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1.2 Erdős-Rényi random graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Uniform graph with given degree sequence . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.2 Degree distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 The configuration model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Chung-Lu graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.6 Dynamic graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Subgraph counts and Poisson approximation 19

2.1 Average subgraph counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
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N set of positive integers 1, 2, . . ..
Z+ set of non-negative integers 0, 1, 2, . . ..
R+ set of non-negative real numbers [0,∞).

P(X ) set of probability measures on X .
G(V ) set of locally finite graphs on the vertex set V .

Ĝ(V ) set of locally finite multigraphs on the vertex set V .
G∗ set of equivalence classes of locally finite connected rooted graphs.

Ĝ∗ set of equivalence classes of locally finite connected rooted multigraphs.
|S| cardinal of a finite set S.

µn  µ the sequence (µn)n tends weakly to µ for continuous bounded functions.

X
d∼ µ the random variable X follows the law µ.

L(X) the law of random variable X (i.e. X
d∼ L(X)).

Xn
d→ X the sequence of random variables (Xn)n converges in distribution to X (i.e. L(Xn) L(X)).

dG(u, v) the graph distance between u and v, with u, v ∈ VG
BG(u, t) the set of vertices of VG at graph distance at most t from u ∈ VG.



Chapter 1

Models of random graphs

1.1 Some graph terminology

We start with elementary definitions that will be used throughout these notes. Let V be a
countable set, and let E be a set of distinct pairs of elements in V . We call an element in V a
vertex and an element in the image of E an edge. The sets V and E define a graph G = (V,E).
In graph theory, this would rather be called a labeled simple graph but we will stick here to
’graph’. If E is a multi-set of non-necessarily distinct pairs of elements of V , the pair (V,E) is
called a multi-graph.

In a multi-graph a loop is an edge e ∈ E such that for some vertex v ∈ V , e = {v, v}. An
edge e ∈ E is said to be multiple if e has cardinality larger than 1 in E. Note that a graph is a
multigraph with no loop nor multiple edge.

A network or weighted graph G = (V,E, ω) is a graph (V,E) together with a complete
separable metric space Ω called the mark space and a map ω from V ∪ E to Ω. Images in Ω
are called marks. Note that a multigraph is a network with marks on Ω = N = {1, 2, · · · }. For
e = {u, v} ∈ E, ω(e) is the number of edges between u and v while ω(v) counts the number of
loops on v.

The degree of a vertex v ∈ V , deg(v) or deg(v;G) is the number of edges incident to v
with loops counting twice. A (multi)graph is regular if all vertices have the same degree. if A
(multi)graph is locally finite if the degree of each vertex is finite. A (multi)graph is finite if the
sets V and E are finite.

We will denote by G(V ) and Ĝ(V ) the set of locally finite graphs and multigraphs on the
vertex set V . If the vertex set is [n] = {1, · · · , n} for some integer n, then we will simply write
G(n) and Ĝ(n) in place of G([n]) and Ĝ([n]).

For W ⊂ V , we denote by G∩W the restriction of G to vertex set W : an edge e = {u, v} ∈ E
is in G ∩W if u and v are in W . Similarly, G\W is G ∩ (V \W ). We say that G′ = (V ′, E′) is a
subgraph of G if V ′ ⊂ V and E′ ⊂ E.

9



10 CHAPTER 1. MODELS OF RANDOM GRAPHS

The symmetric group SV of V acts naturally on the network: the image of an edge being
the pair of the image of its adjacent vertices. The (vertex)-automorphism group of a network G,
Aut(G), is the subgroup of SV that leaves the graph invariant. More generally, a bijective map
from V to V ′ defines a network isomorphism. Then if G = (V,E) and G′ = (V ′, E′) are two
networks with common mark space Ω, we say that G′ and G are isomorphic if G′ is the image of
G by a network isomorphism. Network isomorphisms define an equivalence relation denoted by
”'”. In graph theory, an equivalence class of simple graphs is called an unlabeled graph. Note
that if G ' G′ then |Aut(G)| = |Aut(G′)|.

