V is uniformly elliptic, whose coefficients are smooth and
satisfy

|∂βvα(x)| ≤ Cβ〈x〉−ρ, x ∈ Rd, (1.6)

for some ρ > 0. We shall further on consider semiclassical operators, ie replace D by hD with
h ∈ (0, 1], and all the results quoted here for h = 1 will still hold. One defines the so called
regularized spectral shift function ξp ∈ S ′(R) (see [6, 7]) as the unique distribution vanishing near
−∞ such that

〈ξ′p, f〉 = tr

f(H0 + V )−
p−1∑
j=0

1
j!
dj

dεj
f(H0 + εV )|ε=0

 , (1.7)

for all Schwartz function f , or more generally f ∈ S−k(R) (ie ∂jλf(λ) = O(〈λ〉−k−j)) with k large
enough. For p = 1, we recover the well known Krěın spectral shift function. For p ≥ 2, this trace
regularization by Taylor’s formula is due to Koplienko [19]. We also refer to the recent paper [13]
for a general introduction to Koplienko’s regularized spectral shift function in connection with
determinants. See also [20, 27, 2] in the one dimensional case.

Denoting by (· − z)−s the map λ 7→ (λ − z)−s, it is shown in [7] that the regularized Zeta
function,

ζp(s, z) := 〈ξ′p, (· − z)−s〉, Im(z) > 0, Re(s)� 1

has a meromorphic continuation, with respect to s, which is regular at s = 0. This allows to define

Dζ
p(z) = Dζ

p (H0, H0 + V ; z) := exp
(
−∂sζp(s, z)|s=0

)
,

which is holomorphic for Im(z) > 0. The notation Dζ
p is justified by the fact that

Dζ
p (H0, H0 + V ; z) = Dp (H0, H0 + V ; z) , (1.8)

when V is a potential (see [7]). In other words, the definitions of the perturbation determinant
by Fredholm determinants and regularized Zeta functions coincide if they both make sense. In
addition, one proved in [7] that, in the distributions sense,

d

dλ
arg Dζ

p(λ+ iε)→ −πξ′p(λ), ε ↓ 0. (1.9)
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For this reason, ξp is also called generalized scattering phase of order p. The above formula is well
known for ξ1 and was initially proved in [17] (see also [3]). See also [19, 20, 13] for p ≥ 2. Note the
parallel with the finite dimensional analogy of the very beginning of this paper: for an hermitian
matrix A on CN with spectrum λ1, . . . , λN , one easily sees that

d

dλ
arg Det(A− λ− iε)→ −π

N∑
k=1

δ(λ− λk), ε ↓ 0,

where the right hand side is −π times the derivative of the eigenvalue counting function, ie the
analogue of the spectral shift function for a discrete spectrum. This also suggests that if the
resonances of H0 +V are indeed the zeroes of (a suitable meromorphic continuation of) Dζ

p(z), the
derivative of ξp(λ) should involve a function (and/or a measure) with singularities carried by the
resonances. Such a result is sometimes referred to as Breit-Weigner formula and is already known
for p = 1 (see [8] and the references therein). In this paper, we shall prove it for general p ≥ 1. We
will also give semiclassical bounds.

Throughout this paper, we shall use the definition of resonances and some related results given
in [30] (see also [31]). The definition is basically taken from the original paper by Sjöstrand-Zworski
[32] and the other useful results of [30] come from a simplification of the proof of the trace formula
[29]. Before stating the results, we fix the notation and some definitions.

For 0 < θ0 < π, R0 > 0 and ε0 > 0, we set

Σ(θ0, R0, ε0) := {rω ; ω ∈ Cd, dist(ω,Sd−1) < ε0, r ∈ ei[0,θ0](R0,+∞)}.

Definition 1.1. Let ρ > 0. We define Cρ(θ0, R0, ε0) as the set of smooth functions v on Rd which
have an analytic extension to Σ(θ0, R0, ε0) such that

|v(x)| ≤ C〈x〉−ρ, x ∈ Σ(θ0, R0, ε0). (1.10)

Here 〈x〉 = (1 + |x|2)1/2. A family (vι)ι∈I is said to be bounded in Cρ(θ0, R0, ε0) if it is bounded in
C∞(Rd) and if the constant C in (1.10) is uniform with respect to ι ∈ I.

We consider perturbations of H0(h) = −h2∆ by second order differential operators of the form

V (h) =
∑
|α|≤2

vα(x, h)(hD)α, (1.11)

depending on a small parameter h > 0. We assume that, for some h0 > 0, the coefficients are such
that, for all |α| ≤ 2,

(vα(., h))h∈(0,h0] is bounded in Cρ(θ0, R0, ε0), (1.12)

and such that, for some c > 0,

vα(., h) doesn’t depend on h if |α| = 2, (1.13)

|ξ|2 +
∑
|α|=2

vα(x)ξα ≥ c|ξ|2, x ∈ Rd, ξ ∈ Rd. (1.14)

We also assume that

V (h) is symmetric on C∞0 (Rd) . (1.15)
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These assumptions imply that H0(h) + V (h) is selfadjoint on L2(Rd) with domain H2(Rd) the
usual Sobolev space.

The assumption (1.12) implies that the coefficients of V must be smooth on Rd. This is mostly
for convenience, to simplify the analysis, but we expect that some local singularities could be
considered as well, using for instance the black-box formalism of Sjöstrand-Zworski [32]. Notice
however that, apart from the special case p = 1, we have to consider operators of the form H0 +εV
hence with H0 and V defined on the same space. In particular, the generalization of the present
results to perturbations by obstacles (+ long range metrics or potentials) would require a modified
approach.

Notation. We shall mostly write H0, V for H0(h) and V (h). When no confusion will be possible,
V will also denote the family of operators (V (h))0<h≤h1 . Such a family will sometimes be denoted
by (V (h))h�1 to mean that it is of the form (V (h))0<h≤h1 for some h1 > 0.

It is convenient to summarize the above properties in the following definition.

Definition 1.2. We say that V = (V (h))h∈(0,h1] belongs to Vρ(θ0, R0, ε0) if it satisfies (1.12),
(1.13), (1.14) and (1.15). A family (Vι)ι∈I = (Vι(h))h∈(0,h1],ι∈I is bounded in Vρ(θ0, R0, ε0) if
the families of coefficients (vα,ι(., h))h∈(0,h1],ι∈I are bounded in Cρ(θ0, R0, ε0) for all α and if the
constant c in (1.14) can be chosen independently of ι.

Remark. To state this definition, we have explicitly fixed the range of h, namely (0, h1], but we
will also freely write that V = (V (h))h�1 belongs to Vρ(θ0, R0, ε0) to mean that, for some h1 small
enough, (V (h))h∈(0,h1] ∈ Vρ(θ0, R0, ε0). A similar slight abuse of notation will be used for families
(Vι)ι∈I = (Vι(h))h�1,ι∈I .

Obviously, any v ∈ Cρ(θ0, R0, ε0) satisfies (1.6). Therefore, using the results of [6], we can define
the generalized scattering phase ξp(., h) associated to −h2∆ and V (h), provided

pρ > d.

We can then define the regularized Zeta function ζp(s, z, h) by

ζp(s, z, h) = 〈ξ′p(., h), (.− z)−s〉, Im(z) > 0, Re(s)� 1.

According to [7], ζp(s, z, h) can be continued analytically at s = 0 and we can define the relative
determinant of order p

Dζ
p(z, h) := exp

(
−∂sζp(s, z, h)|s=0

)
, Im(z) > 0. (1.16)

We note that, for more precise purposes, the analytic continuation (in s) of the Zeta function will
be reviewed in Section 2.

The determinant Dζ
p(z, h) is our candidate to become the ’characteristic polynomial’ of the

resonances of H0 + V .
We now briefly recall the definition of resonances of [30, 32] (see Section 4 of the present paper

for precise statements). Let θ0 ∈ (0, π), ε > 0 such that ε < 2π − 2θ0 and consider a relatively
compact open subset

Ω b ei(−2θ0,ε)(0,+∞) (1.17)

which is simply connected and such that

Ω ∩ (0,+∞) is a non empty interval. (1.18)
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The resonances of H0 +V in Ω are by definition the eigenvalues in e−i[0,2θ0)(0,+∞) ∩Ω of some non
selfadjoint operator H0(θ0) + V (θ0) obtained by analytic distortion. We denote by

Res(H0 + V,Ω) := set of resonances of H0 + V in Ω,

which is a finite set depending on h. We recall here that, for the operators considered in this paper,
we have the following Weyl upper bound for the number of resonances in Ω (see for instance [30]),

#Res(H0 + V,Ω) ≤ Ch−d, h� 1. (1.19)

Note that they are counted with multiplicity and that the multiplicity of each resonance is well
defined as the rank of a certain projector (see Section 4) which is non orthogonal in general.

Our first result is the following.

Theorem 1.3. Let ρ > 0, V ∈ Vρ(θ0, R0, ε0) and p > d/ρ. Then, for all h � 1, Dζ
p(z, h) has an

analytic continuation from

Ω+ := Ω ∩ ei(0,ε)(0,+∞) (1.20)

to Ω, of the form

Dζ
p(z, h) =

∏
w∈Res(H0+V,Ω)

(z − w)× exp(ϕp(z, h)), z ∈ Ω,

where each resonance is repeated according to its multiplicity and the function z 7→ ϕp(z, h) is
holomorphic on Ω.

The proof is given in subsection 5.1.
Notice that the function ϕp(z, h) is uniquely defined up to a multiple of 2iπ of the form 2ik(h)π.

By (1.9), an immediate consequence of Theorem 1.3 is the following Breit-Wigner formula.

Corollary 1.4. With the notation and assumptions of Theorem 1.3, for all h� 1 we have

ξ′p(λ, h) =
∑

w∈Res(H0+V,Ω)∩R

δ(λ− w)−
∑

w∈Res(H0+V,Ω)\R

Im(w)
π|λ− w|2

− 1
π

Im(∂zϕp(λ, h)),

in the distributions sense on Ω ∩ (0,+∞).

Here λ is restricted to (0,+∞), but it is well known that

ξ′p(λ, h) =
∑

w∈σ−(H0+V )

δ(λ− w), λ ∈ Ω ∩ (−∞, 0),

where σ−(H0 + V ) = σ(H0 + V )∩ (−∞, 0) is the set of negative eigenvalues of H0 + V (see [6] for
instance but this is anyway an elementary consequence of the definition (1.7)).

This corollary becomes of real interest if one has estimates on ∂zϕp. This is the purpose of the
next results.

Theorem 1.5. Assume that V ∈ Vρ(θ0, R0, ε0) with ρ > d/p and

p = 1 or p = 2.

Then any ϕp as in Theorem 1.3 satisfies, for any compact subset W b Ω,

|∂zϕp(z, h)| ≤ CWh−d, h� 1, z ∈W. (1.21)
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This theorem is proved in subsection 5.2. In Section 7, we also prove that a similar result holds
for p ≥ 3 if we assume that V is dilation analytic. However Theorem 1.5 is sharp in general for
non globally analytic perturbations as is shown by Theorem 1.6 below.

Fix first
W = {z = re−iθ ∈ C ; 1 ≤ r ≤ 4, 0 ≤ θ ≤ π},

and observe that, for π/2 < θ0 < π and all ε > 0 small enough, W is clearly contained in a simply
connected open set Ω satisfying (1.17) and (1.18). This neighborhood Ω can be chosen close enough
to W so that we can define a determination of the square root z1/2, with (re−iθ)1/2 = r1/2e−iθ/2

on W hence so that
Im(z1/2) ≤ 0 on W.

Theorem 1.6. In dimension d = 1, for all V ∈ C∞0 (R,R), V 6= 0, we can find δ > 0 such that,

lim sup
h→0

sup
z∈W
|heδIm(z1/2)/h∂zϕ3(z, h)| = +∞. (1.22)

In particular, |h∂zϕ3(z, h)| can not be bounded on W uniformly with respect to h.

The proof of this theorem is given in Section 6.

We next give a general bound on ∂zϕp involving the distorted operator H0(θ) defined in Section
4 and the semiclassical Sobolev space defined by (3.1). We recall that H0(θ) − z is invertible for
all h� 1 and z ∈ Ω.

Theorem 1.7. Under the assumption of Theorem 1.3, there exists N > 0 such that, for all W b Ω,

|∂zϕp(z, h)| ≤ CWh−d sup
Z∈Ω

(
1 + ||(H0(θ0)− Z)−1||L2→H2,0

sc

)N
, h� 1, z ∈W.

