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Abstract

We extend a result due to Zazanis [34] on the analyticity of the expectation

of suitable functionals of homogeneous Poisson processes, with respect to the

intensity of the process. As our main result, we provide Monte Carlo estimators

for the derivatives. We apply our results to stochastic models which are of

interest in stochastic geometry and insurance.
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1. Introduction

Let N be an independently marked homogeneous Poisson process (IMHPP) with

points in Rd and marks with distribution Q taking values on some complete separable

metric space M. Under the probability measure Pλ, the intensity of the Poisson point

process is λ > 0. Moreover, let ϕ(N) be a real valued functional of the process and Eλ

the expectation under Pλ. The function λ 7→ Eλ[ϕ(N)] is known to be smooth in λ

under several and different assumptions.
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Zazanis [34] focuses on functionals depending only on the configuration, up to a

finite stopping time, of a homogeneous Poisson process on the half-line. For this class

of functionals he proves that the function λ 7→ Eλ[ϕ(N)] is analytic under a specific

moment condition on the functional, and a light-tailed assumption on the stopping

time. However, he does not provide an explicit expression for the derivatives.

For one dimensional IMHPP, Baccelli, Hasenfuss and Schmidt [5] provide sufficient

conditions for the m-differentiability of Eλ[ϕ(N)], with respect to λ, in a neighborhood

of the origin, and closed form expressions for the derivatives in terms of multiple

integrals. However, their method does not address the question of analyticity, and

their set of conditions is different from ours.

A more general framework is considered by Molchanov and Zuyev [25]. Let N be a

(not necessarily homogeneous) Poisson process on a locally compact separable metric

space, with intensity measure Λ. Moreover, let ϕ(N) be a suitable functional of the

process. They study the analyticity of the expectation EΛ[ϕ(N)], with respect to

Λ. Particularly, they prove that, under some assumptions on ϕ, the function Λ 7→
EΛ[ϕ(N)] is analytic on the cone of positive measures.

For Poisson processes with a finite intensity measure Λ, a relevant work is also that

one of Albeverio, Kondratiev and Röckner [1], where it is proved that the expectation

EΛ[ϕ(N)] is analytic with respect to a perturbation of Λ by a semi-group.

In this paper we basically rely on Zazanis’ paper [34] for the analyticity of λ 7→
Eλ[ϕ(N)], where N is an IMHPP on Rd ×M. As our main result, we derive explicit

formulas for all the derivatives of λ 7→ Eλ[ϕ(N)]. These formulas provide Monte Carlo

methods for sensitivity analysis of suitable Poisson driven stochastic systems, with

respect to the intensity of the process.

There are several motivations for being interested in sensitivity analysis: the main

reasons are the applications to optimization and control of complex systems occurring,

for instance, in stochastic geometry and insurance. Sensitivity analysis was introduced

by Ho and Cao [16], and has been addressed by many authors (see, for instance,

the book by Glassermann [14] and the references cited therein). There are mainly

three ways to handle this problem: the infinitesimal perturbation analysis (IPA),

the likelihood ratio method (LRM), and the rare perturbation analysis (RPA). We

refer the reader to L’Ecuyer [19] and Suri and Zazanis [32] for more insight into
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the IPA method, and to Reimann and Weiss [30] for more details on the LRM. It is

worthwhile to mention the work by Decreusefond [11] where, using Malliavin calculus,

it is shown that IPA, RPA and LRM can be seen as a part of the stochastic calculus of

variations. Decreusefond’s paper main achievement is that he may, potentially, consider

discrete-event systems more general than Poisson processes.

As already mentioned, we derive explicit formulas for all the derivatives of λ 7→
Eλ[ϕ(N)]. For this we use the RPA method. Suppose we wish to compute the deriva-

tive d
dλEλ[ϕ(N)]. We distinguish two different RPA methods: the virtual and the

phantom. The virtual RPA method may be attributed to Reiman and Simon [29], and

has been revisited by Baccelli and Brémaud [4]. Following the ideas of these articles,

we evaluate the limit

lim
∆λ→0

Eλ+∆λ[ϕ(N)]− Eλ[ϕ(N)]
∆λ

.

The key idea is to use the superposition property of IMHPPs to generate an IMHPP of

intensity λ+∆λ from a small perturbation of an IMHPP of intensity λ. By a coupling

argument, an IMHPP of intensity λ + ∆λ is generated from the superposition of two

independent IMHPPs of respective intensity λ and ∆λ. The phantom RPA method was

introduced by Brémaud and Vazquez-Abad [7]. Following the approach in this paper,

we compute the limit

lim
∆λ→0

Eλ[ϕ(N)]− Eλ−∆λ[ϕ(N)]
∆λ

.

The idea is to use the thinning property of IMHPPs to generate an IMHPP of intensity

λ−∆λ: similarly to the previous case, this process is generated from a small perturba-

tion of an IMHPP of intensity λ by a coupling argument. We generalize this approach

to compute the n-th order derivatives dn

dλn Eλ[ϕ(N)].

Our results can be applied to suitable functionals of random sets arising in stochastic

geometry. Furthermore, by using importance sampling and large deviations techniques

we show that our results can be applied to ruin probabilities of risk processes with

Poisson arrivals and delayed or un-delayed claims. In the case of classical risk processes

(un-delayed claims) we provide an asymptotically optimal Monte Carlo estimator for

the first order derivative of the ruin probability.

The paper is organized as follows. In Section 2 we fix the notation and extend

Zazanis’ result about analyticity of functionals of homogeneous Poisson processes. In
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Section 3 we state our results about n-th order derivatives of functionals of homoge-

neous Poisson processes. In Section 4 we prove the results given in Section 3. Finally, in

Section 5 we apply our results to stochastic models which are of interest in stochastic

geometry and insurance.

2. Preliminaries

2.1. Notation

Let d ≥ 1 be an integer, M a complete separable metric space, and N the space

of all counting measures on Rd ×M, defined on the Borel σ-field B(Rd)⊗ B(M), such

that each measure µ ∈ N is simple and locally finite, that is: µ({(x, z)}) is equal to

0 or 1 for each (x, z) ∈ Rd ×M, and µ is finite on each set of the form B ×M, where

B is a bounded Borel set. We endow the space N with its usual topology (see, for

instance, the book by Daley and Vere-Jones [10] for the details). Any measure in N
can be represented as

µ =
µ(Rd×M)∑

n=1

δ(xn,zn) =
µ(Rd×M)∑

n=1

δxn , (1)

where (xn, zn) = xn ∈ Rd ×M and δ(x,z), (x, z) ∈ Rd ×M, is the Dirac’s measure

on B(Rd) ⊗ B(M): for any B ∈ B(Rd) and M ∈ B(M), δ(x,z)(B ×M) is equal to 1 if

(x, z) ∈ B ×M and equal to 0 otherwise. The elements of the sequence {zn}n≥1 ⊆M
are called marks. The symbol supp(µ) will denote the support of the counting measure

µ ∈ N , that is, if µ is given by (1), supp(µ) = {(xn, zn)n≥1}.
Let Br be the closed ball centered in 0 with radius r, and B(x, r) = x + Br the

closed ball centered at x with radius r. If K is a compact set, throughout this paper

we denote by BK the smallest closed ball centered in 0 which contains K.

Let µ =
∑

n≥1 δxn =
∑

n≥1 δ(xn,zn) be in N . For B ∈ B(Rd) and M ∈ B(M), we set
∫

B×M

ψ(x)µ(dx) =
∫

B×M

ψ(x, z)µ(dx× dz) =
∑

n≥1

ψ(xn, zn)11{(xn, zn) ∈ B ×M},

for any measurable functional ψ : Rd ×M→ R such that the sum is well defined.

Let B ⊆ Rd be a Borel set. Throughout this work, we denote the set of points of

supp(µ) in B ×M by µ|B and the number of points of µ in B ×M by µB . With an
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abuse of notation, |B| denotes the Lebesgue measure of B, and for real numbers x ∈ R
the symbol |x| denotes the usual absolute value.

For any measurable functional ϕ : N → R and x ∈ Rd×M, we define the increments:

D+
x ϕ(µ) = ϕ(µ + δx)− ϕ(µ) and D−

x ϕ(µ) = ϕ(µ)− ϕ(µ− δx),

where D−
x ϕ(µ) is properly defined only if x ∈ supp(µ). Similarly, if µ′ ∈ N ,

D+
µ′ϕ(µ) = ϕ(µ + µ′)− ϕ(µ) and D−

µ′ϕ(µ) = ϕ(µ)− ϕ(µ− µ′),

where D−
µ ϕ(µ) is properly defined only if supp(µ′) ⊆ supp(µ).

Let (Ω,F , P ) be a probability space. A (simple and locally finite) marked point

process on Rd with marks in M is a measurable mapping from Ω to N . Throughout

the paper we fix a marked point process N on Rd with marks in M. For a Borel set

B ⊆ Rd, define the σ-field on Ω:

FB = σ{N(C ×M) : C ∈ B(Rd), C ⊆ B,M ∈ B(M)}.

Let F andK denote, respectively, the family of closed and compact sets of Rd. We endow

these families with their standard topology (see Matheron [22] and Stoyan, Kendall and

Mecke [31]). Let S : N → F be a measurable mapping. We say that S is a stopping set

if S(N) is a measurable mapping from Ω to K such that {S(N) ⊆ K} ∈ FK for each

K ∈ K. The stopping σ-field is the following collection on Ω:

FS = σ

{
F ∈

∨

K∈K
FK : F ∩ {S(N) ⊆ K} ∈ FK for all K ∈ K

}
.

For details and properties of stopping sets and stopping σ-fields, we refer to Zuyev [36].