For a multi-graphs, there is also a notion of edge-automorphism group. Let G = (V,E) with
a finite number m of edges, loops counting for two edges. Index its edges in an arbitrary manner
from 1 to m, loops being indexed as a set of two indices. We then obtain a network Ḡ with
marks on edge {u, v} equal to the set of indices of the edges {u, v}, and marks on vertex u equal
to the set of pairs of indices of loops on u. The permutation group Sm acts on the network Ḡ
by assigning on edge {u, v} the image by the permutation of the marks. We may then define
the edge-automorphism group of H as the group of permutations on the indices that keeps H̄
invariant. We denote by b the cardinal of this group. If G is a graph then b = 1. More generally,
if ω(v) is the number of loops attached to v and for and ω(e) is the multiplicity of e, we have,

b =
∏
v∈V

(2ω(v)ω(v)!)
∏
e∈E

(ω(e)!).

Let ` ≥ 1 be an integer. A path π of length ` from u to v in G is a sequence (u0, · · · , u`)
of vertices in V such that u0 = u, u` = v and for i = 1 · · · , `, {ui−1, ui} ∈ E. A (multi)graph
is connected if for any u, v in V there exists a path from u to v. A cycle (u0, · · · , u`) is a path
from u to u such that for 0 ≤ i 6= j ≤ `− 1, ui 6= uj . A tree is a connected graph without cycle.
A forest is a graph without cycle.

We define the excess as
exc(G) = |E| − |V |.

Lemma 1.1 (Excess and trees) If G is a connected (multi)graph, then

exc(G) ≥ −1.

Moreover, G is a tree if and only if exc(G) = −1.

Proof. Let u ∈ V be a distinguished vertex and consider for all v ∈ V \{u} a shortest path
{u0(v), u1(v), · · · , ukv(v)} from v to u : u0(v) = v, ukv(v) = u. Define the mapping ϕ from
V \{u} to E by setting σ(v) = {v, u1(v)}. Since the paths are the shortest possible, σ is an
injection, and it follows that |V \{u}| ≤ |E|. In the case of equality |V \{u}| = |E|, σ is a
bijection and it is easy to check that G is a tree. 2

Exercise 1.2 Let k ≥ 3 be an integer and G = ([k], {{1, 2}, · · · {k − 1, k}, {k, 1}}) be a cycle of
length k. Show that |Aut(G)| = 2k.
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Exercise 1.3 Let G′, G be two finite graphs. Assume that G′ ⊂ G and G connected. Show that
exc(G′) ≤ exc(G). (Hint : adapt the proof of lemma 1.1 by considering shortest paths from
v ∈ VG\VG′ to VG′).

1.2 Erdős-Rényi random graph

Let p be a positive real and n an positive integer, the Erdős-Rényi random graph G(n, p) is
a probability distribution on G(n) such that each of the n(n − 1)/2 possible edge is present
independently and with probability min(p, 1). In other words, if G is a random graph with
distribution G(n, p), 0 ≤ p ≤ 1, and H is a graph with n vertices and m edges then

P({H}) = P(G = H) = pm(1− p)
n(n−1)

2
−m. (1.1)

In particular, G(n, 1/2) is the uniform measure on G(n). It is important to point out that random
graph G is homogeneous : for any permutation σin§n, σ(G) and G have the same distribution
(in other words G is exchangeable).

The distribution of deg(1;G) is a Binomial distribution with parameter n − 1 and p. In
particular, the average degree of vertex 1 is

Edeg(1;G) = (n− 1)p.

In these notes, we will mainly study the asymptotic properties of random graphs with uniformly
bounded average degrees. We will thus be mainly interested by the probability distribution
G(n, λ/n) with λ ∈ R+. In this case, deg(1;G) is a Binomial distribution with parameter n− 1
and λ/n. It follows for all integer k

P(deg(1;G) = k) =

(
n

k

)(
λ

n

)k (
1− λ

n

)n−k

As n goes to infinity, this converges to e−λλk/k!. In other words, we retrieve the well known fact
that the Binomial distribution with parameter n and λ/n converges to a Poisson distribution
with parameter λ.