In general, ||(H0(θ0) − Z)−1||L2→H2,0
sc

is of order O(eCh
−1

), locally uniformly with respect to
Z (see Proposition 4.7). However, Theorem 1.5 shows that the corresponding exponential upper
bound on ∂zϕp can be much improved if p = 1, 2 (and p ≥ 3 if V is dilation analytic, see Section
7). Note also that Theorem 1.6 can be interpreted as a weak exponential lower bound.

Theorem 1.7 is proved in subsection 5.1.

To motivate the analysis developed in the next sections, let us already show that most of the
results above will essentially be reduced to the study of ζp(k, z, h), for some k large enough.

The basic strategy is the following. Using (1.16), we have

∂kz logDζ
p(z, h) = −∂kz ∂sζp(s, z, h)|s=0, k ≥ 1, z ∈ Ω+. (1.23)

Here and below ∂kz log g stands for ∂k−1
z (g′/g), for any non vanishing holomorphic function g. On

the other hand, at least for k > d/2, we also have

∂kz ∂sζp(s, z, h)|s=0 = (k − 1)! ζp(k, z, h), (1.24)

as will be proved in Section 2 (see (2.10) and the discussion thereafter) and is formally a consequence
of the identity,

∂kz ∂s(λ− z)−s|s=0 = (k − 1)!(λ− z)−k. (1.25)
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Fix then z0 ∈ Ω+. In Section 2 (see Proposition 2.1) we shall also prove that, for all ν ≥ 0,

|∂ν+1
z ∂sζp(s, z0, h)|s=0| ≤ Ch−d, h� 1. (1.26)

In addition, by (1.19), we have, for all ν ≥ 0,∑
w∈Res(H0+V,Ω)

|z0 − w|−ν−1 ≤ Ch−d, h� 1, (1.27)

since |z0 − w| & 1. These are the essential tools of the reduction given by Proposition 1.8 be-
low. Before stating it and to consider the different possible estimates for ∂zϕp, we introduce the
following. Let

Hhol(Ω, h1) := {(φ(., h))h∈(0,h1]},

be the space of h-dependent families of holomorphic functions on Ω. Let H(Ω, h1) be a subspace
of Hhol(Ω, h1) such that

(h−d)h∈(0,h1] ∈ H(Ω, h1), (1.28)

and which is stable by taking the primitive, ie such that for all (φ(., h))h∈(0,h1] ∈ Hhol(Ω, h1) and
some z0 ∈ Ω,

(φ′(., h))h∈(0,h1] ∈ H(Ω, h1) ⇒ (φ(., h)− φ(z0, h))h∈(0,h1] ∈ H(Ω, h1). (1.29)

Note that, if z0 is such that |φ(z0, h)| . h−d, and by using (1.28), one can replace (1.29) by
(φ′(., h))h∈(0,h1] ∈ H(Ω, h1)⇒ (φ(., h))h∈(0,h1] ∈ H(Ω, h1).

Example. The space Hhol(Ω, h1) itself or the subspace of functions such that, for all W b Ω,
|φ(z, h)| ≤ CWh−d for all z ∈W and h ∈ (0, h1] satisfy (1.28) and (1.29).

Proposition 1.8. If we can find h1 > 0 small enough, k ≥ 1 and φp ∈ H(Ω, h1) such that

ζp(k, z, h) =
∑

w∈Res(H0+V,Ω)

1
(w − z)k

+ φp(z, h), z ∈ Ω+, h ∈ (0, h1], (1.30)

then Theorem 1.3 holds true with ϕp such that ∂zϕp ∈ H(Ω, h1).

Proof. Setting for simplicity

D = Dζ
p (z, h) , F =

∏
w∈Res(H0+V,Ω)

(z − w),

which are holomorphic and don’t vanish on Ω+, (1.23), (1.24) and (1.30) give

∂k−1
z

(
∂zD

D
− ∂zF

F

)
= −(k − 1)!φp, on Ω+. (1.31)

If k = 1, we therefore obtain

∂zD

D
− ∂zF

F
∈ H(Ω, h1), (1.32)
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which implies easily the result. If k−1 ≥ 1, we denote by Φp the (k−1)-th primitive of −(k−1)!φp
(ie ∂k−1

z Φp = −(k − 1)!φp) such that

∂νzΦp(z0, h) = ∂νz

(
∂zD

D
− ∂zF

F

)
(z0, h), 0 ≤ ν ≤ k − 2,

where z0 is chosen arbitrarily in Ω+. The existence and uniqueness of Φp is guaranteed by the
simple connectedness of Ω. By (1.26) and (1.27), we have

|∂νzΦp(z0, h)| ≤ Ch−d,

and this implies, together with (1.28) and (1.29), that

φp ∈ H(Ω, h1) ⇒ Φp ∈ H(Ω, h1).

Thus (1.31) imply that (1.32) holds also if k − 1 ≥ 1 and we get the result. �

2 The Zeta function

In this subsection, we review the construction of the meromorphic continuation of s 7→ ζp(s, z, h).
Although the latter was shown in [7] (for fixed h), we need to review the main lines of the proof
in order to prove the identity (1.24) and the estimate (1.26).

We start with general considerations. Using the principal determination of log on C \ (−∞, 0],
we can define (λ− z)−s for s ∈ C, λ ∈ R and z ∈ C \ [λ,+∞). One can then check that

(λ− z)−s =
1

Γ(s)

∫ +∞

0

ts−1e−t(λ−z)dt, Re(z) < λ, Re(s) > 0, (2.1)

since both sides are holomorphic with respect to z and the equality holds for z ∈ (−∞, λ) by
an elementary change of variables in the definition of Γ(s). Next, if u ∈ S ′(R) is a temperate
distribution such that, for some λ0 > 0,

supp(u) ⊂ [λ0,+∞) (2.2)

we can consider its Laplace transform Lu(t) := 〈u, e−t.〉 (e−t. stands for the map λ 7→ e−tλ), and,
for all δ > 0,

|Lu(t)| ≤ Cδe−t(λ0−δ), t > 0. (2.3)

Furthermore, using that |〈u, f〉| ≤ C supj+k≤N supλ∈R |λj∂kλf(λ)| for some N and all f ∈ S(R),
〈u, f〉 is still well defined if f(λ) = (λ− z)−s with Re(s) > s0 large enough and Re(z) < λ0. If in
addition, we know that

|Lu(t)| ≤ Ct−d/2, t ∈ (0, 1] (2.4)

then, one has

〈u, (· − z)−s〉 =
1

Γ(s)

∫ +∞

0

Lu(t)etzts−1dt, Re(z) < λ0, Re(s) > max(s0, d/2).
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Note that the power d/2 could actually be any arbitrary real number but, in the applications
below, we shall need only to consider this case. If (2.4) is replaced by the stronger assumption
that there is an asymptotic expansion at t = 0, namely that, for all J > 0,

Lu(t) =
∑
j<J

ajt
−d/2+j/2 + t−d/2+J/2bJ(t), |bJ(t)| ≤ C, t ∈ (0, 1], (2.5)

then we can write, for Re(z) < λ0 and Re(s) > max(s0, d/2),

〈u, (· − z)−s〉 = I(s, z) + IIJ(s, z) + IIIJ(s, z), (2.6)

with

I(s, z) =
1

Γ(s)

∫ ∞
1

Lu(t)etzts−1dt,

IIJ(s, z) =
1

Γ(s)

∫ 1

0

bJ(t)etzt−d/2+J/2+s−1dt,

IIIJ(s, z) =
1

Γ(s)

∑
j<J

aj

∫ 1

0

etzt−d/2+j/2+s−1dt.

By choosing J > d, both I and IIJ are holomorphic close to s = 0. Thus, using the fact that
dΓ−1(s)/ds = 1 at s = 0 and that Γ−1(s) vanishes at 0 one sees that, for all k ≥ 1,

∂kz ∂sF (s, z)|s=0 = Γ(k)F (k, z) = (k − 1)!F (k, z), Re(z) < λ0, (2.7)

for F = I and F = IIJ . The term IIIJ can be computed explicitly, namely,

Γ(s)× IIIJ(s, z) =
J−1∑
j=0

aj
∑
l≥0

zl

l!
1

s+ j/2 + l − d/2
. (2.8)

At s = 0, there is at most a simple pole, which corresponds to the terms where j/2 + l− d/2 = 0.
Thus IIIJ(s, z) is regular at s = 0. This shows the existence of a meromorphic continuation to
the complex plane for

s 7→ 〈u, (· − z)−s〉 =: Z(s, z),

which is regular at s = 0. Furthermore one has,

∂kz ∂sIIIJ(s, z)|s=0 = (k − 1)!IIIJ(k, z), k > d/2, (2.9)

(with k integer) since this derivative only involves terms with l > d/2 in (2.8). Hence, using (2.7),
we also have

∂kz ∂sZ(s, z)|s=0 = (k − 1)!Z(k, z), Re(z) < λ0, k > d/2. (2.10)

Note that, if u is compactly supported, (2.10) is a direct consequence of the identity (1.25).

When u = ξ′p, the existence of a meromorphic continuation in s for ζp(s, z, h) is a consequence
of the existence of an expansion of the form (2.5) proved in [6]. Notice that altering Lu(t) by
an analytic function in t will not destroy the form of this expansion. There is no restriction on
Re(z) since, for all λ0 ∈ R, ξ′p can be written as the sum of a compactly supported distribution
and a temperate distribution supported in [λ0,+∞) for which (2.5) still holds since the Laplace
transform of the compactly supported distribution is analytic in t.

In particular, for u = ξ′p, the relation (2.10) yields (1.24).

We now consider (1.26).

10



Proposition 2.1. For all z0 ∈ Ω+ and all integer ν ≥ 0, (1.26) holds.

Proof. We shall see that the result follows from the following two facts: the existence of a semi-norm
||.||S (independent of h) of the Schwartz space S(R) such that

|
〈
ξ′p(h), ψ

〉
| ≤ Ch−d||ψ||S , ψ ∈ S(R), h ∈ (0, h0], (2.11)

and the existence of an expansion of the form〈
ξ′p(h), e−t(.)

〉
∼ t−d/2

∑
j≥0

aj(h)tj/2, t→ 0, with aj(h) = O(h−d). (2.12)

The latter means that the difference between the left hand side and the sum truncated at the order
M is bounded by Ch−dt(M−d)/2, for t ∈ (0, 1] and h ∈ (0, h0]. Indeed, by writing ξ′p = χξ′p+(1−χ)ξ′p
with χ ∈ C∞0 (R) such that χ ≡ 1 on a large enough compact set, we may assume that (1 − χ)ξ′p
is supported in [λ0,+∞) with λ0 > Re(z0). Therefore, using (2.11), (2.12) and the discussion
prior to Proposition 2.1, we see that 〈χξ′p(h), (· − z)−s〉 as well as the terms I(h), IIJ(h), IIIJ(h)
corresponding to u = u(h) = (1− χ)ξ′p(h) are O(h−d) uniformly with respect to s close to 0 and z
close to z0 which gives the result.

The proof of (2.11) can be found in [6] so we only consider (2.12). For the latter, the main
remark is that, for all ε ∈ [0, 1],

−t(H0 + εV ) = (ht1/2)2∆− εṼ (h, t1/2, x, ht1/2D)

with

Ṽ (h, t1/2, x, ξ) =
2∑
l=0

t1−
l
2

∑
|α|=l

vα(x, h)ξα

where the vα are defined by (1.11). By reviewing the proof of Proposition 3.1 in [6] with ht1/2 as
new semi-classical parameter, we see that, for all M , we have the following expansion

tr

e−t(H0+V ) −
p−1∑
j=0

1
j!
dj

dεj
e−t(H0+εV )|ε=0

 =
∑
q<M

(ht1/2)q−ddq(t1/2, h)

+(ht1/2)M−dRM (t1/2, h),

with RM (t1/2, h) = O(1) for h ∈ (0, h0] and 0 < t ≤ 1. The coefficients dq(t1/2, h) are smooth at 0
with respect to t1/2 and bounded with respect to h ∈ (0, h0] as well as their derivatives so (2.12)
follows. �

3 Trace class estimates

In the sequel, we shall use the notation Opwh (a) for standard h-pseudodifferential operators of the
form

Opwh (a)u(x) = (2π)−d
∫ ∫

ei(x−y)·ξa

(
x+ y

2
, hξ

)
u(y)dξdy, h ∈ (0, h0],

with symbols a ∈ Sµ,ν , µ, ν ∈ R, namely such that

|∂αx ∂
β
ξ a(x, ξ)| ≤ Cαβ〈x〉ν〈ξ〉µ−|β|.
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We refer for instance to [26, 21, 10] for the proofs of the standard results we shall use below on
the analysis of such operators. We equip Sµ,ν with its standard Fréchet space topology given by
the seminorms defined by the best constants Cαβ .