All the random elements considered in this work are defined on the measurable space

(Ω,F). We endow such space with the family of probability measures {Pλ}λ>0 such

that, under Pλ, the marked point process

N =
∑

n≥1

δ(Xn,Zn) =
∑

n≥1

δXn

is an IMHPP of intensity λ > 0, that is: the ground point process {Xn}n≥1 is

a homogeneous Poisson process with intensity λ, the random marks {Zn}n≥1 are

independent and identically distributed (iid) with law Q, and the sequences {Xn}n≥1



6 Charles Bordenave and Giovanni Luca Torrisi

and {Zn}n≥1 are independent. We denote by Eλ the expectation associated to Pλ. Note

that N is actually a Poisson point process on Rd×M with intensity measure λΛ, where

Λ(dx× dz) = dxQ(dz)

is the product measure on Rd ×M of the Lebesgue measure and Q.

Although in Subsection 2.2 and Section 3 we assume that {Xn}n≥1 is a homogeneous

Poisson process on Σ = Rd, the results therein still hold if Σ is a Borel subset of Rd, and

{Xn}n≥1 is the restriction on Σ of a homogeneous Poisson process on Rd (for instance,

note that in Subsection 5.2 we apply the results in Subsection 2.2 and Section 3 to

stochastic models where {Xn}n≥1 are the points of a homogeneous Poisson process on

[0,∞)).

2.2. Analyticity of functionals of independently marked homogeneous Pois-

son processes

Our analysis is based on a result, due to Zazanis [34], which can be extended to the

context of stopping sets as follows. Let ϕ be a measurable functional from N to R,

f(λ) = Eλ[ϕ(N)], f (n)(λ) = dnf(λ)
dλn , and [a, b) an interval of the positive half-line. We

consider the following conditions:

There exists a stopping set S such that ϕ(N) is FS-measurable. (2)

For any λ ∈ [a, b) there exists γ = γ(λ) > 1 such that (3)

Eλ[|ϕ(N)|γ ] < ∞.

For any λ ∈ [a, b) there exists s = s(λ) > 0 such that (4)

Eλ[exp(s|BS(N)|)] < ∞.

It holds:

Theorem 1. Assume (2), (3), and (4), then f(·) is analytic on [a, b) that is, for a

fixed x0 ∈ [a, b), we have

f(x) =
∑

n≥0

f (n)(x0)
n!

(x− x0)n, x ∈ [a, b).
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In its paper Zazanis considers a homogeneous Poisson process N on the half-line, and

stopping sets of the form S(N) = [0, T (N)], where T (N) is a stopping time with

respect to the natural filtration of the Poisson process. Moreover, he assumes the

stronger condition:

For any λ ∈ [a, b), Eλ[ϕ4(N)] < ∞

in place of (3).

To prove Theorem 1 we need the following lemmas.

Lemma 1. Under assumptions (2) and (4), for all λ ∈ [a, b), there exists s′ = s′(λ) >

0 such that Eλ[exp(s′NS(N))] < ∞.

Lemma 2. Under assumptions of Theorem 1, we have that

Eλ

[
|ϕ(N)|

(
λ + ε

λ

)NS(N)

exp(ε|BS(N)|)
]

< ∞, ε ∈
(

0,min
{

s(γ − 1)
2γ

,
s′λ(γ − 1)

2γ

})
.

Here γ is given by assumption (3), s by (4), and s′ is determined by Lemma 1.

Proof of Lemma 1. For ease of notation, throughout this proof we write S = S(N). Let

s be given by assumption (4), and set C = Eλ[exp(s|S|)] and δ > e2λ. For k ≥ 0, let

rk be such that |Brk
| = k/δ (that is rk = (k/(δπd))1/d, where πd is the volume of the

ball B1). We notice that

Pλ(NS > k) ≤ Pλ(|BS | > k/δ) + Pλ(NBrk
> k), for all k ≥ 0. (5)

By a standard large deviation estimate for the Poisson distribution (see, for instance,

the book by Penrose [26], Lemma 1.2) we have, for all k ≥ e2λ,

Pλ(NBrk
> k) ≤ exp

(
−k

2
log

(
k

λ|Brk
|
))

= exp
(
−k

2
log

(
δ

λ

))
. (6)

Therefore, by (5), (6) and Markov inequality, it follows that, for all k ≥ e2λ,

Pλ(NS > k) ≤ C exp
(
−s

δ
k
)

+ exp
(
−k

2
log

(
δ

λ

))
.

Finally, we easily deduce that, for 0 < s′ < min{s/δ, 1
2 log(δ/λ)}, Eλ[exp(s′NS)] =

1 + (es′ − 1)
∑

k≥0 exp(s′k)Pλ(NS > k) < ∞. ¤
Proof of Lemma 2. As above we set S = S(N). The proof is similar to the proof of

Lemma 2 in Zazanis [34]. Following the proof of Lemma 2 in [34] and using Hölder
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inequality (in place of the first application of Cauchy-Schwarz inequality) and then

Cauchy-Schwarz inequality, we have that

Eλ

[
|ϕ(N)|

(
λ + ε

λ

)NS

exp(ε|BS |)
]

≤ (Eλ [|ϕ(N)|γ ])
1
γ

(
Eλ

[(
λ + ε

λ

) γ
γ−1 NS

exp
(

ε
γ

γ − 1
|BS |

)]) γ−1
γ

≤ (Eλ [|ϕ(N)|γ ])
1
γ

(
Eλ

[(
λ + ε

λ

) 2γ
γ−1 NS

]
Eλ

[
exp

(
ε

2γ

γ − 1
|BS |

)] ) γ−1
2γ

.

The claim follows by Lemma 1 and assumptions (3) and (4). ¤
Proof of Theorem 1. Zazanis’ result can be extended as stated by Theorem 1. We briefly

outline the main changes in the proof: follow the proofs of Theorem 4 and Corollary 2

in Zazanis [34] replacing Lemma 2 in [34] with Lemma 2 and the so-called Cameron-

Martin-Girsanov change of measure by the change of measure

dPλ,S

dPa,S
=

(
λ

a

)NS(N)

exp(−|S(N)|(λ− a)), (7)

where Pλ,S denotes the restriction of Pλ to FS (note that Pλ ¿ Pa on the stopping

σ-field FS with density (7) due to the results in Zuyev [36]). ¤

Remark 1. A function g : R → [0,∞) is said absolutely monotonic in [a, b) if it has

derivatives of all orders that satisfy g(k)(x) ≥ 0 for all x ∈ (a, b), k ≥ 0. Consider

a nonnegative functional ϕ(µ, λ) on N × R+, which depends explicitely on λ in such

a way that, for each µ ∈ N , the function λ 7→ ϕ(µ, λ) is absolutely monotonic in

[a, b). If moreover conditions (2), (3) and (4) are satisfied with ϕ(µ, λ) in place of

ϕ(µ), then f(λ) = Eλ[ϕ(N, λ)] is analytic on [a, b). The proof is similar to that one of

Theorem 1. In particular, note that the absolute monotonicity of λ 7→ ϕ(N,λ) implies

the absolute monotonicity of

λ 7→ ϕ(N, λ)
(

λ

a

)NS(N)

exp(−|S(N)|(λ− a))

in [a, b). Indeed, similarly to [34], one can prove that the function

λ 7→
(

λ

a

)NS(N)

exp(−|S(N)|(λ− a))

is absolutely monotonic. The claim follows using that the product of two absolutely

monotonic functions is an absolutely monotonic function.
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3. Rare perturbation analysis

Sensitivity analysis is concerned with evaluating derivatives of cost functions, with

respect to parameters of interest. It plays a central role in identifying the most sig-

nificant system parameters. In this section, we give Monte Carlo methods to estimate

the derivatives of the cost function f(λ) = Eλ[ϕ(N)]. An application of importance

could be the use of such gradient estimates in stochastic gradient algorithms to find

the optimal value λ0 that minimizes the cost function.

3.1. Monotone mappings

The following notion of monotonicity is crucial in this work.

Definition 1. Let S be a measurable mapping from N to F. We say that S is non-

increasing (nondecreasing) if, for any µ1, µ2 in N , the inclusion supp(µ1) ⊆ supp(µ2)

implies S(µ1) ⊇ S(µ2) (S(µ1) ⊆ S(µ2)). The mapping S is said monotone if it is

nonincreasing or nondecreasing.

We give a couple of examples as a guide to intuition. Let µ = {xn}n≥1 be a locally

finite counting measure on [0,∞). Define the functional ϕ(µ) = 1 ∧ x1, where x1 is

the first point of µ on [0,∞), and the measurable mapping S(µ) = [0, x1]. Then S is

nonincreasing but it is not nondecreasing. Instead, if we define S(µ) = [0, 1], then S is

nonincreasing and nondecreasing.

3.2. First order derivative

In this subsection we state the result concerning the first order derivative of f(·). Its

proof is given in Section 4.

Theorem 2. Under assumptions of Theorem 1, with γ in (3) such that γ > 2, if

moreover the mapping S is monotone then, for all λ ∈ [a, b),

f ′(λ) = Eλ

[
|S(N)|D+

Xϕ(N)
]

(8)

= Eλ

[ NS(N)

λ
D−

X′ϕ(N)
]
, (9)

where X = (ξ, ζ) and X′ = (ξ′, ζ ′) are random variables on Rd ×M. Given S(N), ξ is

uniformly distributed on S(N); ζ is independent of N and ξ and has law Q. Given the

collection of points N|S(N), X′ = (ξ′, ζ ′) is uniformly distributed on the collection.
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The closed form formulas provided by equations (8) and (9) both give a Monte Carlo

method to simulate the derivative of f(λ). We note also that if we consider an IMHPP

on (−∞, 0] with marks in (0,∞), and the assumptions of Theorem 2, our formulas of

the first order derivative coincide with the corresponding formula in Baccelli, Hasenfuss

and Schmidt [5] (see formula (10) therein with k = 1). This easily follows by equality

(9) and the forthcoming equalities (39), (40). A similar remark holds for the n-th order

derivatives (see Theorem 3 below).

3.3. Higher order derivatives

We now generalize Theorem 2, stating the result for the n-th order derivatives

f (n)(λ). The details of the proof are given in Section 4.