The distribution G(n, p) was first introduced by Gilbert (1959). It owes its name to an
independent celebrated paper of Erdős and Rényi (1959) who had defined the random graph on
n vertices and m uniformly distributed edges. The books Bollobás (2001), Janson,  Luczak, and
Rucinski (2000) cover a good part of the known properties of this random graph. For a more
probabilistic treatment, we refer to Durrett (2007) and van der Hofstad (2012).
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1.3 Uniform graph with given degree sequence

1.3.1 Definition

Let d = (d1, · · · , dn) ∈ Zn+ be a sequence of non-negative integers. We say that d is graphic if
G(d), the set of graphs G on [n] such that for all i ∈ [n], deg(i;G) = di, is not empty. If d is
graphic, we may then define G(d) as the uniform probability distribution on G(d).

It is not completely obvious how to characterize graphic sequences. This question has been
settled by Erdős and Gallai (1960). Here, we may just notice that if d is graphic then

∑n
i=1 di

is even (since it is equal to twice the sum of degrees).

An important case is d = (d, · · · , d) for some d ≥ 2. In this case, G(d) is the set of d-regular
graphs on n vertices. If d is graphic, the probability distribution G(d) will be usually denoted
by G(n, d). This probability is called the uniform d-regular graph on n vertices. Uniform regular
graphs are especially interesting structures, for a specific review, see Wormald (1999).

1.3.2 Degree distribution

If G is a graph with degree sequence d = (d1, · · · , dn), the degree distribution of G is defined as
the probability measure on Z+

Pd =
1

n

n∑
i=1

δdi ,

where δ is the Dirac distribution. Equivalently, Pd ∈ P(Z+) is defined for all k ∈ Z+ = {0, 1, · · · }
by

Pd({k}) =
1

n

n∑
i=1

1(di = k).

Note that the measure Pd contains less information than d, the labels of the degrees have been
lost.

In these notes, we will be mainly interested by large graph asymptotics. Let P ∈ P(Z+) and
p ∈ R+. We will often consider that a sequence dn = (d1(n), · · · , dn(n)), n ≥ 1 satisfies some
the following hypothesis:

(H0) Pdn converges weakly to P with P ({0}) < 1, i.e. for any k ∈ Z+,

lim
n→∞

Pdn({k}) = P ({k}).

(Hp) H0 holds and, if D(n) and D have law Pdn and P ,

lim
n→∞

ED(n)p = EDp <∞,
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equivalently,

lim
n→∞

1

n

n∑
i=1

di(n)p =
∑
k≥0

kpP ({k}).

The probability distribution P will be called the asymptotic distribution of dn. In the sequel,
we will often use the following lemma.

Lemma 1.4 (Convergence of degree sequence) Let k ∈ N and assume that (H0) holds.
Let (D1(n), · · · , Dk(n)) be a uniformly sampled k-tuple without replacement on dn = (d1(n), · · · , dn(n)).
Then, we have the convergence in distribution,

(D1(n), · · ·Dk(n))
d→ (D1, · · · , Dk),

where (D1, · · · , Dk) are i.i.d. with law P , i.e. for any subset A ⊂ Zk+,

lim
n→∞

P ((D1(n), · · ·Dk(n)) ∈ A) = P ((D1, · · · , Dk) ∈ A) .

Assume further that (Hp) holds for some p ∈ N, then, for any real 0 ≤ p` ≤ p, 1 ≤ ` ≤ k, we
have

lim
n→∞

E
k∏
`=1

D`(n)p` =

k∏
`=1

EDp` .