We also define the following semiclassical weighted Sobolev spaces

Hs,σ
sc := 〈x〉−σ〈hD〉−sL2(Rd), s, σ ∈ R,

equipped with the h-dependent norm

||u||Hs,σsc
:= ||〈hD〉s〈x〉σu||L2(Rd). (3.1)

Notice that
Hs,σ

sc ⊂ Hs,0
sc ⊂ L2(Rd), if s ≥ 0, σ ≥ 0.

In this section, we will consider h-dependent families of symbols

a = (a(h))h∈(0,h0], a(h) ∈ S2,0 for all h ∈ (0, h0].

Most of the time, we shall assume the existence of C > 0 such that, for all h ∈ (0, h0],

|a(h, x, ξ)| ≥ C−1|ξ|2, x ∈ Rd, |ξ| > C. (3.2)

When a = (a(h))h∈(0,h0] or b = (b(h))h∈(0,h0], we shall adopt the short notation

A = Opwh (a(h)), B = Opwh (b(h)),

for all h ∈ (0, h0].
In the next proposition, B denotes a subset of (S2,0)(0,h0], namely a set of families (a(h))h∈(0,h0],

uniformly bounded in S2,0, ie such that {a(h) ; h ∈ (0, h0], a ∈ B} is bounded in S2,0. We also
assume that (3.2) holds for all a ∈ B, with a constant C > 0 independent of a.

Proposition 3.1. Assume that, for all a ∈ B and all h ∈ (0, h0],

A : H2,0
sc → L2(Rd) is invertible.

Then, for all s ≥ 0 and σ ≥ 0, the restriction

As,σ = A|Hs+2,σ
sc

is bounded from Hs+2,σ
sc to Hs,σ

sc with bounded inverse such that

A−1
s,σ = A−1|Hs,σsc

. (3.3)

Furthermore, there exists Cs,σ > 0 such that, for all h ∈ (0, h0] and all a ∈ B,

||A−1
s,σ||Hs,σsc →Hs+2,σ

sc
≤ Cs,σ

(
1 + ||A−1||L2→H2,0

sc

)[σ]+1

, (3.4)

with [σ] the smallest integer ≥ σ.

The equality (3.3) means that we can consider A−1 as an operator from Hs,σ
sc into Hs+2,σ

sc and
(3.4) gives an estimate on the corresponding norm. Abusing the notation, this proposition will
allow us to denote A−1 instead of A−1

s,σ in the sequel.
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Proof. The boundedness of As,σ follows from the L2 boundedness of

〈hD〉s〈x〉σOpwh (a(h))〈x〉−σ〈hD〉−s−2 =: Opwh (bs,σ(h))

since bs,σ(h) so defined belongs to S0,0. If σ > 0, we consider next σ1 := σ/[σ] ∈ [0, 1]. Then, by
the resolvent identity,

A−1〈x〉σ1 = 〈x〉σ1A−1 −A−1[A, 〈x〉σ1 ]A−1

where [A, 〈x〉σ1 ] = Opwh (aσ1(h)) for some symbol aσ1(h) ∈ S1,0 depending continuously on a(h).
Thus

〈x〉−σ1A−1
(
1 + [A, 〈x〉σ1 ]A−1〈x〉−σ1

)
= A−1〈x〉−σ1

shows that A−1 is bounded from H0,σ1 to H0,σ1 with norm controlled, uniformly with respect to
a ∈ B and h ∈ (0, h0], by ||A−1||L2→H2,0

sc
(1 + ||A−1||L2→H2,0

sc
). By iteration, we obtain that A−1

maps continuously H0,2σ1
sc , H0,3σ1

sc , . . . ,H
0,[σ]σ1
sc into themselves and that

||A−1||H0,σ
sc →H0,σ

sc
≤ C||A−1||L2→H2,0

sc
(1 + ||A−1||L2→H2,0

sc
)[σ], (3.5)

with C independent of h and of a ∈ B. Using (3.2), we can construct, for all N ≥ 0, symbols
ãN (h) ∈ S−2,0 and rN (h) ∈ S−N,0, depending continuously on a(h), such that

Opwh (ãN (h))Opwh (a(h)) = 1 +Opwh (rN (h)).

Notice that this is not a semiclassical parametrix (that would be the case if we had a remainder
of the form hNOpwh (rN (h))) since (3.2) is not an ellipticity condition in the semiclassical sense.
This is simply an h-dependent classical parametrix (in the sense of Theorem 18.1.9 of [18]). The
symbol ãN (h) is constructed by successive approximations starting from (1−χ)(ξ)/a(x, ξ, h), with
χ ∈ C∞0 such that χ(ξ) = 1 for |ξ| ≤ C, and then following the usual iterative scheme. We then
obtain

A−1 = Opwh (ãN (h))−Opwh (rN (h))A−1. (3.6)

Since Opwh (ãN (h)) maps Hs,σ
sc into Hs+2,σ

sc and Opwh (rN (h)) maps H0,σ
sc into HN,σ

sc for all N ≥ 0,
with norms uniformly bounded with respect to a and h, the right hand side of (3.6) is therefore
bounded from Hs,σ

sc to Hs+2,σ
sc , by choosing N ≥ s + 2 and using (3.5). The result then follows

easily. �

In the sequel we shall denote by L(H1,H2) the Banach space of linear continuous map-
ping between Hilbert spaces H1 and H2, equipped with the usual norm. We also denote by
Linvertible(H1,H2) the open subset of invertible mappings.

Proposition 3.2. Let a = (a(h))h∈(0,h0] be a family of S2,0 satisfying (3.2) and let U ⊂ C be an
open subset. Assume that

A− z : H2,0
sc → L2(Rd) is invertible

for all z ∈ U and all h ∈ (0, h0].
i) Let b = (b(h))h∈(0,h0] be a family of S2,0. Then, for all h ∈ (0, h0] and all z0 ∈ U , there exists
εh,z0 > 0 and a neighborhood U(z0) ⊂ U of z0 such that, for all s, σ ≥ 0, the map

(−εh,z, εh,z)× U(z0) 3 (ε, z) 7→ (A+ εB − z)−1 ∈ L(Hs,σ
sc , Hs+2,σ

sc ) (3.7)

is well defined and smooth. In addition

dj

dεj
(A+ εB − z)−1 = (−1)jj!(A+ εB − z)−1

(
B(A+ εB − z)−1

)j
. (3.8)
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ii) Assume that, for all h ∈ (0, h0], we have a sequence (an(h))n∈N converging to a(h) in S2,0.
Then, for all h ∈ (0, h0] and all relatively compact subset U0 b U , there exists nh,U0 ∈ N such that,

An − z : H2,0
sc → L2(Rd), z ∈ U0, n ≥ nh,U0 , (3.9)

is invertible, and, for all s, σ ≥ 0,

||(An − z)−1 − (A− z)−1||Hs,σsc →Hs+2,σ
sc

→ 0, n→∞, (3.10)

uniformly on U0.

Proof. Fix h ∈ (0, h0]. Since B is bounded from H2,0
sc to L2(Rd), for ε small enough and z close

enough to z0, A + εB − z is invertible. It is then also invertible as a bounded operator from
Hs+2,σ

sc to Hs,σ
sc by Proposition 3.1. Since the map T 7→ T−1 is C1 from Linvertible(Hs+2,σ

sc , Hs,σ
sc )

to L(Hs,σ
sc , Hs+2,σ

sc ), (3.7) is C1 with derivative given by (3.8) with j = 1. The result then follows
by induction. Let us now prove ii). Let z0 ∈ U . Since A − z0 is invertible and by convergence
of An to A, there exists nh,z0 > 0 and δz0,h > 0 such that An − z is invertible for n ≥ nz0,h
and |z − z0| < δz0,h. By compactness, U0 can be covered by finitely many balls of the form
{|z − zj | < δzj ,h} and thus An − z is invertible for all z ∈ U0 and n ≥ nh,U0 := maxj nh,zj . The
balls can be chosen such that

sup
n≥nh,zj

sup
|z−zj |<δh,zj

||(An − z)−1||Hs,σsc →Hs+2,σ
sc

< +∞

so the norms ||(An − z)−1||Hs,σsc →Hs+2,σ
sc

are uniformly bounded with respect to n ≥ nh,U0 and
z ∈ U0. Then (3.10) follows from the resolvent identity. �

For k ≥ 1 integer, to be fixed further on, we set

fkz (λ) = (λ− z)−k.

Proposition 3.3. Let U ⊂ C an open subset and a = (a(h))h∈(0,h0] be a family of S2,0 satisfying
(3.2). Let b = (b(h))h∈(0,h0] be a family of Sm,µ with m ≤ 2 and µ < 0. Assume that, for all
h ∈ (0, h0] and all z ∈ U ,

A− z : H2,0
sc → L2(Rd)

is invertible.
i) Let j ≥ 1. Then, dj

dεj f
k
z (A+ εB)|ε=0 is well defined and is a linear combination of

(A− z)−k1B(A− z)−k2 · · ·B(A− z)−kj+1 , k1 + · · ·+ kj+1 = k + j (3.11)

with k1, . . . , kj+1 ≥ 1. Furthermore, if

j(m− 2)− 2k < −d and jµ < −d, (3.12)

each operator of the form (3.11) is of trace class in L2(Rd).
ii) Assume in addition that, for all h ∈ (0, h0] and all z ∈ U ,

A+B − z : H2,0
sc → L2(Rd)

is invertible. Then

fkz (A+B)− fkz (A)−
p−1∑
j=1

1
j!
dj

dεj
fkz (A+ εB)|ε=0 (3.13)
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is well defined and is a linear combination of

(A+B − z)−k1B(A− z)−k2 · · ·B(A− z)−kp+1 , k1 + · · ·+ kp+1 = k + p (3.14)

with k1, . . . , kp+1 ≥ 1. If

p(m− 2)− 2k < −d and pµ < −d (3.15)

then each operator of the form (3.14) is trace class on L2(Rd).

First recall that from the standard estimate

||〈x〉−s〈hD〉−σ||tr ≤ Ch−d, h ∈ (0, h0],

we have:

Lemma 3.4. For all s > d and σ > d, the injection Hs,σ
sc ↪→ L2(Rd) is trace class with norm

O(h−d).

Proof of Proposition 3.3. That dj

dεj f
k
z (A+ εB)|ε=0 is well defined follows directly from Proposition

3.2 i), as well as its expression for k = 1 which is given by (3.8). The formula for k ≥ 2 is obtained
by applying ∂k−1

z to (3.8), using

(k − 1)!(λ− z)−k = ∂k−1
z (λ− z)−1, (3.16)

and the smoothness of (3.7). By Proposition 3.1, each operator of the form (3.11) is bounded from
L2(Rd) to Hj(2−m)+2k,−jµ

sc thus is trace class by (3.12) and Lemma 3.4. This completes the proof
of i). The proof of ii) is completely similar once observed that, for k = 1, (3.13) equals

(−1)p(A+B − z)−1
(
B(A− z)−1

)p
,

which is obtained using (3.8). �

Conclusion. Under the assumptions of Proposition 3.3 ii), the following expression is well defined:

T kp (A,B, z) := tr

fkz (A+B)− fkz (A)−
p−1∑
j=1

1
j!
dj

dεj
fkz (A+ εB)|ε=0

 , (3.17)

(with the usual convention that
∑p−1
j=1 ≡ 0 if p = 1) provided that (3.15) holds, thus in particular

for
k > d/2 and pµ < −d.

If in addition (a(h))h∈(0,h0] ∈ B as in Proposition 3.1, we have the following bound,

∣∣T kp (A,B, z)
∣∣ ≤ Ch−d (1 + ||(A− z)−1||L2→H2,0

sc
+ ||(A+B − z)−1||L2→H2,0

sc

)N
, (3.18)

for some C,N > 0 independent of h ∈ (0, h0] and z ∈ U , using (3.4), (3.14) and Lemma 3.4.
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4 Resonances

4.1 The analytic distortion method

In this subsection, we recall the definition of resonances by the analytic distortion method after
Sjöstrand-Zworski. We also collect additional results that will be necessary for our applications.