Let ϕ be a measurable functional from N to R. As in Reiman and Simon [29] and

Blaszczyszyn [6], for µ ∈ N , n ≥ 1 and xi = (xi, zi) ∈ Rd ×M, i = 1, . . . , n, define

ϕx1,...,xn (µ) = ε(x1, . . . ,xn)
n∑

k=0

(−1)n−k
∑

π∈{(n
k)}

ϕ

(
µ +

∑

i∈π

δxi

)
, (10)

where ε(x1, . . . ,xn) = 11({x1, . . . , xn are distinct}) and {(n
k

)} denotes the collection of

all subsets with cardinality k of {1, . . . , n}. We shall consider also the functionals

ϕx1,...,xn(µ) = ε(x1, . . . ,xn)ϕx1,...,xn

(
µ−

n∑

i=1

δxi

)
, (11)

which are properly defined only if x1, . . . ,xn ∈ supp(µ). Note that ϕx1,...,xn (and

therefore ϕx1,...,xn) is invariant by permutations in the sense that for any permutation

σ of {1, ..., n} ϕxσ(1),...,xσ(n)(µ) = ϕx1,...,xn(µ). Furthermore, as can be easily seen

reasoning by induction on n ≥ 1, we have that if ε(x1, · · · ,xn+1) = 1, then

ϕx1,...,xn+1 (µ) = ϕx1,...,xn

(
µ + δxn+1

)− ϕx1,...,xn (µ) = D+
xn+1

ϕx1,...,xn(µ) (12)

and

ϕx1,...,xn+1 (µ) = ϕx1,...,xn (µ)− ϕx1,...,xn
(
µ− δxn+1

)
= D−

xn+1
ϕx1,...,xn(µ). (13)

In particular, ϕx1(µ) = D+
x1

ϕ(µ) and ϕx1(µ) = D−
x1

ϕ(µ). In the following theorem we

use the standard convention that the sum over an empty set is zero and k!/(k−n)! = 0

for n > k. It holds
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Theorem 3. Under assumptions of Theorem 2, for all λ ∈ [a, b) and n ≥ 1,

f (n)(λ) = Eλ[|S(N)|nϕX1,...,Xn
(N)] (14)

= Eλ

[(
NS(N)

λ

)n

ϕX′1,...,X′n(N)
]

(15)

= Eλ

[
NS(N)!

(NS(N) − n)!λn
ϕX′′1 ,...,X′′n(N)

]
, (16)

where, for 1 ≤ i ≤ n, Xi = (ξi, ζi), X′
i = (ξ′i, ζ

′
i) and X′′

i = (ξ′′i , ζ ′′i ) are random

variables on Rd × M. Given S(N), (ξi)1≤i≤n are independent and uniformly dis-

tributed on S(N), and independent of N ; (ζi)1≤i≤n are independent, independent of N

and (ξi)1≤i≤n, and with law Q. Given the collection of points N|S(N), (X′
i)1≤i≤n are

independent and uniformly distributed on the collection; {X′′
1 , . . . ,X′′

n} is uniformly

distributed on the set of subsets of n distinct points of N|S(N).

Note that equation (16) implies that f (n)(λ) = 0 if NS(N) < n with probability one.

Putting together Theorems 1 and 3, we obtain the following corollary:

Corollary 1. Under assumptions of Theorem 2 and notation of Theorem 3, for all

λ ∈ [a, b),

f(λ) = Ea




NS(N)∑
n=0

(
λ− a

a

)n Nn
S(N)

n!
ϕX′1,··· ,X′n(N)


 .

4. Proofs of Theorems 2 and 3

4.1. Integrability lemmas

In the core of the proof of Theorems 2 and 3, we use the integrability of some

functionals. In this subsection we prove such integrability results.

We start with a simple continuity result.

Lemma 3. Under assumptions of Theorem 1, for all α ∈ [0, γ(λ)), the function λ′ 7→
Eλ′ [|ϕ(N)|α] is defined in an open neighborhood of λ and is continuous at λ.

Proof. Throughout this proof we set S = S(N). The conclusion is trivial for α =

0. Assume α > 0, we prove that

lim
ε→0−

Eλ+ε[|ϕ(N)|α] = Eλ[|ϕ(N)|α]. (17)
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A similar argument can be used to prove the same limit as ε → 0+. Let s = s(λ) > 0

be given by assumption (4), β = γ/α > 1 and ε ∈ (min{−λ,−s(β − 1)/β}, 0). By the

Cameron-Martin-Girsanov change of measure (7) it follows

Eλ+ε[|ϕ(N)|α] = Eλ

[
|ϕ(N)|α

(
λ + ε

λ

)NS

exp(−ε|S|)
]

.

By the choice of ε, we have that

|ϕ(N)|α
(

λ + ε

λ

)NS

exp(−ε|S|) ≤ |ϕ(N)|α exp(−ε|S|) ≤ |ϕ(N)|α exp(s(β − 1)|S|/β)

Now, Hölder inequality and assumptions (3) and (4) give

Eλ[|ϕ(N)|α exp(s(β − 1)|S|/β)] ≤ Eλ [|ϕ(N)|γ ]
α
γ Eλ [exp(s|S|)] β−1

β < ∞.

The limit (17) is then a consequence of Lebesgue’s dominated convergence theorem. ¤
For any µ ∈ N , n ≥ 1 and xi = (xi, zi) ∈ Rd×M, i = 1, . . . , n, define the functionals

ψ(µ) =
∫

(Rd×M)n

|ϕx1,...,xn(µ)|Λ(dx1) . . . Λ(dxn), (18)

and (with the convention that the sum over an empty set is zero)

χ(µ) =
∑

{x1,...,xn}⊂supp(µ)

|ϕx1,...,xn(µ)|, (19)

where the sum is taken on sets of n distinct points of µ. It holds:

Lemma 4. Under assumptions of Theorem 1, if moreover the mapping S is nonin-

creasing then, for all λ ∈ [a, b) and α ∈ [1, γ), Eλ[ψ(N)α] < ∞.

Lemma 5. Under assumptions of Theorem 1, if moreover the mapping S is nonde-

creasing then, for all λ ∈ [a, b) and α ∈ [1, γ), Eλ[χ(N)α] < ∞.

Proof of Lemma 4. For ease of notation, set P = Pλ and E = Eλ. Let q > 1 be such

that qα ≤ γ and p > 1 such that 1/p + 1/q = 1. Moreover, let N̂ =
∑

n≥1 δ(X̂n,Ẑn)

be an IMHPP with intensity ∆λ, such that Ẑ1 has law Q and N̂ is independent of

N . Here ∆λ is chosen so that λ + ∆λ < b and E[exp(2pα∆λ|S(N)|)] < ∞. Reasoning

by induction on n ≥ 1 we have that condition (2) and the monotonicity of S imply

ϕx1,...,xn(N) = 0 for any (x1, . . . , xn) /∈ S(N)n. (20)
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Indeed, for n = 1, the FS-measurability of ϕ(N) and the inclusion S(N + δx) ⊆ S(N)

for all x = (x, z) ∈ Rd ×M, imply ϕ(N + δx) = ϕ(N), for each x = (x, z) ∈ (Rd \
S(N))×M. The general case is proved similarly. Therefore

ψ(N) =
∫

(S(N)×M)n

|ϕx1,...,xn
(N)|Λ(dx1) . . . Λ(dxn).

By the superposition property of Poisson processes, N +N̂ is an IMHPP with intensity

λ + ∆λ. It follows

ψ(N) ≤ |S(N)|n
n∑

k=0

(
n

k

)
|S(N)|−k

∫

(S(N)×M)k

∣∣∣ ϕ

(
N +

k∑

i=1

δxi

) ∣∣∣ Λ(dx1) . . . Λ(dxk)

≤ |S(N)|n
n∑

k=0

(
n

k

)
E[|ϕ(N + N̂)| | N̂S(N) = k, N ]

≤ |S(N)|nE[|ϕ(N + N̂)| |N ]
n∑

k=0

(
n

k

)
P (N̂S(N) = k |N)−1

≤ |S(N)|nE[|ϕ(N + N̂)| |N ]
n∑

k=0

(
n

k

)
k!

(∆λ|S(N)|)k
exp(∆λ|S(N)|)

=
n!

(∆λ)n
exp(∆λ|S(N)|)E[|ϕ(N + N̂)| |N ]

n∑

k=0

(∆λ|S(N)|)n−k

(n− k)!

≤ n!
(∆λ)n

exp(2∆λ|S(N)|)E[|ϕ(N + N̂)| |N ].

Using Jensen and Hölder inequalities we deduce that

E[ψ(N)α] ≤
(

n!
(∆λ)n

)α

E[exp(2α∆λ|S(N)|)
(
E[|ϕ(N + N̂)| |N ]

)α

]

≤
(

n!
(∆λ)n

)α

E[exp(2α∆λ|S(N)|)E[|ϕ(N + N̂)|α |N ]]

≤
(

n!
(∆λ)n

)α

E[exp(2pα∆λ|S(N)|)]1/pE[|ϕ(N + N̂)|qα]1/q < ∞.

¤

Proof of Lemma 5. Set P = Pλ, E = Eλ, and let N⊗n (respectively, N⊗n
|S(N)) be the

set of the n-tuples of n distinct points of N (respectively, N|S(N)). Let p, q > 1 be such

that αq ≤ γ and 1/p + 1/q = 1. Let {βn}n≥1 be an iid sequence of Bernoulli random

variables, independent of N and defined by

P (βn = 0) = 1− P (βn = 1) = ∆λ/λ.
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Consider the thinned IMHPP of intensity λ−∆λ given by Ñ =
∑

n≥1 βnδ(Xn,Zn). Let

s > 0 be such that E[exp(sNS(N))] < ∞ (see Lemma 1). Here we choose ∆λ in such a

way that 2pα log (λ/(λ−∆λ)) < s. Reasoning by induction on n ≥ 1 it can be proved

that condition (2) and the monotonicity of S imply

ϕX1,...,Xn(N) = 0 for X1, . . . ,Xn ∈ supp(N): X1, . . . , Xn /∈ S(N). (21)

Indeed, for n = 1, the FS-measurability of ϕ(N) and the inclusion S(N − δX) ⊆ S(N)

for all X = (X, Z) ∈ supp(N), imply ϕ(N − δX) = ϕ(N), for each X ∈ supp(N) such

that X ∈ Rd \ S(N). The general case is proved similarly. Therefore

χ(N) =
∑

{X∗1 ,...,X∗n}⊂supp(N)

|ϕX∗1 ,...,X∗n(N)| (22)

=
1
n!