Proof. The first statement can be proved with a simple coupling argument. Let (i1, · · · , ik)
be i.i.d. variables uniformly distributed on [n] and σ be an independent uniformly sampled
injection from [k] to [n]. Then (di1(n), · · · , dik(n)) are i.i.d. variables with law Pdn and
(dσ(1)(n), · · · , dσ(k)(n)) has the same law than (D1(n), · · · , Dk(n)). Moreover, conditioned on
the event E that (i1, · · · , ik) are all distinct, (i1, · · · , ik) has the same law than (σ(1), · · · , σ(k)).
This event E has probability equal to

(n)k
nk

,

(n)k = n(n− 1) · · · (n− k+ 1). The above probability goes to 1 as n goes to infinity. We deduce
for any event A that

|P ((D1(n), · · · , Dk(n)) ∈ A)− P ((di1(n), · · · , dik(n)) ∈ A)|
≤
∣∣P ((dσ(1)(n), · · · , dσ(k)(n)) ∈ A ∩ E

)
− P ((di1(n), · · · , Dik(n)) ∈ A ∩ E)

∣∣+ P(Ec)

= P(Ec)

Now, (H0) implies that P((di1(n), · · · , dik(n)) ∈ A) converges to P((D1, · · · , Dk) ∈ A). We have
proved the first statement.
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The second statement requires a little more care. With the above notation, we have

E
k∏
`=1

di`(n)p` =
1

nk

∑
τ :[k]→[n]

k∏
`=1

dτ(`)(n)p`

=
(n)k
nk

E
k∏
`=1

D`(n)p` +
1

nk

∑
∗

k∏
`=1

dτ(`)(n)p` ,

where the last sum is over all maps τ : [k]→ [n] which are not injective. We set

M(n) = max(d1(n), · · · , dn(n)).

Since the image of such map τ has cardinal at most k − 1, it follows that

1

nk

∑
∗

k∏
`=1

dτ(`)(n)p` ≤ M(n)p

n

1

nk−1

∑
1≤i1,··· ,ik−1≤n

k−1∏
`=1

di`(n)p

=
M(n)p

n

(
1

n

n∑
i=1

di(n)p

)k−1

=
M(n)p

n
(ED(n)p)k−1 .

Now, from lemma 1.5, we have
M(n)p = o(n).

It remains to use assumption (Hp) to conclude the proof. 2

Lemma 1.5 (Bound of max degree) Assume that (Hp) holds for some p ∈ N, then,

lim
n→∞

n−1/p max(d1(n), · · · , dn(n)) = 0.

Proof. Define M(n) = max(d1(n), · · · , dn(n)). From (H0), we have for any t > 0,

lim
n→∞

E(D(n)1{D(n)≤t})
p = E(D1{D≤t})

p.

Now, from (Hp), limt→∞ E(D1{D≤t})
p. = EDp. It yields to

lim
t→∞

lim
n→∞

E(D(n)1{D(n)>t})
p = 0.

In particular, for any ε > 0, there exists t, such that for all n large enough,

E(D(n)1{D(n)>t})
p ≤ εp.

However, notice that

E(D(n)1{D(n)>t})
p ≥

M(n)p1{M(n)>t}

n
.

Hence, either M(n) ≤ t or M(n) ≤ n1/pε. Letting n tending to infinity and then ε to 0 concludes
the proof. 2
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1.4 The configuration model

The configuration model was originally introduced in Bollobás (1980) in the context of regular
graphs. More recently, it has drawn a renewed attention after the work Molloy and Reed (1995).
For its relevance for real life networks see Chung and Lu (2006). As above, let d = (d1, · · · , dn)
be a sequence of integers. If

∑n
i=1 di is even then there exists multigraphs with degree sequence

d. It is much simpler to build a probability distribution on Ĝ(d), the set of multigraphs on [n]
such that for all i ∈ [n], deg(i;G) = di.

It is done explicitly as follows. Let ∆ be a finite set with even cardinal. A matching of a
finite set ∆ is an involution of ∆ (i.e. a permutation that is its own inverse) with no fixed point
(i.e. a derangement). Let M(∆) be the set of matchings of the set ∆. If ∆ is even, the number
of matchings is given by

|M(∆)| = (|∆| − 1)(|∆| − 3) · · · 1 = (|∆| − 1)!!.

Now, for a sequence of integers d = (d1, · · · , dn) we define ∆ = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ di}.
Let m ∈M(∆), we define the multigraph G(m) on [n] with edge set

E = {{i, i′} : m(i, j) = (i′, j′), (i, j) ∈ ∆}.