We first recall the definition of a maximal totally real manifold Γ ⊂ Cd parametrized by
κ : Rd → Cd. By this it is meant that κ : Rd → κ(Rd) = Γ is a diffeomorphism (between real
manifolds) such that

Tκ(x)Γ ∩ i(Tκ(x)Γ) = {0}, x ∈ Rd.

Equivalently this means that, for all x, (∂1κ(x), . . . , ∂dκ(x), i∂1κ(x), . . . , i∂dκ(x)) is a basis of Cd
viewed as a real vector space, or that (∂1κ(x), . . . , ∂dκ(x)) is a basis of Cd as a complex vector
space, so the fact that Γ is totally real simply means that

det
(
∂κ(x)
∂x

)
6= 0, x ∈ Rd. (4.1)

Then, to any differential operator
P =

∑
|α|≤m

aα(x)Dα,

with coefficients that are smooth on Rd and holomorphic in some neighborhood of Γ ∩
(
Cd \ Rd

)
(typically a sector of the form Σ(θ0, R0, ε0)), we can associate the operator

AκP :=
∑
|α|≤m

aα(κ(x))
(
(t∂xκ(x))−1D

)α
. (4.2)

The analytic distortion method is as follows. Given R1 > 0 and ε1 > 0, we can find a non
decreasing smooth function φ : R+ → R such that

φ(t) = 0 t ≤ R1, (4.3)
φ(t) = 1 t� 1, (4.4)

0 ≤ tθφ′(t) ≤ ε1, t > 0, θ ∈ [0, π], (4.5)

and the latter condition implies, by possibly considering φ associated with a smaller ε1, that we
can additionally assume

0 ≤ arg(1 + itθφ′(t)) ≤ ε1, t > 0, θ ∈ [0, π]. (4.6)

We assume in the sequel that, for each ε1 > 0 (small enough) and R1 > 0 (large enough), a function
φ satisfying (4.3), (4.4), (4.5) and (4.6) has been chosen. Then the function

fθ(t) = eiφ(t)θt, t ∈ R+,

satisfies

fθ(t) = t for t ≤ R1, fθ(t) = eiθt for t� 1, ∂tfθ 6= 0 (4.7)
0 ≤ arg(fθ(t)) ≤ θ, arg(fθ(t)) ≤ arg(∂tfθ(t)) ≤ arg(fθ(t)) + ε1. (4.8)
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Using this function, we can now define κθ : Rd → Cd and Γθ by

κθ(x) = fθ(|x|)
x

|x|
= eiθφ(|x|)x, Γθ = κθ(Rd). (4.9)

Notice that,

∂xκθ(x) = eiθφ(|x|)
(
Id + iθ|x|φ′(|x|)x⊗ x

|x|2

)
, (4.10)

thus (4.1) holds, at least for ε1 small enough. Now, if P is a differential operator whose coefficients
can be continued analytically to Σ(θ0, R0, ε0), by choosing ε1 small enough and

R1 > R0, 0 ≤ θ ≤ θ0,

we can define the following differential operator on Rd

P (θ) := AκθP, (4.11)

with Aκθ defined by (4.2) and (4.9).

Remark. The reader should keep in mind that operators of the form P (θ) depend not only on
θ (and h ∈ (0, h0] below) but also on the parameters R1 and ε1 (and also on the choice of the
function φ), although this dependence is omitted in the notation.

Definition 4.1. Let V ∈ Vρ(θ0, R0, ε0). The pair (R1, ε1) ∈ R2
+ is said to be Fredholm admissible

for H0 + V if, for all θ ∈ [0, θ0], the following hold:
i) for all h� 1 and all z ∈ C \ e−2iθ[0,+∞),

H0(θ) + V (θ)− z : H2(Rd)→ L2(Rd) is a Fredholm operator of index 0,

ii) the principal symbol, in the classical sense, pcl
θ of H0(θ) + V (θ) is elliptic, ie for some C ≥ 1

|pcl
θ (x, ξ)| ≥ C−1|ξ|2, (x, ξ) ∈ R2d.

Here H0(θ) and V (θ) are defined by (4.11) with κθ given by (4.9).

Proposition 4.2. Let (Vι)ι∈I be bounded family of Vρ(θ0, R0, ε0). We can find R1 > 0, ε1 > 0
and C > 0 such that, for all ι ∈ I, any (R1, ε1) ∈ [R1,+∞) × (0, ε1] is Fredholm admissible for
H0 + Vι, with constant C in ii). More explicitly

|pcl
ι,θ(x, ξ)| ≥ C

−1|ξ|2, (4.12)

uniformly with respect to ε1 ∈ (0, ε1], R1 ≥ R1, θ ∈ [0, θ0] and ι ∈ I. In addition, we may also
assume that, for all θ ∈ [0, θ0],

−2θ − 3ε1 ≤ arg
(
pcl
ι,θ(x, ξ)

)
≤ ε1, x ∈ Rd, ξ ∈ Rd \ 0, (4.13)

uniformly with respect to ι ∈ I.

Proposition 4.2 is proved, for a single V , in the lecture notes [31, Lemma 7.3] in the more general
framework of black box perturbations. Its extension to a bounded family of Vρ(θ0, R0, ε0) involves
no new argument and we therefore omit the proof. The reason for considering a bounded family
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in Vρ(θ0, R0, ε0) is that we shall approximate V ∈ Vρ(θ0, R0, ε0) by a sequence Vn ∈ Vd̄(θ0, R0, ε0),
with d̄ > d, and use a certain deformation along κθ(Rd). It will be important that κθ (which
depends on ε1 and R1) can be chosen independently of n.

The Fredholm admissibility is important to define the resonances as we shall see below. In the
case of a single V , the first part of Proposition 4.2 simply states that this condition is fulfilled for
H0 + V . The additional uniform estimates (4.12) and (4.13) will be useful later on to prove some
resolvent estimates.

The definition of resonances relies on the following theorem.

Theorem 4.3. ([32, 29, 31]) Let 0 < θ0 < π and V ∈ Vρ(θ0, R0, ε0). Assume that we are given
R1 > 0 and ε1 > 0 which are Fredholm admissible. Then, for all h� 1 and all z ∈ Ω, we have
(i) z ∈ σ(H0(θ) + V (θ)) if and only if ker(H0(θ) + V (θ)− z) 6= 0.
(ii) For all 0 ≤ θ1 ≤ θ2 ≤ θ0, if z ∈ C \ e−2i[θ1,θ2][0,+∞) then

dim ker(H0(θ1) + V (θ1)− z) = dim ker(H0(θ2) + V (θ2)− z).

The first statement is an immediate consequence of the fact that the operator has a zero index.
The second one requires a non trivial analytic deformation result, which uses the analyticity of the
coefficients of V near infinity.

Let us recall the main consequence of Theorem 4.3.
First, if 0 ≤ θ ≤ θ0 < π and 0 < ε < 2π − 2θ0, then for all h� 1 and all z ∈ ei(0,ε)(0,+∞),

H0(θ) + V (θ)− z : H2(Rd)→ L2(Rd) is an isomorphism. (4.14)

Furthermore, by analytic Fredholm theory, one can show that the spectrum of H0(θ) + V (θ) is
discrete in C\e−2iθ[0,+∞). The part (ii) guarantees that, if θ′ > θ, the eigenvalues of H0(θ)+V (θ)
and H0(θ′) + V (θ′) coincide on e−2i[0,θ)(0,+∞) and this makes the following definition natural.

Definition 4.4. Given Ω satisfying (1.17), the set of resonances of H0 + V in Ω is

Res(H0 + V,Ω) = Ω ∩ σ(H0(θ0) + V (θ0)) ∩ e−i[0,2θ0)(0,+∞).

Recall that Res(H0 + V,Ω) is finite (for each h).
By analytic Fredholm theory again, for any w ∈ Res(H0 + V,Ω), the operator

Πθ,w =
i

2π

∫
γ(w)

(H0(θ) + V (θ)− z)−1dz (4.15)

is of finite rank, if γ(w) a small enough contour enclosing w and this allows to state the following
definition.

Definition 4.5. The multiplicity of w is the rank of Πθ,w.

This definition is independent of θ in the sense that we get the same rank if θ is replaced by
some larger θ′ (smaller than θ0).

We conclude this subsection with the following elementary resolvent estimates.

Proposition 4.6. Let Ω be satisfying (1.17) and let Ω+
δ := Ω+ ∩ {Im(z) ≥ δ} (see (1.20)) with

δ small enough to be non empty. Let (Vι)ι∈I be a bounded family of Vρ(θ0, R0, ε0). Then, for all
ε1 > 0 small enough, we can choose R1 > 0 as large as we want such that

||(H0(θ0) + Vι(θ0)− z)−1||L2→H2,0
sc
. 1, h� 1, z ∈ Ω+

δ , ι ∈ I . (4.16)
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Proof. Denote by pι(x, ξ, h) the full Weyl symbol of H0 + Vι, which is then real on R2d and of the
form

pι(x, ξ, h) = pcl
ι (x, ξ) + aι(x, ξ, h),

with aι(., h) polynomial of degree ≤ 1 in ξ with coefficients bounded in Cρ(θ0, R0, ε0). Setting

pι,θ0(x, ξ, h) = pι

(
κθ0(x), (t∂xκθ0(x))−1ξ, h

)
,

we then have
H0(θ0) + Vι(θ0) = Opwh (pι,θ0) + hOpwh (bι,θ0(h))

for some symbol bι,θ0(h) which, for fixed ε1 and R1, is bounded in S1,0 as h and ι vary. We thus
only need to show that, for ε1 > 0 small enough and R1 > 0 large enough,

|pι,θ0(x, ξ, h)− z| & 1, h� 1, z ∈ Ω+
δ , ι ∈ I. (4.17)

The result then follows from the standard construction of a semiclassical parametrix, yielding the
invertibility of H0(θ0) + Vι(θ0) − z for h small enough (uniformly with respect to z and ι) as
well as the bound (4.16). Let us prove (4.17). Using (4.12), we can choose C0 > 0 large enough,
independent of 0 < ε1 ≤ ε1, R1 ≥ R1, x ∈ Rd, h� 1 and ι ∈ I such that

|pι,θ0(x, ξ, h)| ≥ 1 + max
Ω
|z|, |ξ| ≥ C0,

since |(pι,θ0 −pcl
ι,θ0

)(x, ξ, h)| . 〈ξ〉, uniformly with respect to h, ι, ε1, R1. Using (4.13), if ε1 > 0 and
δ′ > 0 are small enough, we also have

|pcl
ι,θ0(x, ξ)− z| ≥ δ′, x, ξ ∈ Rd, z ∈ Ω+

δ .

Then, once such ε1 and δ′ have been chosen, we have, for all R1 large enough,

|aι
(
κθ0(x), (t∂xκθ0(x))−1ξ, h

)
| ≤ δ′

2
, |x| ≥ R1, |ξ| ≤ C0,

since the coefficients of aι decay like 〈x〉−ρ in Σ(θ0, R0, ε0) uniformly with respect to h and ι. It is
then straightforward to check that (4.17) holds since pι,θ0 is real for |x| ≤ R1. �

In the next proposition, we prove an exponential bound for the resolvent of H0(θ). The latter
can be used with Theorem 1.7 to obtain an exponential upper bound on ∂zϕp(z, h), when p ≥ 3.
Let us recall that, since H0 = −h2∆ has no resonances away from 0, (H0(θ)− z)−1 is well defined
for all z ∈ Ω (see [32]).

For simplicity, we only consider the case where θ0 < π/2 and d ≥ 3.