∑

(X∗1 ...,X∗n)∈N⊗n

|ϕX∗1 ,...,X∗n(N)| (23)

=
1
n!

∑

(X∗1 ,...,X∗n)∈N⊗n
|S(N)

|ϕX∗1 ,...,X∗n(N)| (24)

=
1
n!

E
[
(NS(N))n|ϕX′1,...,X′n(N)| |N

]
, (25)

where the equality in (23) follows from the invariance by permutations of ϕx1...,xn(µ),

the equality in (24) follows by (21), and the equality in (25) follows by the definition

of (X′
i)1≤i≤n (see the statement of Theorem 3). If NS(N) < n then χ(N) = 0. On the

other hand, if NS(N) ≥ n we deduce that

χ(N) ≤ E
[
(NS(N))n|ϕX′1,...,X′n(N)| |N

]

≤ (NS(N))nE




n∑

k=0

∑

{i1,...,ik}∈{(n
k)}

∣∣∣ ϕ


N −

k∑

j=1

δX′ij




∣∣∣
∣∣∣ N




= (NS(N))n
n∑

k=0

(
n

k

)
E[|ϕ(Ñ)| |N, NS(N) − ÑS(N) = k]

≤ (NS(N))nE[|ϕ(Ñ)| |N ]
n∑

k=0

(
n

k

)
P (NS(N) − ÑS(N) = k |N)−1

= (NS(N))nE[|ϕ(Ñ)| |N ]
n∑

k=0

(
n

k

)
k!(NS(N) − k)!

NS(N)!

(
∆λ

λ

)−k (
1− ∆λ

λ

)k−NS(N)

≤ K(NS(N))n

(
λ

λ−∆λ

)NS(N)

E[|ϕ(Ñ)| |N ],
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where K =
(

λ
∆λ

)n ∑n
k=0 k!

(
n
k

)
. Finally, using Jensen, Hölder and Cauchy-Schwartz

inequalities we get

E[χ(N)α] ≤ KαE

[
(NS(N))αn

(
λ

λ−∆λ

)αNS(N)

|ϕ(Ñ)|α
]

≤ KαE

[
(NS(N))pαn

(
λ

λ−∆λ

)pαNS(N)
]1/p

E[|ϕ(Ñ)|qα]1/q

≤ KαE[(NS(N))2pαn]1/(2p)E

[(
λ

λ−∆λ

)2pαNS(N)
]1/(2p)

E[|ϕ(Ñ)|qα]1/q < ∞.

¤

4.2. Case of nonincreasing mappings

In this subsection, we prove the closed form formulas given by equations (8) and

(14) in the case of nonincreasing mappings S. More precisely, the following propositions

hold:

Proposition 1. Under assumptions of Theorem 2, if moreover the mapping S is

nonincreasing then, for all λ ∈ [a, b), equation (8) holds.

Proposition 2. Under assumptions of Theorem 2, if moreover the mapping S is

nonincreasing then, for all λ ∈ [a, b) and n ≥ 1, equation (14) holds.

We start proving Proposition 1. The proof is based on the virtual Rare Perturbation

method considered in Baccelli and Brémaud [4].

Proof of Proposition 1. For ease of notation, we set P = Pλ and E = Eλ. A straight-

forward computation gives

E
[ |D+

Xϕ(N)|
∣∣ N

]
=

1
|S(N)|

∫

S(N)×M
|D+

x ϕ(N)|Λ(dx)

=
1

|S(N)|
∫

Rd×M
|D+

x ϕ(N)|Λ(dx), a.s., (26)

where the latter equality follows by condition (2) and by the assumption that S is

nonincreasing. Indeed, as in the proof of Lemma 4, the FS-measurability of ϕ(N) and

the inclusion S(N + δx) ⊆ S(N) for each x ∈ Rd ×M, imply ϕ(N + δx) = ϕ(N) for

each x = (x, z) ∈ (Rd \ S(N)) ×M. Thus, the integrability of the random variable

|S(N)|D+
Xϕ(N) follows by Lemma 4. Now, as in Lemma 4, let N̂ =

∑
n≥1 δ(X̂n,Ẑn) be
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an IMHPP with intensity ∆λ, such that Ẑ1 has law Q and N̂ is independent of N . By

the superposition property of Poisson processes, N + N̂ is an IMHPP with intensity

λ+∆λ. Here we choose ∆λ small enough so that λ+∆λ < b. Due to the monotonicity

of S, we have S(N + N̂) ⊆ S(N), and so the FS-measurability of ϕ(N) yields:

ϕ(N) = ϕ(N|S(N)) and ϕ(N + N̂) = ϕ((N + N̂)|S(N)). (27)

We then notice that

f(λ + ∆λ)− f(λ)
∆λ

= E[D+

N̂
ϕ(N)]/∆λ

=
1

∆λ
E


∑

k≥1

11(N̂S(N) = k)D+

N̂|S(N)
ϕ(N)




=
1

∆λ
E[11(N̂S(N) = 1)D+

N̂|S(N)
ϕ(N)] (28)

+
1

∆λ
E[11(N̂S(N) ≥ 2)D+

N̂|S(N)
ϕ(N)], (29)

where the second equality follows noticing that by (27) on {N̂S(N) = 0} we have ϕ(N) =

ϕ(N + N̂). Fix α ∈ (2, γ(λ)), by Lemma 3 the function λ′ 7→ E[|ϕ(N)|α] is continuous

at λ. Therefore, there exists a positive constant C > 0 such that E[|ϕ(N)|α] < Cα and

E[|ϕ(N + N̂)|α] < Cα for ∆λ small enough. Using Hölder and Minkowski inequalities

we have

∣∣∣ E[11(N̂S(N) ≥ 2)D+

N̂|S(N)
ϕ(N)]

∣∣∣ ≤
(

P (N̂S(N) ≥ 2)
)1−1/α(

E[|ϕ(N + N̂|S(N))− ϕ(N)|α]
)1/α

≤ 2C
(

E


∑

k≥2

(∆λ)k|S(N)|k
k!

e−∆λ|S(N)|




)1−1/α

≤ 2C(∆λ)2(1−1/α)(E[|S(N)|2])1−1/α. (30)

By assumption (4) we have E[|S(N)|2] < ∞. Therefore, by inequality (30) it follows

that the term in (29) goes to zero, as ∆λ → 0. Since N̂ is independent of N it follows

E[11(N̂S(N) = 1)D+

N̂|S(N)
ϕ(N)] = E[E[11(N̂S(N) = 1)D+

N̂|S(N)
ϕ(N) |N ]]

= E[∆λ|S(N)|e−∆λ|S(N)|E[D+

N̂|S(N)
ϕ(N) |N, N̂S(N) = 1]]

= E[∆λ|S(N)|e−∆λ|S(N)|E[D+
Xϕ(N) |N ]]

= ∆λE[|S(N)|e−∆λ|S(N)|D+
Xϕ(N)].
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Thus by the dominated convergence theorem the term in (28) converges to E[|S(N)|D+
Xϕ(N)],

as ∆λ → 0. ¤
Proof of Proposition 2. Set E = Eλ, and note that by (20) we have

ψ(N) = E[|S(N)|n|ϕX1,...,Xn
(N)| |N ].

Thus the integrability of |S(N)|nϕX1,...,Xn
(N) for any n ≥ 1 follows by Lemma 4. We

prove formula (14) by induction on n ≥ 1. As already shown it holds for n = 1. Let ψ̃

be the functional defined as ψ without the absolute value. By (2) and (20) it follows

that ψ̃(N) is FS-measurable. Assume the inductive hypothesis f (n)(λ) = E[ψ̃(N)] for

n > 1. Fix α ∈ (2, γ), by Lemma 4 we have E[|ψ̃(N)|α] < ∞. Define the random

variable Xn+1 = (ξn+1, ζn+1) with values on Rd ×M as follows: given S(N), ξn+1 is

uniformly distributed on S(N), and is independent of N,X1, . . . ,Xn; ζn+1 has law Q

and is independent of N , X1, . . . ,Xn and ξn+1. By Proposition 1 we get

f (n+1)(λ) = E[|S(N)|D+
Xn+1

ψ̃(N)].

The conclusion follows noticing that by (20) and (12) we have

E[|S(N)|D+
Xn+1

ψ̃(N)] =
∫

Rd×M
E[D+

x ψ̃(N)]Λ(dx)

=
∫

(Rd×M)n+1
E[ϕx1,...,xn+1(N)] Λ(dx1) · · ·Λ(dxn+1)

= E[|S(N)|n+1ϕX1,...,Xn+1(N)].

¤

4.3. Case of nondecreasing mappings

In this subsection, we prove the closed form formulas given by equations (9) and

(15) in the case of nondecreasing mappings S. More precisely, the following propositions

hold:

Proposition 3. Under assumptions of Theorem 2, if moreover the mapping S is

nondecreasing then, for all λ ∈ [a, b), f ′(λ) equals the term in (9).

Proposition 4. Under assumptions of Theorem 2, if moreover the mapping S is

nondecreasing then, for all λ ∈ [a, b) and n ≥ 1, f (n)(λ) equals the term in (15).
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We first prove Proposition 3. For this we use the so-called phantom Rare Perturba-

tion method introduced in Brémaud and Vazquez-Abad [7].

Proof of Proposition 3. Set P = Pλ and E = Eλ. As in the proof of Lemma 5, the

FS-measurability of ϕ(N) and the inclusion S(N − δX) ⊆ S(N) for all X = (X,Z) ∈
supp(N), imply ϕ(N − δX) = ϕ(N), for each X ∈ supp(N) such that X ∈ Rd \
S(N). Therefore

∫

S(N)×M
|D−

x ϕ(N)|N(dx) =
∫

Rd×M
|D−

x ϕ(N)|N(dx). (31)

Thus, the integrability of the random variable
∫

S(N)×MD−
x ϕ(N)N(dx) follows from

Lemma 5. Now note that

E

[
NS(N)

λ
D−

X′ϕ(N)
]

= E

[
E

[
NS(N)

λ
D−

X′ϕ(N)
∣∣∣ N|S(N)

]]

= E

[
1
λ

∫

S(N)×M
D−

x ϕ(N)N(dx)

]
. (32)

We finally show

f ′(λ) = E

[
1
λ

∫

S(N)×M
D−

x ϕ(N)N(dx)

]
.

Let {βn}n≥1 be the sequence of Bernoulli random variables defined in the proof of

Lemma 5. Consider the thinned IMHPP of intensity λ−∆λ given by Ñ =
∑

n≥1 βnδ(Xn,Zn).

By condition (2) and the monotonicity of S it follows that ϕ(N) = ϕ(N|S(N)) and

ϕ(Ñ) = ϕ(Ñ|S(N)). By the independence of {βn}n≥1 and N we have, for 0 ≤ k ≤
NS(N),

P (NS(N) − ÑS(N) = k |N) =
(

NS(N)

k

) (
∆λ

λ

)k (
1− ∆λ

λ

)NS(N)−k

.

This equation implies

E[11(NS(N) − ÑS(N) = k)(ϕ(N)− ϕ(Ñ))] =

E

[(
NS(N)

k

)(
∆λ

λ

)k (
1− ∆λ

λ

)NS(N)−k

E[ϕ(N)− ϕ(Ñ) |N,NS(N) − ÑS(N) = k]

]
.
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Since ϕ(N) = ϕ(N|S(N)) and ϕ(Ñ) = ϕ(Ñ|S(N)), we have E[11(NS(N) − ÑS(N) =

0)(ϕ(N)− ϕ(Ñ))] = 0. Therefore,

f(λ)− f(λ−∆λ)
∆λ

=
E[ϕ(N)− ϕ(Ñ)]

∆λ

=
1

∆λ
E


∑

k≥1

11(NS(N) − ÑS(N) = k)(ϕ(N)− ϕ(Ñ))




=
1

∆λ
E

[
NS(N)

(
∆λ

λ

) (
1− ∆λ

λ

)NS(N)−1

E[ϕ(N)− ϕ(Ñ)|N,NS(N) − ÑS(N) = 1]

]

(33)

+
1

∆λ
E

[
11(NS(N) − ÑS(N) ≥ 2)(ϕ(N)− ϕ(Ñ))

]
. (34)

We note that, given N and the event {NS(N) − ÑS(N) = 1}, the law of the random

variable ϕ(Ñ) is equal to the law of ϕ(N − δX′). Thus,

E[ϕ(N)−ϕ(Ñ) |N, NS(N)− ÑS(N) = 1] =
1

NS(N)

∫

S(N)×M
(ϕ(N)−ϕ(N − δx))N(dx).

(35)

By the dominated convergence theorem and (35) it follows that, as ∆λ → 0, the term

in (33) goes to

E

[
1
λ

∫

S(N)×M
D−

x ϕ(N)N(dx)

]
.

The proof of the proposition is complete if we prove that the term in (34) goes to zero

as ∆λ → 0. Fix α ∈ (2, γ(λ)), by Lemma 3 the function λ′ → E[|ϕ(N)|α] is continuous

at λ. Therefore, there exists a positive constant C > 0 such that E[|ϕ(N)|α] < Cα and

E[|ϕ(Ñ)|α] < Cα for ∆λ small enough. Using Hölder and Minkowski inequalities we

have
∣∣∣ E

[
11(NS(N) − ÑS(N) ≥ 2)(ϕ(N)− ϕ(Ñ))

] ∣∣∣

≤
(
P (NS(N) − ÑS(N) ≥ 2)

)1−1/α (
E[|ϕ(N)− ϕ(Ñ)|α]

)1/α

≤ 2C


E




NS(N)∑

k=2

(
NS(N)

k

)(
∆λ

λ

)k (
1− ∆λ

λ

)NS(N)−k






1−1/α

. (36)

As can be easily checked, for any n ≥ 2 and p ∈ (0, 1),

n∑
m=2

(
n

m

)
pm(1− p)n−m ≤ 1

2
n2p2. (37)
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Thus by (36) and (37) the absolute value of the term in (34) can be bounded from

above by

2C

(
1/2

(
∆λ

λ

)2

E[N2
S(N)]

)1−1/α /
∆λ,

and this quantity goes to zero as ∆λ → 0, since E[N2
S(N)] < ∞ by Lemma 1. ¤

Proof of Proposition 4. Set again E = Eλ. By (22)-(25) we get

E

[(
NS(N)

λ

)n

|ϕX′1,...,X′n(N)|
∣∣∣ N

]
= n!χ(N)/λn.

Thus, the integrability of
(

NS(N)

λ

)n

ϕX′1,...,X′n(N) for any n ≥ 1 follows by Lemma 5. We

prove formula (15) by induction on n ≥ 1. By Proposition 3, it holds for n = 1. Let χ̃

be the functional defined by

χ̃(µ) =
n!
λn

∑

{x1,...,xn}⊂supp(µ)

ϕx1,...,xn(µ).

Let N⊗n
|S(N) denote the set of the n-tuples of n distinct points of N|S(N). Since

χ̃(N) =
1
λn

∑

(X∗1 ,...,X∗n)∈N⊗n
|S(N)

ϕX∗1 ,...,X∗n(N)

(see (22)-(24)) we have that χ̃(N) is FS-measurable. Moreover, for each n ≥ 1,

χ̃(N) = E

[(
NS(N)

λ

)n

ϕX′1,...,X′n(N)
∣∣∣ N

]
(38)

(see (24)-(25)). Assume the inductive hypothesis f (n)(λ) = E[χ̃(N)] for n > 1. Fix

α ∈ (2, γ), by Lemma 5 we have E[|χ̃(N)|α] < ∞. Let X′
n+1 be a random variable

on Rd ×M such that, given N|S(N), X′
n+1 is independent of (X′

i)1≤i≤n, and uniformly

distributed on the collection N|S(N). By Proposition 3 we get

f (n+1)(λ) = E

[
NS(N)

λ
D−

X′n+1
χ̃(N)

]
.

The conclusion follows noticing that by (38) and (13) we have

E[D−
X′n+1

χ̃(N) |N ] =

E

[(
NS(N)

λ

)n (
ϕX′1...,X′n(N)− ϕX′1,...,X′n(N − δX′n+1

)
) ∣∣∣ N

]
=

E

[(
NS(N)

λ

)n

ϕX′1,...,X′n+1(N)
∣∣∣ N

]
.

¤
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4.4. Proof of Theorem 2

For ease of notation we set again E = Eλ. In view of Propositions 1 and 3, it is

sufficient to show that

E[|S(N)|D+
Xϕ(N)] = E

[
NS(N)

λ
D−

X′ϕ(N)
]

.

Arguing as for (26) we have

E[D+
Xϕ(N) |N ] =

1
|S(N)|

∫

Rd×M
D+

x ϕ(N)Λ(dx) a.s..

Therefore,

E[|S(N)|D+
Xϕ(N)] =

∫

Rd×M
E[D+

x ϕ(N)]Λ(dx). (39)

On the other hand, using the same argument as for (31) and the Slivnyak-Mecke

theorem (see, for instance, Daley and Vere-Jones [10]) we get

E

[∫

S(N)×M
D−

x ϕ(N)N(dx)

]
= E

[∫

Rd×M
D−

x ϕ(N)N(dx)
]

= λ

∫

Rd×M
E[D+

x ϕ(N)]Λ(dx). (40)

The conclusion follows by equalities (39), (40) and equation (32), which does not

depend on the monotonicity of S.

4.5. Proof of Theorem 3

As usual set E = Eλ. Let ψ̃ and χ̃ be the functionals defined in the proofs of

Propositions 2 and Proposition 4, respectively. Equations (14)-(15) will follow if we

prove

E[ψ̃(N)] = E[χ̃(N)]. (41)

Indeed, by the proof of Proposition 2, if S is nonincreasing we have f (n)(λ) = E[ψ̃(N)],

and by the proof of Proposition 4, if S is nondecreasing we have f (n)(λ) = E[χ̃(N)].

Equality (41) follows since by the extended Slivnyak-Campbell theorem (see Møller
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and Waagepetersen [24]) and the invariance by permutation of ϕx1,...,xn(µ) we have

E[χ̃(N)] =
n!
λn

E


 ∑

{X∗1 ,...,X∗n}⊂supp(N)

ϕX∗1 ,...,X∗n(N)




=
∫

(Rd×M)n

E

[
ϕx1,...,xn

(
N +

n∑

i=1

δxi

)]
Λ(dx1) . . . Λ(dxn)

=
∫

(Rd×M)n

E[ϕx1,...,xn(N)] Λ(dx1) . . . Λ(dxn)

= E[ψ̃(N)],

where we have used (11).

It remains to show equality (16). To this end, we write:

χ̃(N) =
n!
λn

∑

{X∗1 ,...,X∗n}⊂N|S(N)

ϕX∗1 ,...,X∗n(N)

=
NS(N)!

λn(NS(N) − n)!

(
NS(N)

n

)−1 ∑

{X∗1 ,...,X∗n}⊂N|S(N)

ϕX∗1 ,...,X∗n(N)

=
NS(N)!