Proposition 4.7. Assume that θ0 < π/2 and that d ≥ 3. Let Ω be a simply connected open set
satisfying (1.17). Then, if ε (in (1.17)) and ε1 (in (4.5)) are small enough, we have

||(H0(θ0)− z)−1||L2→H2,0
sc
. eCh

−1
, h� 1, z ∈ Ω . (4.18)

Proof. By (4.9) and (4.10), the coefficients of H0(θ) are holomorphic with respect to θ in a small
neighborhood of [0, θ0] and thus so is

θ 7→
(
v, (H0(θ)− z)−1u

)
, (4.19)
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for θ in a complex neighborhood of [0, θ0] and for all u, v ∈ C∞0 (Rd), z ∈ Ω and h ∈ (0, 1]. On the
other hand, for iθ ∈ R small,

H0(θ) = UθH0 U
−1
θ ,

with Uθ : L2(Rd) → L2(Rd) the isomorphism defined by Uθ(u)(x) = u(κθ(x)). Since Uθ maps
H2(Rd) into itself, we then have

(H0(θ)− z)−1 = Uθ(H0 − z)−1U−1
θ , z ∈ Ω+,

and if we denote by R(x− y, z, h) the Schwartz kernel of (H0 − z)−1 we can rewrite (4.19) as∫
R2d
R(κθ(x)− κθ(y), z, h)u(y)v(x)det(κθ(y)) dxdy (4.20)

for iθ ∈ R small and z ∈ Ω+. Let us recall that, for Im(z1/2) > 0,

R(x− y, z, h) =
i

4h2

(
z1/2

2πh|x− y|

) d
2−1

H1
d
2−1

(z1/2|x− y|/h),

where the Hankel function H1
ν (Z) (with ν = d

2 − 1) is given by

H1
ν (Z) =

(
2
πZ

)1/2
ei(Z−

ν
2 π−

π
4 )

Γ(ν + 1
2 )

∫ +∞

0

e−s
(
s(1 + isZ−1/2)

)ν− 1
2 ds,

using everywhere the determination of the square root defined on C \ (−∞, 0] taking its values in
ei(−π/2,π/2)(0,+∞) (see for instance section VII.7.2 of [34]). The function H1

ν is holomorphic for
Z ∈ ei(−π/2,π/2)(0,+∞), with the following rough bound, for all 0 < δ < π/2,

|H1
ν (Z)| ≤ Cδ|Z|−1/2e|Im(Z)|max

(
1, |Z| 12−ν

)
, arg(Z) ∈ (δ − π/2, π/2− δ). (4.21)

Independently, by writing ϕ(x) = φ(|x|), we have

κθ(x)− κθ(y) = (x− y)
∫ 1

0

eiθϕ(y+t(x−y))
(
iθ∇ϕ(y + t(x− y))⊗ (y + t(x− y)) + 1

)
dt,

where |θ∇ϕ(X) ⊗ X| . ε1 by (4.5) and 0 ≤ ϕ(X) ≤ 1. Therefore, if ε1 and ε are small enough,
there exists δ > 0 small enough such that

z1/2|κθ(x)− κθ(y)| := (z〈κθ(x)− κθ(y), κθ(x)− κθ(y)〉)1/2 ∈ ei(δ−π/2,π/2−δ)(0,+∞),

for x 6= y, x, y ∈ Rd, z ∈ Ω and θ in a neighborhood of [0, θ0]. Furthermore, the modulus of
|κθ(x) − κθ(y)|/|x − y| is bounded from above and from below. This allows to continue (4.20)
analytically with respect to θ ∈ [0, θ0] and then with respect to z ∈ Ω. Using (4.21) and the Schur
Lemma, we deduce that, for any χ ∈ C∞0 (Rd),

||χ(H0(θ0)− z)−1χ||L2→L2 . eCh
−1
, z ∈ Ω.

This easily implies a similar L2 → L2 bound on the whole resolvent using the elementary estimate

||(e−2iθ0H0 − z)−1||L2→H2,0
sc
. 1, z ∈ Ω,

and two applications of the resolvent identity yielding

(H0(θ0)− z)−1 = (e−2iθ0H0 − z)−1 − (e−2iθ0H0 − z)−1V0(e−2iθ0H0 − z)−1

+ (e−2iθ0H0 − z)−1V0(H0(θ0)− z)−1V0(e−2iθ0H0 − z)−1,

where V0 := H0(θ0) − e−2iθ0H0 is a compactly supported differential operator of order 2. The
L2 → H2,0

sc bound then follows from the L2 → L2 one by the resolvent identity between z0 ∈ Ω+
δ

and z, using (4.16). �
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4.2 A deformation result

We recall first the following result.

Proposition 4.8 (Sjöstrand [30]). Let d > d and V ∈ Vd(θ0, R0, ε0). Let R1 > 0 and ε1 > 0 be
Fredholm admissible for H0 and H0 + V . Then, if k > d/2 + 1,

tr
(
(H0 + V − z)−k − (H0 − z)−k

)
= tr

(
(H0(θ) + V (θ)− z)−k − (H0(θ)− z)−k

)
,

for all θ ∈ [0, θ0] and all z ∈ Ω+.

In the next proposition, we simply state that the above invariance of the trace by analytic
distortion still holds for the regularized traces of the form (3.17).

Proposition 4.9. Let p ∈ N and ρ > 0 such that ρ > d/p. Let V ∈ Vρ(θ0, R0, ε0). Then, if ε1 is
small enough, R1 is large enough and k > d/2 + 1, we have

T kp (H0, V, z) = T kp (H0(θ), V (θ), z) ,

for all θ ∈ [0, θ0] and all z ∈ Ω+.

As the reader may guess, this proposition is a fairly elementary consequence of Proposition 4.8,
approximating V by a sequence Vn ∈ Vd̄(θ0, R

′
0, ε
′
0) with d̄ > d.

Lemma 4.10. Let V ∈ Vρ(θ0, R0, ε0). Let d̄ > d. We can find R′0 > R0, 0 < ε′0 ≤ ε0 and
a sequence (Vn)n≥1 ∈ Vd̄(θ0, R

′
0, ε
′
0), bounded in Vρ(θ0, R

′
0, ε
′
0) such that, for all ρ′ < ρ and all

s, σ ∈ R,

||Vn − V ||Hs,σsc →Hs−2,σ+ρ′
sc

→ 0, n→∞, (4.22)

for all h� 1.

Proof. Choose first a determination of Z 7→ Z1/4 for Z ∈ C \ e2iθ′0 [0,+∞), with θ0 < θ′0 < π. We
may assume that it is positive on R+. Choose also χ ∈ C∞0 (Rd) such that 0 ≤ χ ≤ 1, χ(x) ≡ 1 for
|x| ≤ R′0/2, and χ(x) = 0 for |x| ≥ R′0. We then define

χn(x) = χ(x) + (1− χ(x)) exp
(
−(x2)1/4/n

)
, n ≥ 1,

with x2 = x2
1 + · · ·+ x2

d, and
Vn = χnV χn.

If R′0 is large enough, the coefficients of Vn are then such that (1.13), (1.14) and (1.15) hold,
with c independent of n in (1.14), and (4.22) is elementary. Furthermore, if ε′0 is small enough
x 7→ exp

(
−(x2)1/4/n

)
has an analytic continuation to Σ(θ0, R

′
0, ε
′
0) where it is uniformly bounded

with respect to n ≥ 1. Therefore (Vn)n≥1 is bounded in Vρ(θ0, R
′
0, ε
′
0). Also, it clearly belongs

to Vd̄(θ0, R
′
0, ε
′
0) since, if x = teiθω with t � 1, ω close to Sd−1 and θ ∈ [0, θ0], we then have

Re
(
(x2)1/4

)
& t1/2 cos(θ/2) & t1/2. �

Proof of Proposition 4.9. By Proposition 4.2, for all R1 large enough and all ε1 small enough,
(R1, ε1) is Fredholm admissible for εVn and εV , for all n ≥ 1 and ε ∈ [0, 1]. Using Proposition 4.8
with R′0 and ε′0, we then have

tr
(
(H0 + εVn − z)−k − (H0 − z)−k

)
= tr

(
(H0(θ) + εVn(θ)− z)−k − (H0(θ)− z)−k

)
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and the latter can be differentiated with respect to ε using Proposition 3.2 since the operators
inside the trace are smooth with respect to ε, in the trace norm. This is easily seen, for instance
for the left hand side, by writing the operator inside the trace as a linear combination of operators
of the form

(H0 + εVn − z)−k1εVn(H0 − z)−k2 , k1 + k2 = k + 1.

Therefore,
T kp (H0, Vn, z) = T kp (H0(θ), Vn(θ), z)

gives the result by letting n go to ∞, using (4.22) with ρ′ such that pρ′ > d, Propositions 3.2 and
3.3. �

4.3 The main tool of Sjöstrand’s trace formula

Proposition 4.11. Let Ω be an open subset satisfying (1.17) with 0 < θ0 < π and 0 < ε < 2π−2θ.
Let V ∈ Vρ(θ0, R0, ε0) with ρ > 0. Then, we can fix h1, ε1 small enough and R1 large enough such
that there exists a family of finite rank operators (Kε(θ0))0<h≤h1,ε∈[0,1] with the following properties:

rank(Kε(θ0)) . h−d, (4.23)
||(H0(θ0) + εV (θ0) +Kε(θ0)− z)−1||L2→H2,0

sc
. 1, (4.24)

for all h ∈ (0, h1], z ∈ Ω, ε ∈ [0, 1]. For all N, s, σ ∈ R and k ∈ N

||∂kεKε(θ0)||Hs,σsc →HN,Nsc
. 1, h ∈ (0, h1], ε ∈ [0, 1]. (4.25)

In addition, there exists χ ∈ C∞0 (Rd), independent of h and ε, such that Kε(θ0) = χKε(θ0)χ.

Note that (4.25) and Lemma 3.4 imply that

||∂kεKε(θ0)||tr . h−d, h ∈ (0, h1], ε ∈ [0, 1]. (4.26)

This proposition is essentially proved in [30, 31]. We however recall the main argument of the
proof to emphasize the dependence on ε which was not considered in those references.

Lemma 4.12. For all ε1 > 0 such that 2π − 2θ0 − 4ε1 > ε and ε1 < ε, and for all C � 1, we can
construct a smooth function F : DF → C, with DF a neighborhood of ei[−2θ0−4ε1,ε][0,+∞), such
that

F (Z) = Z, for Z such that |Z| /∈ [C−1, C] or with argument close to − 2θ0, (4.27)

and

|F (Z)− z| & 1, Z ∈ DF , z ∈ Ω. (4.28)

Proof. We can define a function arg(Z) smooth on ei(−2θ0−4ε′1,ε
′)(0,+∞), with ε′1 and ε′ slightly

larger that ε1 and ε respectively, such that

Z = |Z| exp(iarg(Z)), arg(Z) ∈ (−2θ0 − 4ε′1, ε
′).

Observe next that, for some θ < θ0 and r2 > r1 > 0,

Ω ⊂ {z ∈ C ; r1 ≤ |z| ≤ r2, −2θ ≤ arg(z) ≤ ε}. (4.29)
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We next take C large enough so that C−1 < r1 < r2 < C and choose ψ ∈ C∞0 (C−1, C) such that
ψ ≡ 1 near [r1, r2]. For δ small enough, we also choose Θ ∈ C∞(R) non decreasing such that

Θ(α) =


const. ≥ −2θ0 − 2δ, if α < −2θ0 − 2δ
α, if | − 2θ0 − α| ≤ δ
const. ≤ −2θ0 + 2δ, if α > −2θ0 + 2δ

.

We choose δ such that the sector defined by −2θ0 − 2δ ≤ arg(Z) ≤ −2θ0 + 2δ doesn’t meet the
sector −2θ ≤ arg(Z) ≤ ε. We then set

F (Z) = |Z| exp
(
− 2iΘ(arg(Z))ψ(|Z|) + i(1− ψ(|Z|))arg(Z)

)
.

It is clearly smooth where arg(Z) is defined hence in the sector ei(−2θ0−4ε′1,ε
′)(0,+∞). We have

F (Z) = Z for for |Z| ≤ C−1 and |Z| ≥ C so F is smooth near 0. Since Θ(arg(Z)) = arg(Z)
if arg(Z) is close to −2θ0, we have (4.27). Furthermore, for Z in the right hand side of (4.29),
we have F (Z) − z 6= 0 otherwise we should have |z| = |Z| ∈ [r1, r2] and then z = F (Z) =
|z| exp(−2iΘ(arg(Z))) which is impossible by the choice of δ. This is sufficient to prove (4.28)
since |F (Z)| → ∞ as |Z| → ∞. �

Proof of Proposition 4.11. We choose first ε1 small enough and R1 large enough to ensure that
(4.12) and (4.13) hold. We also assume that ε1 satisfies the condition of Lemma 4.12. The full
Weyl symbol of H0(θ0) + εV (θ0) is of the form

pε,θ0(x, ξ, h) + hbε,θ0(x, ξ, h)

with bε,θ0 polynomial of degree 1 in ξ, and with

pε,θ0(x, ξ, h) = pcl
ε

(
κθ0(x),tκ′θ0(x)ξ, h

)
+ aε

(
κθ0(x),tκ′θ0(x)ξ, h

)
,

=: pcl
ε,θ0(x, ξ) + aε

(
κθ0(x),tκ′θ0(x)ξ, h

)
,

where pcl
ε is the classical principal symbol and aε(., ., h) a polynomial of degree 1 in ξ with coeffi-

cients in Cρ(θ0, R0, ε0), bounded with respect to h ∈ (0, h0] and ε ∈ [0, 1]. All these symbols are
affine (hence smooth) with respect to ε. We then claim that, by possibly increasing R1, we may
also assume that

pε,θ0(x, ξ, h) ∈ DF , (4.30)

for all h� 1, (x, ξ) ∈ R2d and ε ∈ [0, 1]. Note first that, with no loss of generality in Lemma 4.12,
we may assume that DF is constructed for π/2 < θ0 < π so that DF is also a neighborhood of R.
Then, for |x| ≤ R1, pε,θ0(x, ξ, h) is real hence belongs to DF . On the other hand, there exists CV
such that

|aε
(
κθ0(x),tκ′θ0(x)ξ, h

)
| ≤ CVR−ρ1 〈ξ〉,

for all R1 � 1, |x| ≥ R1, ξ ∈ Rd, h ∈ (0, h0] and ε ∈ [0, 1]. Thus, using (4.13) with pcl
ι,θ0

= pcl
ε,θ0

, we
see that for any neighborhood of ei[−2θ0−4ε1,ε][0,+∞), we can choose R1 large enough such that
pε,θ0(x, ξ, h) belongs to this neighborhood for |x| ≥ R1. This implies (4.30) which then shows that
F ◦ pε,θ0 is smooth on R2d. Actually, we have

ψε,θ0 := F (pε,θ0)− pε,θ0 ∈ C∞0 (R2d), (4.31)
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and, more precisely, ψε,θ0 is bounded in C∞0 as ε and h vary. Indeed, by (4.12), |pε,θ0(x, ξ, h)| → ∞
as |ξ| → ∞ and, on the other hand, for ξ in a compact set, pε,θ0(x, ξ, h)→ e−2iθ0 |ξ|2 as |x| → ∞.
Using (4.27), this gives (4.31).

To construct Kε(θ0), we recall the following point. For all Ψ ∈ C∞0 (R2d), we may write

Opwh (Ψ) = K(h) +R(h),

with K(h) of finite rank, rank(K(h)) . h−d, and for all N ≥ 0,

||R(h)||H−N,−Nsc →HN,Nsc
≤ ChN , h� 1.

In addition, for some fixed χ ∈ C∞0 (Rd),

K(h) = χK(h)χ.

Let us now choose Ψ ∈ C∞0 (R2d) such that Ψ ≡ 1 near a compact set (independent of h and ε)
containing the support of ψε,θ0 . We then have

Opwh (ψε,θ0) = K(h)Opwh (ψε,θ0)K(h) +Rε,θ0(h)

with, for all N ≥ 0,

||Rε,θ0(h)||H−N,−Nsc →HN,Nsc
≤ ChN , h� 1, ε ∈ [0, 1],

using that Opwh (ψε,θ0) = Opwh (Ψ)Opwh (ψε,θ0)Opwh (Ψ) + O(h∞) by pseudodifferential calculus. We
then set

Kε(θ0) := K(h)Opwh (ψε,θ0)K(h).

It satisfies (4.23), (4.25) and has a Schwartz kernel supported in a fixed compact set. To get (4.24),
we simply observe that

H0(θ0) + εV (θ0) +Kε(θ0)− z = Opwh (F (pε,θ0)− z) + hTε(θ0),

with ||Tε(θ0)||H2,0
sc →L2 . 1 as h� 1 and ε ∈ [0, 1]. By (4.28), Opwh (F (pε,θ0)− z) is invertible for h

small enough (uniformly with respect to ε and z ∈ Ω) and so is Opwh (F (pε,θ0)− z) + hTε(θ0) by an
elementary perturbation argument. �

Using the notation of Sjöstrand-Zworski [32], we now set

Ĥε(θ0) = H0(θ0) + εV (θ0) +Kε(θ0), (4.32)

and
K̃ε(θ0, z) = −Kε(θ0)(Ĥε(θ0)− z)−1, (4.33)

or, equivalently,

1 + K̃ε(θ0, z) = (H0(θ0) + εV (θ0)− z)(Ĥε(θ0)− z)−1 (4.34)

for all z ∈ Ω \ Res(H0 + εV,Ω). We then have (see [31])

tr
(

(H0(θ0) + εV (θ0)− z)−1 − (Ĥε(θ0)− z)−1
)

= −tr
(

(1 + K̃ε(θ0, z))−1∂zK̃ε(θ0, z)
)

= −∂z log det1

(
1 + K̃ε(θ0, z)

)
. (4.35)

Remark that the zeroes of det1(1 + K̃ε(θ0, z)) are contained in the set of resonances since, if z is
not a resonance, (4.34) is invertible. Actually, the zeroes of det1(1 + K̃ε(θ0, z)) in Ω are exactly
the resonances of H0 + εV in Ω with the same multiplicities (see Definition 4.5). More precisely
we recall the following result (see [31]).
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Proposition 4.13. If w ∈ Res(H0 +V,Ω), there exists a holomorphic function Gw(z), for z close
to w, such that Gw(w) 6= 0 and

det1

(
1 + K̃1(θ0, z)

)
= (z − w)m(w)Gw(z), (4.36)

where m(w) is the multiplicity of the resonance.

Proof. Let l(w) be the multiplicity of w as zero of det1

(
1 + K̃1(θ0, z)

)
given by

l(w) =
1

2iπ

∫
γ

∂z log det1

(
1 + K̃1(θ0, z)

)
dz, (4.37)

with γ a small positively oriented circle centered at w. According to (4.35), we have

l(w) =
i

2π

∫
γ

tr
(

(H0(θ0) + V (θ0)− z)−1K1(θ0)(Ĥ1(θ0)− z)−1
)
dz

=
i

2π
tr
(∫

γ

(H0(θ0) + V (θ0)− z)−1 − (Ĥ1(θ0)− z)−1dz

)
.

By construction of Ĥ1(θ0), the resolvent (Ĥ1(θ0)− z)−1 is holomorphic near w and its integral on
γ vanishes. It follows that

l(w) = tr
(
i

2π

∫
γ

(H0(θ0) + V (θ0)− z)−1dz

)
= tr(Πθ0,w),

where Πθ0,w, defined by (4.15), is a projector which (by definition of the multiplicity m(w)) satisfies

tr(Πθ0,w) = rank(Πθ0,w) = m(w).

This conclude the proof of Proposition 4.13. �

Therefore, the multiplicities of the resonances as zeroes of det1

(
1 + K̃1(θ0, z)

)
or as given by

Definition 4.5 coincide and we have the factorization

det1

(
1 + K̃1(θ0, z)

)
=

∏
w∈Res(H0+V,Ω)

(z − w)G1(z, h) (4.38)

where, for each h ∈ (0, h1], G1(., h) is a non vanishing holomorphic function on Ω.
We now recall a beautiful result due to Sjöstrand which is a crucial consequence of Proposition

4.11.

Proposition 4.14 ([30]). There exists ϕG1(., h) holomorphic on Ω such that

G1(z, h) = exp
(
ϕG1(z, h)

)
, h� 1, z ∈ Ω,

and, for all W b Ω
|∂zϕG1(z, h)| ≤ CWh−d, h� 1, z ∈W.
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An immediate consequence of (4.38) and Proposition 4.14 is that, for all W b Ω,∣∣∣∣∣∣∂kz log det1

(
1 + K̃1(θ0, z)

)
−

∑
w∈Res(H0+V,Ω)

(k − 1)!
(w − z)k

∣∣∣∣∣∣ ≤ CWh−d, (4.39)

for h � 1 and z ∈ W . The same result applied with V ≡ 0, using that H0 has no resonances,
shows that ∣∣∣∂kz log det1

(
1 + K̃0(θ0, z)

)∣∣∣ ≤ CWh−d, (4.40)

for h� 1 and z ∈W .
Another useful consequence of the absence of resonance for H0 is the following. Since H0 has

no resonances, H0(θ0)− z is invertible for all h� 1 and all z in a neighborhood of Ω. Therefore,
for all h � 1, there exists εh, such that H0(θ0) + εV (θ0) − z is invertible for |ε| < εh and z ∈ Ω.
Thus, by (4.34), the function

Gε(z, h) := det1

(
1 + K̃ε(θ0, z)

)
, z ∈ Ω, ε ∈ (−εh, εh), (4.41)

is holomorphic and doesn’t vanish. This allows to choose a branch of its logarithm which we denote
by Logh Gε(z, h), to stress on the h dependence of such a choice.

Proposition 4.15. The branch Logh Gε(z, h) can be chosen such that, given a fixed z0 ∈ Ω+
δ , we

have, for all j ≥ 0, l ≥ 1, ∣∣∣∣ ∂l∂zl ∂j∂εj Logh Gε(z0, h)|ε=0

∣∣∣∣ . h−d.
Proof. According to (4.40), G0(z, h) = exp(ϕG0(z, h)) with |∂zϕG0(z, h)| . h−d . On the other
hand, for all h� 1, we can find ε(z0, h) > 0 such that∣∣∣∣Gε(z0, h)

G0(z0, h)
− 1
∣∣∣∣ ≤ 1/2, |ε| ≤ ε(z0, h)

thus we can set

Logh Gε(z0, h) = ϕG0(z0, h) + log
(
Gε(z0, h)
G0(z0, h)

)
(4.42)

where log is the principal determination of the logarithm on C \ (−∞, 0]. We can then define
Logh Gε(z, h) as the unique primitive of ∂zGε(z, h)/Gε(z, h) coinciding with the right hand side of
(4.42) at z = z0. The smoothness with respect to z and ε (close to 0) is then clear. The bounds on
the derivatives at z = z0 and ε = 0 are obtained by applying ∂kε ∂

l−1
z to (4.35), using Proposition

4.11 and (4.16). �

Regarding the behavior of ∂jεLogh Gε(z, h)|ε=0 for z ∈ Ω, we have the following result.

Proposition 4.16. For all j ≥ 0, l ≥ 1, there exists Nj,l ∈ N such that, for all compact subset
W b Ω,∣∣∂jε∂lzLogh Gε(z, h)|ε=0

∣∣ ≤ CWh−d sup
Z∈Ω

(
1 + ||(H0(θ0)− Z)−1||L2→H2,0

sc

)Nj,l
, h� 1, z ∈W.

Proof. By writing Logh Gε(z, h)|ε=0 as the sum of Logh Gε(z0, h)|ε=0 and the integral of its
derivative over a path joining z0 to z, the result follows from (4.35), (4.41), Proposition 4.11. and
Proposition 4.15. �
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5 Proofs of Theorems 1.3, 1.5 and 1.7

5.1 The general case

Using the notation (3.17), we have, for k > d/2,

ζp(k, z, h) = T kp (H0, V, z), h� 1, z ∈ Ω+, (5.1)

and, by Proposition 4.9, we also have, if k > d/2 + 1 which we now assume,

T kp (H0, V, z) = T kp (H0(θ0), V (θ0), z), h� 1, z ∈ Ω+. (5.2)

To analyze the right hand side of (5.2), we consider first

T̂ kp (θ0, z, h) := tr

(Ĥ1(θ0)− z)−k −
p−1∑
j=0

1
j!
dj

dεj
(Ĥε(θ0)− z)−k|ε=0

 ,

where Ĥε(θ0) is defined by (4.32).

Lemma 5.1. For all h� 1, the function T̂ kp (θ0, z, h) is well defined, has an holomorphic contin-
uation from Ω+ to Ω and, for all W b Ω,

|T̂ kp (θ0, z, h)| ≤ CWh−d, h� 1, z ∈W.

Proof. Write first that

d

dε
(Ĥε(θ0)− z)−1 = −(Ĥε(θ0)− z)−1 (V (θ0) + ∂εKε(θ0)) (Ĥε(θ0)− z)−1. (5.3)

Then, an elementary induction shows that the operator

dj

dεj
(Ĥε(θ0)− z)−1 − j!