λn(NS(N) − n)!
E[ϕX′′1 ,...,X′′n(N) |N ],

where the latter equality follows from the invariance by permutations of ϕx1,··· ,xn(µ)

and the fact that ϕx1,··· ,xn(µ) = 0 if ε(x1, . . . ,xn) = 0. ¤

5. Applications

5.1. Stochastic geometry

Stabilizing functionals are widely used in stochastic geometry. This class of func-

tionals was first introduced by Lee [20] and further developed by Penrose and Yukich

(see, for instance, [27] and [28]). Assumption (2) is closely related to assuming ϕ

stabilizing. The main difference is that in (2) we require that S is a stopping set. Thus,

stochastic geometry is a natural field of application of Theorems 1, 2 and 3. In the

next two paragraphs, we develop two examples of application in this field.

5.1.1. Cluster in subcritical continuum percolation. Let N =
∑

n≥1 δ(Xn,Zn) be an

IMHPP on Rd of intensity λ, with marks in [0, r], r > 0. Consider the Boolean model

Ξ =
⋃

n≥1

B(Xn, Zn).
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Continuum percolation deals with the existence of an infinite connected component

in Ξ. It is well-known that there exists a critical value of λ, say λc > 0, such that if

λ < λc, a.s. there are not infinite connected components in Ξ, and if λ > λc, a.s. there

is a unique infinite connected component in Ξ (see Meester and Roy [23] as a general

reference on continuum percolation).

Define by W (N) the connected component (or cluster) of Ξ containing the origin

(note that W (N) is possibly empty) and, with a little abuse of notation, by N|W (N)

the restriction of the random measure N to the cluster W (N) (this is indeed an abuse

of notation since usually throughout this paper µ|B denotes the set of points of µ on

B×M). If λ < λc, then W (N) is a.s. a compact set. We define ϕ(N) = 11(N|W (N) ∈ A),

for some measurable set A ⊆ N . It is of general interest to analyze the function

f(λ) = Eλ[ϕ(N)], λ ∈ (0, λc).

In this paragraph, we provide a continuous analog of the Russo’s formula for Poisson

point fields, see Zuyev [35]. More precisely, for µ ∈ N , define the sets of pivotal points

of A by

P+(µ) = {x ∈ (Rd × [0, r])\supp(µ) : ϕ(µ + δx) = 1, ϕ(µ) = 0}
∪ {x ∈ supp(µ) : ϕ(µ) = 1, ϕ(µ− δx) = 0}

and

P−(µ) = {x ∈ (Rd × [0, r])\supp(µ) : ϕ(µ + δx) = 0, ϕ(µ) = 1}
∪ {x ∈ supp(µ) : ϕ(µ) = 0, ϕ(µ− δx) = 1}.

It holds:

Theorem 4. The function f(λ) = Pλ(N|W (N) ∈ A) is analytic on the interval (0, λc),

and

f ′(λ) = Eλ[Λ(P+(N))− Λ(P−(N))] =
1
λ

Eλ[NP+(N) −NP−(N)] for 0 < λ < λc.

The proof of Theorem 4 is based on Theorems 1, 2. The main difficulty in applying these

theorems to f(λ) is that W is not a stopping set. This difficulty can be circumvented

as follows. The Minkowski addition is defined by

A⊕B = {a + b : a ∈ A, b ∈ B}, A, B ∈ K
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(see Matheron [22] for a complete treatment of the Minkowski operations). Next Lemma

6 provides a stopping set S which satisfies conditions (2) and (4).

Lemma 6. Define the random compact set S(N) = W (N)⊕Br. Then

(i) S is a stopping set such that W (N) (and therefore ϕ(N)) is FS-measurable.

(ii) For each λ > 0 there exists s = s(λ) > 0 such that Eλ[exp(s|BS(N)|)] < ∞.

Proof. We first prove that S is a stopping set. Note first that if Xk = (Xk, Zk) ∈
supp(N|W (N)) then either Xk is at distance at most Zk + Zn from at least one other

point Xn with Xn = (Xn, Zn) ∈ supp(N|W (N)) or Xk is at distance at most Zk

from the origin. Note that W (N) =
⊕

Xn∈supp(N|W (N))
(Xn + BZn), and therefore

by the definition of S(N) we have that S(N) =
(⊕

Xn∈supp(N|W (N))
(Xn + BZn)

)
⊕

Br. Letting ‖ · ‖ denote the Euclidean norm in Rd, we deduce that, for any K ∈ K,

{S(N) ⊆ K}c = {∃ y ∈ Kc, X1, · · · ,Xn ∈ supp(N) :

‖X1‖ ≤ Z1, ‖Xi+1 −Xi‖ ≤ Zi + Zi+1, 1 ≤ i ≤ n− 1, ‖Xn − y‖ ≤ Zn + r}.

Now, set in the above expression m = min{k ∈ {1, . . . , n + 1} : Xk ∈ Kc}, with the

convention Xn+1 = y. Since by assumption, Zi+1 ≤ r, ‖Xi+1−Xi‖ ≤ Zi +Zi+1 implies

‖Xi+1 −Xi‖ ≤ Zi + r, hence, the event {S(N) ⊆ K}c can be rewritten as:

{S(N) ⊆ K}c = {∃X1, · · · ,Xm ∈ supp(N) : X1, · · · , Xm ∈ K and

‖X1‖ ≤ Z1, ‖Xi −Xi+1‖ ≤ Zi + Zi+1, 1 ≤ i ≤ m− 1, (Xm + BZm+r) ∩Kc 6= ∅}.

It follows that {S(N) ⊆ K}c ∈ FK , and thus S is a stopping set. Now, by construction

N|W (N) is FS-measurable. We deduce that W (N) is also FS-measurable and (i) is

proved. It remains to prove (ii). Define rW (N) = inf{r ≥ 0 : W (N) ⊆ Br}, then

BS(N) = BrW (N)+r. Thus (ii) is a consequence of the exponential decrease of the

subcritical cluster, see Section 3.7 and Lemma 3.3 of Meester and Roy [23]. ¤

Proof of Theorem 4. Clearly, the functional ϕ satisfies condition (3). Moreover, by

Lemma 6 conditions (2) and (4) are satisfied with S(N) = W (N) ⊕ Br. Thus, by

Theorem 1 the function f(·) is analytic on (0, λc). Note that S is nondecreasing, thus
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using formula (8) of Theorem 2, it follows that

f ′(λ) = Eλ[|S(N)|(11(X ∈ P+(N))− 11(X ∈ P−(N)))]

= Eλ[|S(N)|Eλ[11(X ∈ P+(N))− 11(X ∈ P−(N)) |N ]]

= Eλ

[
|S(N)| 1

|S(N)|
∫

S(N)×[0,r]

(11(x ∈ P+(N))− 11(x ∈ P−(N)))Λ(dx)

]

= Eλ[Λ(P+(N))− Λ(P−(N))],

where X = (ξ, ζ) is defined in Theorem 2. In particular, the first equality above follows

since, given S(N), ξ is uniformly distributed on S(N), and therefore X /∈ supp(N)

a.s.. This proves the first equality of the claim. The second equality of the claim can

be proved similarly, using formula (9) of Theorem 2. ¤

5.1.2. Typical cell of Poisson-Voronoi tessellation Let A ⊂ Rd be a locally finite point

set, µA =
∑

a∈A δa, and ‖ ·‖ the Euclidean norm of Rd. The Voronoi’s cell with respect

to A with nucleus y ∈ A is by definition

C(y, µA) = {x ∈ Rd : ‖x− y‖ ≤ ‖x− a‖ ∀ a ∈ A}.

Let N =
∑

n≥1 δXn be a Poisson point process on Rd of intensity λ. The Poisson-

Voronoi cell with nucleus Xk is by definition the random convex set C(Xk, N) (see,

for instance, Stoyan, Kendall and Mecke [31]). Let Kd
0 be the set of convex bodies of

Rd containing the origin, equipped with the Hausdorff metric and the related Borel σ-

field. Moreover, let N0 be the point process obtained by N adding a point at the

origin. The typical Poisson-Voronoi cell is defined by C(0, N0). This cell is called

typical since by Slivnyak’s theorem (see, for instance, Stoyan, Kendall and Mecke

[31]), P 0
λ(C(0, N) ∈ A) = Pλ(C(0, N0) ∈ A), where P 0

λ is the Palm version of Pλ and

A is a Borel set of Kd
0.

Let φ be a measurable functional from Kd
0 to R. Define ϕ(N) = φ(C(0, N0)) and

f(λ) = Eλ[φ(C(0, N0))] = Eλ[ϕ(N)].

The Voronoi flower V (N) is the union of the closed balls that have the origin and d

points of N on their boundary, and no points of N inside. It is known that the centers

of the balls which form V (N) are the vertices of the typical Poisson-Voronoi cell. Then
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V is a stopping set and ϕ(N) = φ(C(0, N0)) is FV -measurable (see, for instance, Zuyev

[36]). It is also known that BV (N) satisfies (4) for all λ > 0, indeed by Lemma 1 and

Remark 5 in Foss and Zuyev [13] it follows that, for all λ > 0,

Pλ(|BV (N)| > 2−dt) < e−cdt for each t > 0,

for some positive constant cd depending only on the dimension d. Furthermore, it can

be easily realized that the mapping V is monotone nonincreasing. Hence our results

can be applied to f(λ) provided that Eλ[|φ(C(0, N0))|γ ] < ∞ for some γ = γ(λ) > 2.

Note that this latter condition holds if ϕ(N) = φ(C(0, N0)) = 11(C(0, N0) ∈ A),

for some measurable set A ⊂ Kd
0. In particular, in this case the following analog of

Theorem 4 holds. For each µ ∈ N such that 0 ∈ supp(µ), consider the sets of pivotal

points of the measurable set A ⊂ Kd
0:

P+(µ) = {x ∈ Rd\supp(µ) : C(0, µ + δx) ∈ A,C(0, µ) /∈ A}
∪ {x ∈ supp(µ) : C(0, µ) ∈ A,C(0, µ− δx) /∈ A}

and

P−(µ) = {x ∈ Rd\supp(µ) : C(0, µ + δx) /∈ A,C(0, µ) ∈ A}
∪ {x ∈ supp(µ) : C(0, µ) /∈ A,C(0, µ− δx) ∈ A}.

It holds:

Theorem 5. The function f(λ) = Pλ(C(0, N0) ∈ A) is analytic on (0,∞) and

f ′(λ) = Eλ[|P+(N)| − |P−(N)|] =
1
λ

Eλ[NP+(N) −NP−(N)], λ > 0.

The proof is similar to that one of Theorem 4 and therefore omitted.

5.2. Insurance

In this subsection we apply our results to risk processes described in terms of Poisson

shot noise and compound Poisson processes. The former have been introduced in

Klüppelberg and Mikosch [17, 18] to model delayed claims, the latter correspond to the

classical Cramér-Lundberg model (see, for instance, Asmussen [2]). The main results

of this subsection are Theorems 6 and 7. Under suitable light-tailed conditions on the
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claims, they provide, respectively, closed form formulas for the n-th order derivative

of the ruin probability of risk processes with delayed (and un-delayed) claims, and an

efficient Monte Carlo estimator for the first order derivative of the ruin probability of

the classical Cramér-Lundberg model. The estimator proposed in the Paragraph 5.2.2

is alternative to that one of Asmussen and Rubinstein [3] (see Remark 2).

Now we briefly recall the notion of asymptotically optimal estimator, which will be

considered in this subsection. Let z(u) be a positive function such that z(u) → 0, as

u →∞. To get an asymptotically efficient estimator of z(u) one looks for an unbiased

estimator r̂u of z(u) whose relative error is asymptotically bounded. In the following

we focus on a weaker concept of efficiency. We say that r̂u is asymptotically optimal

(as u →∞) if

lim inf
u→∞

log
√

E[r̂2
u]

log z(u)
≥ 1

(see Asmussen [2] and Asmussen and Rubinstein [3]).

All the random variables considered in this subsection are defined on a measur-

able space (Ω,F). Here we consider marked point processes on [0,∞) with marks

in [0,∞). We endow (Ω,F) with the family of probability measures {Pλ}λ>0 such

that, under Pλ, X1 < X2 < . . . are the points of a homogeneous Poisson process on

[0,∞) with intensity λ > 0, and {Zn}n≥1 are iid nonnegative random variables with

distribution Q, and independent of the Poisson process. We denote by N the IMHPP
∑

n≥1 δ(Xn,Zn), by Nt the number of points of N on [0, t] × [0,∞), by N|t the set of

points of supp(N) on [0, t]× [0,∞), and by Eλ the expectation with respect to Pλ.

5.2.1. Derivatives of the ruin probability of risk processes with delayed claims. Consider

the following risk model. Let u−Y (t) be the surplus of the insurance portfolio described

by the shot noise process with drift:

Y (t) =
∑

n≥1

H(t−Xn, Zn)11(0,t](Xn)− ct, t ≥ 0.

Here u > 0 is the initial capital, c > 0 is the premium density (which is assumed to be

constant), and H : R × [0,∞) → [0,∞) is a nondecreasing continuous function such

that H(t, z) = 0 for t ≤ 0. Throughout this paragraph we assume H(∞, z) = z and

Pλ(Z1 > 0) > 0. Since the law of Z1 under Pλ does not depend on λ, from now on, for

a measurable function g, we set Eλ[g(Z1)] = E[g(Z1)].
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Note that the function H models the delay in claim settlement in the sense that the

insurance company honors a claim at time Xn paying the quantity H(t −Xn, Zn) at

time t. The associated ruin probability is defined by the quantity

fu(λ) = Pλ (Tu(N) < ∞) , u ≥ 0,

where

Tu(N) = inf{t ≥ 0 : Y (t) > u}, Tu(N) = ∞ if {...} = ∅

is the ruin time. Brémaud [8] proved that under the following assumptions:

κ(θ) = E[eθZ1 ] < ∞ for all θ in a neighborhood of 0, say (0, η) with η ≤ ∞ (42)

and

c > λE[Z1], (43)

it holds

fu(λ) ≤ e−wu for all u ≥ 0 (44)

and

lim
u→∞

1
u

log fu(λ) = −w, (45)

where w (called Lundberg parameter) is the unique positive zero of the function

Λ(θ) = λ(κ(θ)− 1)− cθ.

(note that this function Λ should not be confused with the intensity measure Λ con-

sidered in the previous sections. In the remaining part of the paper, the symbol Λ will

not be used anymore to denote the intensity measure). Thus, under (42) and (43),

the event {Tu(N) < ∞} is rare as u → ∞ and this yields problems if we want to

estimate fu(λ) by an efficient Monte Carlo simulation (we refer the reader to Buclew

[9] for an introduction to rare event simulation). Such difficulties can be overcome using

importance sampling. Define the stochastic process

C(t) =
∑

n≥1

Zn11(0,t](Xn),

and consider the family of laws {P θ
λ}θ:κ(θ)<∞ defined as follows: the probability mea-

sure P θ
λ is absolutely continuous with respect to the original law Pλ on the σ-field
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F[0,t], for each t ≥ 0, and the corresponding density is

`
P θ

λ ,Pλ

t =
eθC(t)

Eλ[eθC(t)]
= exp {θC(t)− λt(κ(θ)− 1)} . (46)

We point out (see, for instance, Asmussen [2]) that, under P θ
λ , the process {Xn}n≥1

is a homogeneous Poisson process with intensity λκ(θ), independent of the sequence

{Zn}n≥1 of iid random variables, whose common law Qθ is absolutely continuous with

respect to their common law Q under Pλ, with density dQθ

dQ (z) = eθz

κ(θ) .

Throughout this subsection we denote by Eθ
λ the expectation under P θ

λ . Further-

more, since the law of Z1 under P θ
λ does not depend on λ, for a measurable function

g, we set Eθ
λ[g(Z1)] = Eθ[g(Z1)].

The following result can be found in [33].

Proposition 5. Assume (42) and (43), then Pw
λ (Tu(N) < ∞) = 1 for all u > 0 and,

under Pw
λ ,

r̂u(N) = `
Pλ,P w

λ

Tu(N)

is an asymptotically optimal estimator of fu(λ).

Let xn = (xn, zn) ∈ (0,∞) × (0,∞), n ≥ 1. For each locally finite counting measure

µ =
∑

n≥1 δxn , define the functionals

ϕθ(µ, λ) = exp



−θ

∑

n≥1

zn11(0,Tu(µ)](xn) + λ(κ(θ)− 1)Tu(µ)



 , 0 ≤ θ < w (47)

and

ϕw(µ) = exp



−w


∑

n≥1

zn11(0,Tu(µ)](xn)− cTu(µ)






 . (48)

Moreover, we consider the functionals ϕw,x1,...,xn(µ) and ϕx1,...,xn
w (µ), which are de-

fined, respectively, by (10) and (11) with ϕw in place of ϕ.

The following theorem provides closed form expressions for the n-th order derivatives

of the ruin probability. As usual, we use the standard convention that the sum over an

empty set is zero and k!/(k − n)! = 0 for n > k.

Theorem 6. Under assumptions of Proposition 5, we have that for a fixed u > 0, the
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function fu(·) is analytic in a neighborhood of λ, and for all n ≥ 1:

f (n)
u (λ)− (κ(w)− 1)nEw

λ [(Tu(N))nϕw(N)] = Ew
λ [(Tu(N))nϕw,X1,...,Xn(N)]

= Ew
λ

[(
NTu(N)

λ

)n

ϕ
X′1,...,X′n
w (N)

]

= Ew
λ

[
NTu(N)!

(NTu(N) − n)!λn
ϕ

X′′1 ,,...,X′′n
w (N)

]
,

where, for 1 ≤ i ≤ n, Xi = (ξi, ζi), X′
i = (ξ′i, ζ

′
i), X′′

i = (ξ′′i , ζ ′′i ) are random variables

on (0,∞)× (0,∞). Given Tu(N), (ξi)1≤i≤n are independent and uniformly distributed

on [0, Tu(N)], and independent of N ; (ζi)1≤i≤n are independent, independent of N

and (ξi)1≤i≤n, and with law Qw. Given the collection of points N|Tu(N), (X′
i)1≤i≤n are

independent and uniformly distributed on the collection; {X′′
1 , . . . ,X′′

n} is uniformly

distributed on the set of subsets of n distinct points of N|Tu(N).

To prove Theorem 6 we need the following Lemmas 7 and 8. Here we consider the

notion of large deviation principle for which we refer the reader to the book by Dembo

and Zeitouni [12].

Lemma 7. Assume (42), if moreover the function θ 7→ κ(θ), θ ∈ (0, η), is steep,

namely limn→∞ κ′(θn) = ∞ whenever {θn} is a sequence converging to η, we have

that the stochastic process {Y (t)/t}t>0 satisfies a large deviation principle with rate

function Λ∗(x) = supθ∈R(θx− Λ(θ)).

The proof of Lemma 7 can be found in Macci, Stabile and Torrisi [21] (see Proposition

3.1 therein).

Lemma 8. Under assumptions of Proposition 5, we have that for a fixed u > 0, and

θ ∈ (0, w] such that λκ′(θ)−c > 0, there exists s = s(λ) > 0 such that Eθ
λ[exp(sTu(N))] <

∞.