(
−(Ĥε(θ0)− z)−1V (θ0)

)j
(Ĥε(θ0)− z)−1

is a linear combination of holomorphic finite rank operators with trace norm of order h−d, for all
j. This formula for j = p combined with Taylor’s formula and Proposition 4.11 shows that the
operator

(Ĥ1(θ0)−z)−1−
p−1∑
j=0

1
j!
dj

dεj
(Ĥε(θ0)−z)−1

|ε=0+p
∫ 1

0

(ε−1)p−1
(

(Ĥε(θ0)− z)−1V (θ0)
)p

(Ĥε(θ0)−z)−1dε

is a linear combination of holomorphic trace class operators with norm O(h−d), locally uniformly
on compact subsets of Ω. Using (3.16), Proposition 3.3 and (4.24), the k-th derivative of the
operator in the integral above is trace class, holomorphic on Ω and with trace norm O(h−d),
locally uniformly with respect to z. The result follows. �

Using (3.16) and (5.2), we obtain

T kp (H0, V, z) = T̂ kp (θ0, z, h) +
1

(k − 1)!
∂k−1
z A(z, h), h� 1, z ∈ Ω+, (5.4)
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where

A(z, h) = tr
(

(H0(θ0) + V (θ0)− z)−1 − (Ĥ1(θ0)− z)−1
)

−
p−1∑
j=0

1
j!
dj

dεj
tr
(

(H0(θ0) + εV (θ0)− z)−1 − (Ĥε(θ0)− z)−1
)
|ε=0

,

that is

−A(z, h) = ∂z log det1

(
1 + K̃1(θ0, z)

)
− ∂z

p−1∑
j=0

1
j!
dj

dεj
LoghGε(z, h)|ε=0. (5.5)

by (4.35), (4.41) and the notation of Propositions 4.15 and 4.16.

Proof of Theorems 1.3 and 1.7. By (5.1), (5.2), (5.4), (5.5) and (4.38) we have an expression
of the form (1.30) with

φp(z, h) = T̂ kp (θ0, z, h)− 1
(k − 1)!

∂kz

(
ϕG1(z, h)−

p−1∑
j=0

1
j!
dj

dεj
LoghGε(z, h)|ε=0

)
(5.6)

which is holomorphic on Ω. This proves Theorem 1.3 using Proposition 1.8 with H(Ω, h1) the set
of families of holomorphic functions on Ω.

To prove Theorem 1.7, we simply additionally note that, by Proposition 4.14 and Proposition
4.16, we can find N > 0 such that, for all W b Ω,

|φp(z, h)| ≤ CWh−d sup
Z∈Ω

(
1 + ||(H0(θ0)− Z)−1||L2→H2,0

sc

)N
, h� 1, z ∈W. (5.7)

Then, Proposition 1.8 gives the result using the space H(Ω, h1) of families of holomorphic functions

locally bounded by (a constant times) h−d supZ∈Ω

(
1 + ||(H0(θ0)− Z)−1||L2→H2,0

sc

)N
. Note that

it satisfies (1.28) and (1.29). �

5.2 Proof of Theorem 1.5

In this subsection, H(Ω, h1) denotes the space of families of holomorphic functions (φ(., h))h∈(0,h1]

such that, for all W b Ω, |φ(z, h)| ≤ CWh−d, for z ∈W and h ∈ (0, h1].

For p = 1, the result can be considered as essentially a consequence of [8]. For completeness,
we give the proof. In that case, φ1 (given by (5.6) with p = 1) belongs to H(Ω, h1) according to
Lemma 5.1, Proposition 4.14 and (4.40). The result follows then from Proposition 1.8.

In the case p = 2, (5.6) gives

φ2(z, h)− T̂ k2 (θ0, z, h) +
1

(k − 1)!
∂kzϕ

G1(z, h) =

1
(k − 1)!

∂kz LoghG0(z, h)|ε=0 + tr
(
d

dε
(Ĥε(θ0)− z)−k|ε=0 −

d

dε
(H0(θ0) + εV (θ0)− z)−k|ε=0

)
. (5.8)
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By Lemma 5.1, Proposition 4.14 and (4.40), it remains to study the second term of (5.8). We first
remark that this term can be written as the sum of

tr
(
d

dε
(Ĥ0(θ0) + εV (θ0)− z)−k|ε=0 −

d

dε
(H0(θ0) + εV (θ0)− z)−k|ε=0

)
(5.9)

and
−∂k−1

z tr
(

(Ĥ0(θ0)− z)−1∂εKε(θ0)|ε=0(Ĥ0(θ0)− z)−1
)
/(k − 1)!,

using (4.32) and (5.3). This last expression clearly belongs to H(Ω, h1) by Proposition 4.11 and
we are left with the study of (5.9).

For that purpose, we use the approximation Vn of V introduced in Lemma 4.10. Using (3.8),
Lemma 3.4 and an elementary cyclicity argument, we can write

tr
(
d

dε
(Ĥ0(θ) + εVn(θ)− z)−k|ε=0

)
= −ktr

(
Vn(θ)(Ĥ0(θ)− z)−k−1

)
. (5.10)

Writing d
dε (H0(θ) + εVn(θ)− z)−k as the derivative of (H0(θ) + εVn(θ)− z)−k− (H0(θ)− z)−k with

respect to ε and using Proposition 4.8, we obtain similarly

tr
(
d

dε
(H0(θ) + εVn(θ)− z)−k|ε=0

)
= −ktr

(
Vn(H0 − z)−k−1

)
. (5.11)

Substracting −ktr
(
Vn(θ)(e−2iθH0 − z)−k−1

)
to (5.10) and (5.11) and then letting n → ∞ using

Proposition 3.2, (5.9) can thus be written as the sum of

−ktr
(
V (θ)

(
(Ĥ0(θ)− z)−k−1 − (e−2iθH0 − z)−k−1

))
(5.12)

and

lim
n→∞

ktr
(
Vn(H0 − z)−k−1 − Vn(θ)(e−2iθH0 − z)−k−1

)
. (5.13)

Proposition 5.2. (5.12) belongs to H(Ω, h1).

Proof. By the resolvent identity, (4.4) and Proposition 4.11, we have

(Ĥ0(θ)− z)−1 − (e−2iθH0 − z)−1 = (Ĥ0(θ)− z)−1B(h)(e−2iθH0 − z)−1,

with B(h) = Opwh (b(h)) for some family (b(h))h�1 bounded in S2,−N for all N . Using (3.16), the
operator V (θ)

(
(Ĥ0(θ)−z)−k−1− (e−2iθH0−z)−k−1

)
is therefore a linear combination of operators

of the form
V (θ)(Ĥ0(θ)− z)−k1−1B(h)(e−2iθH0 − z)−k2−1, k1 + k2 = k.

By (3.4), (4.24) and Lemma 3.4, each such operator has a trace norm of order h−d, uniformly with
respect to z ∈ Ω, so the result follows. �

Proposition 5.3. (5.13) belongs to H(Ω, h1).

Proof. The operators Vn(H0 − z)−k−1 and Vn(θ)(e−2iθH0 − z)−k−1 are both trace class so we
compute their traces separately. By writing

Vn(θ) =
∑
|α|≤2

vn,α,θ(x, h)(hD)α,
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we first have

tr
(
Vn(θ)(e−2iθH0 − z)−k−1

)
= (2πh)−d

∫ ∫
R2d

∑
|α|≤2

vn,α,θ(x, h)ξα(e−2iθξ2 − z)−k−1dxdξ. (5.14)

This holds also for θ = 0 which gives an expression for tr
(
Vn(H0 − z)−k−1

)
. In the latter case,

deforming Rdξ into e−iθRdξ , we get

tr
(
Vn(H0 − z)−k−1

)
= (2πh)−d

∫ ∫
R2d

∑
|α|≤2

vn,α,0(x, h)(e−iθξ)α(e−2iθξ2 − z)−k−1e−idθdξdx,

and the last integral can be rewritten as

(2πh)−d
∫ ∫

R2d

∑
|α|≤2

vn,α,0(κθ(x), h)(e−iθξ)α(e−2iθξ2 − z)−k−1e−idθdξ det(∂xκθ(x))dx. (5.15)

To justify this last deformation, one simply notices that
∫
vn,α,0(κθ(x), h) det(∂xκθ(x))dx depends

holomorphically on θ and that it is constant for iθ real and close to zero since κθ is then a
diffeomorphism from Rd to itself. Now for |x| ≥ R large enough, (independent of n), we have
κθ(x) = eiθx and

vn,α,0(κθ(x), h)e−i|α|θ = vn,α,θ(x, h), e−idθ det(∂xκθ(x)) = 1.

Therefore, if we set

cn,α,θ(x, h) = vn,α,0(κθ(x), h)e−i|α|θe−idθ det(∂xκθ(x))− vn,α,θ(x, h)

which is compactly supported, we have

(5.13) = lim
n→∞

k
∑
|α|≤2

(2πh)−d
∫

Rd
ξα(e−2iθξ2 − z)−k−1dξ ×

∫
|x|≤R

cn,α,θ(x, h)dx,

which is easily seen to belong to H(Ω, h1). �

The conclusion follows then from (5.8), Propositions 5.2, 5.3 and 1.8. �

6 A counter example for p = 3

In this section, we prove Theorem 1.6. We consider H0 = −h2 d2

dx2 on L2(R) and V a compactly
supported bounded potential. In that case V (H0 − z)−1 is in the trace class for all z /∈ [0,+∞)
hence in any Schatten class Sp. For trace class operators K ∈ S1, the formula (1.3) can be written

Detp(I +K) = Det1(I +K) exp

p−1∑
j=1

(−1)j

j
tr(Kj)

 .

We therefore obtain

D3(H0, H0 + V ; z, h) = D2(H0, H0 + V ; z, h)e
1
2φ(z,h) (6.1)

30



where
φ(z, h) = tr

(
V (H0 − z)−1V (H0 − z)−1

)
.

For z = k2 with Im(k) > 0, the integral kernel of (H0 − z)−1 is ieik|x−x
′|/h/(2hk) and φ(z, h) can

be computed explicitly, namely

φ(k2, h) =
−1

(2hk)2

∫
R

∫
R
V (x)V (x′)e2ih−1k|x−x′|dxdx′,

=
−1

(2hk)2

∫
R
Ṽ (y)e2ih−1k|y|dy, (6.2)

with

Ṽ (y) =
∫

R
V (x)V (x− y)dx. (6.3)

Setting
Ṽ +

ev(y) = 1[0,+∞)

(
Ṽ (y) + Ṽ (−y)

)
,

we have

φ(k2, h) = − 2π
(2kh)2

(FinvṼ
+
ev)(2kh−1), (6.4)

where Finv is the usual inverse Fourier transform

Finvg(ξ) =
1

2π

∫
eixξg(x)dx.

For example, for the characteristic function V (x) = χa(x) := 1[−a,a](x), we have

Ṽ (y) =

{
(2a− y)+ if y ≥ 0,
(2a+ y)+ if y < 0,

where (t)+ = max(t, 0). After elementary computations, we also obtain in this explicit case

φ(k2, h) =
−ia
2k3h

+
1

8k4
(e4iah−1k − 1).

For k = z1/2 with Im(k) < 0, which makes sense at least close to 1, this examples shows that

|∂zφ(z, h)| & exp (a|Im(k)|/h) , h� 1.

This proves that the logarithmic derivative of the corrective factor in (6.1) can indeed blow up
exponentially, which is a strong form of the estimate (1.22).

This elementary striking example doesn’t however fit in our framework since V is not smooth.
In particular, it can not be used directly to prove Theorem 1.6. For the latter proof, we need the
following lemma.