Proof of Lemma 8. In this proof we write Tu in place of Tu(N). Since

κθ(α) = Eθ[eαZ1 ] =
κ(α + θ)

κ(θ)
,

by the assumptions it follows that: κθ(α) < ∞ for α ∈ (0, η − θ) and the function

α 7→ κθ(α) is steep. Therefore, by Lemma 7 the stochastic process {Y (t)/t}t>0 satisfies

a large deviation principle with respect to P θ
λ with rate function Λ∗

θ
(x) = supθ∈R(θx−
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Λθ(θ)), where Λθ(θ) = λκ(θ)(κθ(θ)− 1)− cθ. Since λκ′(θ)− c > 0 by assumption, we

can choose β ∈ (0, κ′(θ)) such that γ = λβ − c > 0. By the large deviation principle

of {Y (t)/t}t>0 with respect to P θ
λ , and the regularity properties of the rate function

Λ∗
θ
(·) we have

lim
t→∞

1
t

log P θ
λ (Y (t)/t < γ) = −Λ∗

θ
(γ). (49)

Moreover, for any u > 0, we have that there exists t1 = t1(u, γ) such that

P θ
λ (Tu > t) ≤ P θ

λ (Y (t) < u) ≤ P θ
λ (Y (t)/t < γ), for all t ≥ t1. (50)

Therefore, by (49) and (50) it follows that, for any ε, u > 0 there exists t = t(ε, u, γ)

such that

P θ
λ (Tu > t) < e−(Λ∗

θ
(γ)−ε)t, for all t ≥ t. (51)

Now, take 0 < s < Λ∗
θ
(γ)− ε. The conclusion follows noticing that by (51) we have:

Eθ
λ[exp(sTu)] = 1 + s

∫ ∞

0

estP θ
λ (Tu > t)dt

≤ est + s

∫ ∞

t

e−[(Λ∗
θ
(γ)−ε)−s]tdt < ∞.

¤
Proof of Theorem 6. We start noticing that by the properties of the function θ 7→
Λ(θ), θ ∈ (0, η), there exists a strictly increasing sequence {θk} converging to w such

that θk ∈ (0, w) and λκ′(θk) − c > 0. By the implicit function theorem the function

λ 7→ w(λ) is continuous. Therefore, for each k there exists a neighborhood of λ, say

Ik = (λ−εk, λ+εk), such that for all λ′ ∈ Ik we have θk < w(λ′) and λ′κ′(θk)−c > 0. We

note that since θk ∈ (0, w) is such that λκ′(θk)− c > 0 it holds P θk

λ (Tu(N) < ∞) = 1

(see Lemma 3.2 in [33] for details). Therefore,

fu(λ) = Eλ[11(Tu(N) < ∞)] = Eθk

λ [ϕθk
(N, λ)].

Note that [0, Tu] is a stopping set. Furthermore, the functional ϕθk
(N, λ) is F[0,Tu]-

measurable and absolutely monotonic in λ (see Remark 1 for the definition of absolutely

monotonic function). Note also that Λ(θ) ≤ 0 for each θ ∈ [0, w]. Therefore, by the

definition of Tu(N) and the assumption H(t, z) ↗ z as t ↗∞, we have that, for each

u,

ϕθ(N, λ) ≤ e−θu and ϕw(N) ≤ e−wu.
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In particular, this implies that the functional ϕθk
(N, λ) is bounded. Therefore, by

Lemma 8 and Remark 1 it follows that fu(·) is analytic on Ik. Consider the functions:

Fk(x, y) = Eθk
x [ϕθk

(N, y)], (x, y) ∈ Ik × Ik.

Using obvious notation, we shall show later that:

∂n
x Fk(x, y) = Eθk

x [(Tu(N))nϕθk,X1,...,Xn
(N, y)], n ≥ 1 (52)

and

∂n
y Fk(x, y) = (κ(θk)− 1)nEθk

x [(Tu(N))nϕθk
(N, y)], n ≥ 1. (53)

Therefore,

f (n)
u (λ)−(κ(θk)−1)nEθk

λ [(Tu(N))nϕθk
(N, λ)] = Eθk

λ [(Tu(N))nϕθk,X1,...,Xn(N,λ)], n ≥ 1.

We now show that

lim
k→∞

Eθk

λ [(Tu(N))nϕθk,X1,...,Xn(N,λ)] = Ew
λ [(Tu(N))nϕw,X1,...,Xn(N)]. (54)

Using the exponential tilting we have that

|Eθk

λ [(Tu(N))nϕθk,X1,...,Xn(N, λ)]− Ew
λ [(Tu(N))nϕw,X1,...,Xn(N)]| ≤

Ew
λ [(Tu(N))n| exp{−(w − θk)(C(Tu(N))− cTu(N))− Λ(θk)Tu(N)}ϕθk,X1,...,Xn(N, λ)

− ϕw,X1,...,Xn
(N)|]. (55)

Note that the argument of the mean in (55) is less than or equal to (2Tu(N))n(exp{−Λ(θk)Tu(N)}+
1). By Lemma 8 there exists s = s(λ) > 0 such that Ew

λ [esTu(N)] < ∞. Fix ε ∈ (0, s)

and choose k̄ = k̄(ε) such that for all k > k̄ it holds 0 < −Λ(θk) < ε < s (a such k̄

exists since limk→∞ Λ(θk) = Λ(w) = 0). Then, for all k > k̄, the argument of the mean

in (55) is less than or equal to

(2Tu(N))n(exp{εTu(N)}+ 1),

which is integrable under Pw
λ since Ew

λ [esTu(N)] < ∞. Thus (54) follows by the domi-

nated convergence theorem. The limit

lim
k→∞

Eθk

λ [(Tu(N))nϕθk
(N, λ)] = Ew

λ [(Tu(N))nϕw(N)]
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can be proved similarly. This shows the first equality in the statement. The other

equalities can be proved as in Proposition 4 and Theorem 3.

It remains to show that Fk(·, ·) has partial derivatives (52) and (53). Equality (52)

follows by Proposition 2. Indeed, by Lemma 8, for each x ∈ Ik, there exists s = s(x) > 0

such that Eθk
x [esTu(N)] < ∞, and the mapping Su := [0, Tu] is nonincreasing. We

now show (53) with n = 1. The general case follows along similar lines, reasoning by

induction. If we justify the interchange between the sign of limit and the sign of mean

in the expression:

lim
h→0+

Eθk
x [ϕθk

(N, y + h)− ϕθk
(N, y)]

h
,

then the right-hand derivative equals the right-hand side of (53). In fact we can pass

the limit into the sign of expectation in that a straightforward computation gives:
∣∣∣ϕθk

(N, y + h)− ϕθk
(N, y)

h

∣∣∣ ≤ (κ(θk)− 1)Tu(N) exp{h(κ(θk)− 1)Tu(N)}.

Here again by Lemma 8 the right-hand side of the above inequality is integrable under

P θk
x , and therefore we can apply the dominated convergence theorem. Similarly, one

can show that the left-hand derivative equals the right-hand side of (53). This concludes

the proof. ¤

5.2.2. Classical risk processes: an efficient Monte Carlo algorithm for the first order

derivative of the ruin probability .

The classical risk model is defined by the surplus u−Y (t) of the insurance portfolio

described by the compound process with drift:

Y (t) =
∑

n≥1

Zn11(0,t](Xn)− ct.

The interpretation of the quantities in the above formulas is exactly as in the previous

paragraph. Moreover, we consider the same statistical assumptions and the same

notation (clearly, the ruin probability fu(λ) and the ruin time Tu(N) are now defined

with respect to the classical risk process). For the Cramér-Lundberg model it is well-

known that assuming (42) and (43) it holds

lim
u→∞

ewu

u
f ′u(λ) =

c2w(c− λE[Z1])
λ(λκ′(w)− c)2

, (56)

where w is the unique positive zero of the function Λ(·) (see Proposition 9.4 in Asmussen

[2]). Moreover, note that in the case of classical risk processes, the corresponding
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Theorem 6 can be proved along similar lines, and provides the following unbiased

estimator of f ′u(λ) under Pw
λ :

ŝu(N) = (κ(w)− 1)Tu(N)ϕw(N) + Tu(N)(ϕw(N + δX)− ϕw(N)).

Here, X = (ξ, ζ) is a random variable on (0,∞)× (0,∞); given Tu(N), ξ is uniformly

distributed on [0, Tu(N)], and independent of N ; ζ is independent of N and ξ, and has

law Qw.

The following theorem holds.

Theorem 7. Assume (42) and (43). Then ŝu(N) is an asymptotically optimal estima-

tor of f ′u(λ), as u →∞, under the law Pw
λ .

Proof. We only need to prove that

lim inf
u→∞

log
√

Ew
λ [(ŝu(N))2]

log f ′u(λ)
≥ 1. (57)

For any (locally finite) counting measure µ on (0,∞)× (0,∞) and u > 0, we have that

ϕw(µ) ≤ e−wu, thus

|ŝu(N)| ≤ (κ(w) + 1)e−wuTu(N),

and therefore

Ew
λ [(ŝu(N))2] ≤ (κ(w) + 1)2e−2wuEw

λ [Tu(N)2]. (58)

Denote by {X̃i} the inter-arrivals of the Poisson process {Xi}. Under Pw
λ ,

∑n
i=1(Zi −

cX̃i) is a random walk with positive drift, indeed

Ew
λ [Z1 − cX̃1] = (λκ′(w)− c)/λκ(w) > 0.

Furthermore, Tu(N) is the hitting time of this random walk. Therefore, by the results

in Gut [15] it follows that

Ew
λ [Tu(N)2] = O(u2), as u →∞. (59)

Finally, (57) follows by (58), (59) and relation (56). ¤

While it is tempting to conjecture that a similar optimality result holds for risk

processes with delay in claim settlement, we do not have a proof of this claim.
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Remark 2. Note that, under assumptions of Theorem 7, Asmussen and Rubinstein

[3] (see also Asmussen [2]) proved that

σ̂u(N) =
(
NTu(N)/λ− Tu(N)

)
e−w(C(Tu(N))−cTu(N))

is asymptotically optimal for f ′u(λ), under Pw
λ . The estimator ŝu(N) is alternative to

σ̂u(N).
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