Lemma 6.1. Let g ∈ L∞(R,R) be supported in [0, b], b > 0, but in no smaller interval. Setting,
for all 0 < b′ < b and h ∈ (0, 1],

sb′(h) := sup
1≤|ξ|≤2

Im(ξ)<0, Re(ξ)≥0

|eb
′Im(ξ)/h(Finvg)(ξ/h)|,

we have
lim sup
h→0

sb′(h) = +∞.
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Proof. We clearly have

|(Finvg)(ξ)| ≤ b

2π
||g||∞eb|Im(ξ)|, ξ ∈ C, Im(ξ) ≤ 0,

and (Finvg) is bounded for Im(ξ) > 0. Fix 0 < b′ < b. By the Paley-Wiener Theorem, we have

sup
Im(ξ)<0

|e−b
′|Im(ξ)|(Finvg)(ξ)| = +∞, (6.5)

otherwise g should be supported in [0, b′] which is excluded. Furthermore, since g is real valued,
we have

|(Finvg)(Re(ξ) + iIm(ξ))| = |(Finvg)(−Re(ξ) + iIm(ξ))| ,

so the supremum in (6.5) can be taken over Re(ξ) ≥ 0 and Im(ξ) < 0. Then, using the local
boundedness of (Finvg) and by writing the set {ξ | Im(ξ) < 0, Re(ξ) ≥ 0} as

{ξ | Im(ξ) < 0, Re(ξ) ≥ 0, |ξ| < 1} tk≥0 {ξ | Im(ξ) < 0, Re(ξ) ≥ 0, 2k ≤ |ξ| < 2k+1},

we have
lim sup
k→+∞

sup
2k≤|ξ|<2k+1,

Im(ξ)<0, Re(ξ)≥0

|e−b
′|Im(ξ)|(Finvg)(ξ)| = +∞,

and the result follows. �

Proof of Theorem 1.6. Fix V ∈ C∞0 (R,R) with V 6= 0. By Theorem 1.3, we can write

Dζ
2(H0, H0 + V ; z, h) =

∏
w∈Res(H0+V,Ω)

(z − w)× exp(ϕ2(z, h))

where, by Theorem 1.5,

|∂zϕ2(z, h)| . h−1, z ∈W. (6.6)

On the other hand, by (1.8), Dζ
p(H0, H0 + V ; z, h) can be replaced by the definition (1.2) using

Fredholm determinants. Thus, by (6.1), we have

Dζ
3(H0, H0 + V ; z, h) =

∏
w∈Res(H0+V,Ω)

(z − w)× eϕ3(z,h)

where

ϕ3(z, h) := ϕ2(z, h) +
φ(z, h)

2
,

with φ given by (6.4). In particular we have

(∂zφ)(z, h) = − π

2z3/2h3
(∂ξFinvṼ

+
ev)(2z1/2h−1) +

π

2z2h2
(FinvṼ

+
ev)(2z1/2h−1) =

π

2z2h2
f(2z1/2h−1),

where
f(ξ) := (FinvṼ

+
ev)(ξ)− 1

2
ξ∂ξ(FinvṼ

+
ev)(ξ) = (Finvg)(ξ),

with
g(x) := 1[0,+∞)

(3
2

(
Ṽ (x) + Ṽ (−x)

)
+

1
2
x∂x

(
Ṽ (x) + Ṽ (−x)

))
.
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Since V 6= 0, we have Ṽ (0) =
∫
V 2 > 0 so g is supported in an interval [0, b], b > 0, and no smaller

one. We then obtain (1.22) with δ = b/4, first remarking that, by (6.6),

|eδIm(z1/2)/hh∂zϕ2(z, h)| . 1,

secondly that

|eδIm(z1/2)/hh∂zφ(z, h)| & |h−1e2δIm(ξ)/h′(Finvg)(ξ/h′)|, ξ = z1/2, h′ = h/2,

and finally using Lemma 6.1 with b′ = b/2. �

7 Analytic perturbations

In this section, we briefly prove a result similar to Theorem 1.5 for p ≥ 3 in the more restrictive
situation of analytic perturbations. Namely, we consider V with coefficients analytic close to x = 0
(uniformly bounded with respect to h) and such that V ∈ Vρ(θ0, R0, ε0), for any R0 > 0. We
denote by Vρ(θ0, 0, ε0) the set of such perturbations V and we assume that 0 < θ0 < π/2. Here
ρ > 0 is arbitrary.

In the following lemma, we first check that we can approximate such operators by fast decaying
ones. To avoid any confusion with 〈x〉 = (1 + |x1|2 + · · ·+ |xd|2)1/2, we set

〈〈x〉〉 = (1 + x2
1 + · · ·+ x2

d)
1/2, for x ∈ Cd such that 1 + x2

1 + · · ·+ x2
d /∈ (−∞, 0],

using the principal determination of the square root mapping C\ (−∞, 0] into ei(−π/2,π/2)(0,+∞).

Lemma 7.1. Let
χn(x) = exp (−〈〈x〉〉/n) , n� 1, x ∈ Rd.

If ε0 is small enough, then, for n ≥ n0 large enough,

Vn := χnV χn

belongs to Vd(θ0, 0, ε0) for all d > d, the sequence (Vn)n≥n0 is bounded in Vρ(θ0, 0, ε0) and, for all
ρ′ < ρ and all s, σ ∈ R,

||Vn − V ||Hs,σsc →Hs−2,σ+ρ′
sc

→ 0, n→∞, (7.7)

for all h� 1.

Proof. The proof is similar to the one of Lemma 4.10 (and anyway fairly elementary). The only new
point to check is that the coefficients of Vn belong to Vd(θ0, 0, ε0) and are bounded in Vρ(θ0, 0, ε0).
Indeed, for r = eiθt, with t > 0 and θ ∈ [0, θ0], and for ω such that distCd(ω,Sd−1) < ε0, we first note
that, if ε0 is small enough, r2ω2 /∈ (−∞, 0]. Furthermore, if t is large, 1 + r2ω2 = t2e2iθ (1 + o(1)),
thus

Re〈〈rω〉〉 & t cos(θ).

It is then easy to check that, for all α, ∂αχn is bounded on Σ(θ0, 0, ε0), uniformly with respect
to n ≥ 1. Since the coefficients of Vn are linear combinations of products of coefficients of V by
χn∂

α
xχn, we see that (Vn)n≥1 is bounded in Vρ(θ0, 0, ε0). It also clearly belongs to ∈ Vd(θ0, 0, ε0).

�
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We next give an elementary deformation result along eiθRd. Let us denote

Vdil(θ) :=
∑
|α|≤2

vα(eiθx, h)(e−iθhD)α,

if V =
∑
|α|≤2 vα(x, h)(hD)α, that is (4.2) with κ(x) = eiθx and P = V . For iθ ∈ R, we also have

Vdil(θ) = Udil(iθ)V Udil(iθ)∗,

where Udil(t) is the generator of dilations introduced for similar purposes in [1]

Udil(t)u(x) = etd/2u(etx).

Lemma 7.2. Let k > d/2 + 1. For all n� 1, θ ∈ [0, θ0], z ∈ Ω+ and j ≥ 1,

tr
(
dj

dεj
(H0 + εVn − z)−k|ε=0

)
= tr

(
dj

dεj
(e−2iθH0 + εVn,dil(θ)− z)−k|ε=0

)
. (7.8)

Proof. For iθ ∈ R, the result is obvious since the right hand side of (7.8) reads

tr
(
dj

dεj
Udil(iθ)(H0 + εVn − z)−kUdil(iθ)∗|ε=0

)
.

On the other hand, θ 7→ Vn,dil(θ) is holomorphic from (0, θ0) + i(−1, 0) to L(Hs+2,σ
sc , Hs,σ+d

sc ), for
all s ∈ N, σ ∈ R and d > d. It is also continuous for θ ∈ [0, θ0] + i[−1, 0]. Since e−2iθH0 − z
is invertible, Proposition 3.2 proves the existence of the resolvent (e−i2θH0 + εVn,dil(θ) − z)−1

for ε small enough (depending on h but this harmless for we shall eventually set ε = 0). It is
then holomorphic for θ ∈ (0, θ0) + i(−1, 0) and continuous for θ ∈ [0, θ0] + i[−1, 0], with values in
L(Hs,σ

sc , Hs+2,σ
sc ). Therefore the expression of the right hand side of (7.8) given by Proposition 3.3

is holomorphic with respect to θ ∈ (0, θ0) + i(−1, 0), continuous on [0, θ0] + i[−1, 0] and constant
on i[−1, 0] hence constant in [0, θ0] + i[−1, 0] by analytic continuation. This completes the proof.
�

Next, using Propositions 3.1, 3.2, 3.3, Lemma 7.1 and the notation (3.17), we can write, for
each z ∈ Ω+,

ζp(k, z, h) = lim
n→∞

T kp (H0, Vn, z),

that is the limit of

tr
(
(H0 + Vn − z)−k − (H0 − z)−k

)
−
p−1∑
j=1

1
j!

tr
(
dj

dεj
(H0 + εVn − z)−k|ε=0

)
,

or, by Lemma 7.2, the limit of

tr
(
(H0 + Vn − z)−k − (H0 − z)−k

)
−
p−1∑
j=1

1
j!

tr
(
dj

dεj
(e−2iθ0H0 + εVn,dil(θ0)− z)−k|ε=0

)
.

Observing that Proposition 4.11 can be extended to the sequence Vn (ie that the corresponding
finite rank operators Kn(θ0) converge as n→ +∞), this limit is the sum of

tr

(Ĥ1(θ0)− z)−k − (Ĥ0(θ0)− z)−k −
p−1∑
j=1

1
j!
dj

dεj
(e−2iθ0H0 + εVdil(θ0)− z)−k|ε=0

 , (7.9)
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and of

− ∂k−1
z

(k − 1)!

(
∂z log det1

(
1 + K̃1(θ0, z)

)
− ∂z log det1

(
1 + K̃0(θ0, z)

))
=∑

w∈Res(H0+V,Ω)

1
(w − z)k

+ φ(z, h),

with φ(z, h) holomorphic on Ω and O(h−d) locally uniformly. This follows from (4.32), (4.35),
(4.38), Proposition 4.14 and from the absence of resonances for H0. The operator inside the trace
in (7.9) is trace class because it is the sum of of

(Ĥ1(θ0)− z)−k −
p−1∑
j=0

1
j!
dj

dεj
(e−2iθ0H0 + εVdil(θ0)− z)−k|ε=0, (7.10)

and of
(Ĥ0(θ0)− z)−k − (e−2iθ0H0 − z)−k

which is O(h−d) in the trace class for z ∈ Ω by Propositions 3.1, 3.3 (recall that Ĥ0(θ0)−e−2iθ0H0

is compactly supported) and 4.11, using the elementary bound ||(e−2iθ0H0 − z)−1||L2→H2,0
sc
. 1.

Setting
V̂ (θ0) := Ĥ1(θ0)− (e−2iθ0H0 + Vdil(θ0))

which is compactly supported, (7.10) is the sum of the trace class operators

1
j!
dj

dεj

(
(e−2iθ0H0 + εVdil(θ0) + εV̂ (θ0)− z)−k − (e−2iθ0H0 + εVdil(θ0)− z)−k

)
|ε=0

and of

(e−2iθ0H0 + Vdil(θ0) + V̂ (θ0)− z)−k −
p−1∑
j=0

1
j!
dj

dεj

(
e−2iθ0H0 + εVdil(θ0) + εV̂ (θ0)− z

)−k
|ε=0

,

which are all of order h−d in the trace class, locally uniformly with respect to z ∈ Ω, by Proposition
3.3, (3.18), Proposition 4.11 and again the estimate ||(e−2iθ0H0 − z)−1||L2→H2,0

sc
. 1.

Using Proposition 1.8, we obtain the following theorem.

Theorem 7.3. Let ρ > 0 and p ∈ N such that pρ > d. Let Ω b e−i(2θ0,ε)(0,+∞) be a simply
connected open subset with 0 < θ0 < π/2, ε > 0 small enough and satisfying (1.18). Then, if
V ∈ Vρ(θ0, 0, ε0), any ϕp as in Theorem 1.3 satisfies, for all W b Ω,

|∂zϕp(z, h)| ≤ CWh−d, z ∈W, h� 1.

Acknowledgement. We are pleased to dedicate this paper to Didier Robert. It was started on
the occasion of his 60th anniversary and answers a question he raised a few years ago.
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[32] J. Sjöstrand, M. Zworski, Complex scaling and the distribution of scattering poles, J.
Amer. Math. Soc. 4, n. 4 729-769 (1991).

[33] G. Vodev, Sharp bounds on the number of scattering poles for perturbations of the Laplacian,
Comm. Math. Phys. 146, 205-216 (1992).

[34] G.N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press,
Cambridge (1966).

[35] D. Yafaev, Mathematical Scattering Theory, AMS, Providence, RI (1992).

[36] M. Zworski, Sharp polynomial bounds on the number of scattering poles, Duke Math. J. 59,
no. 2, 311-323 (1989).

37