The set ∆ is thought as the set of half-edges which are matched to form an edge, see figure 3.1.
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Figure 1.1: A matching and its corresponding multigraph.

If
∑n

i=1 di is even, then for all i ∈ [n], deg(i;G(m)) = di. Let σ be a random matching of ∆
drawn uniformly among all matchings. Then, we may define the random multigraph G = G(σ)
on [n]. We denote by Ĝ(d) the corresponding probability distribution on Ĝ(d), it is called the
configuration model. By construction, if A is a subset of Ĝ(n), we have

P(G ∈ A) =
1

|M(∆)|
∑

m∈M(∆)

1(G(m) ∈ A). (1.2)

It is possible to compute explicitly the marginal distribution of Ĝ(d). For a graph
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Lemma 1.6 (Marginal probability of configuration model) Let H ∈ Ĝ(d) with b ele-

ments in its edge-automorphism group. Then, if G
d∼ Ĝ(d),

P(G = H) =

∏n
i=1(di!)

b (
∑n

i=1 di)!!
.

Lemma 1.6 implies that Ĝ(d) is not the uniform probability distribution on G(d). Note
however that if H ∈ G(d), then H is a graph and nj = 0 for j ≥ 2. In particular, the above
probability is constant on G(d). Hence lemma 1.6 has a beautiful consequence.

Corollary 1.7 (Configuration model restricted to graphs) If d is graphic, then the con-
figuration model Ĝ(d) conditioned on {G ∈ G(n)}, is G(d), the uniform probability distribution
on G(d).

Proof of lemma 1.6. The map m 7→ G(m) from M(∆) to Ĝ(d) is surjective (i.e. each
multigraph in Ĝ(d) can be obtained by some matching). In view of equation (1.2), we should
prove that ∑

m∈M(∆)

1(G(m) ∈ H) = |G−1({H})| = b−1
n∏
i=1

(di!). (1.3)

We fix a matching m such that G(m) = H. If m′ ∈ M(∆) satisfies G(m) = G(m′) then there
exists a family of permutations α = (αi)i∈[n] such that αi ∈ Sdi and for all (i, j) ∈ ∆,

m′(i, αi(j)) = (i′, αi′(j
′)),

where m(i, j) = (i′, j′). Conversely, for any sequence of permutations (αi)i∈[n] such that αi ∈ Sdi ,
the above identity defines a matching m′ = mα such that G(mα) = G(m).

Assume first than H ∈ G(d) is a graph. If the permutations (αi)i∈[n] are not all the identity,
we have m 6= mα. Equivalently, the map α→ mα is a bijection from Sd1 ×· · ·Sdn to G−1({H}).
We deduce that any H ∈ G(d) is obtained by

∏n
i=1(di!) different matchings of ∆.

In the general case, if H ∈ Ĝ(d), each element m′ ∈ G−1({H}) can be obtained from b
elements of Sd1×· · ·Sdn . Indeed, assume first that H has a multiple edge {i, i′} with multiplicity
k: m(i, j`) = (i′, j′`), for 1 ≤ ` ≤ k. Then, if σ is any permutation on {j1, · · · , jk}, composing αi
by σ to get αi ◦σ leaves the matching unchanged. Similarly, assume that H has k loops at i and
m(i, j1) = (i, j2), · · · ,m(i, j2k−1) = (i, j2k) with j` all distinct. Then, if σ is any permutation on
{j1, · · · , jk} and if we compose the permutation αi by a product of transpositions of (j2`−1 j2`)
of the form: αi ◦ (j2σ(1) j2σ(1)−1) ◦ · · · ◦ (j2σ(k) j2σ(k)−1), we leave the matching unchanged.

In summary, there are
∏n
i=1(di!)/b matchings such that G(m) = H. This proves (1.3). 2

We will see in the next chapters that the configuration model Ĝ(d) is a convenient probabilis-
tic tool to analyze G(d). As already pointed, we will be mainly interested by degree sequence
dn = (d1(n), · · · , dn(n)) of n integers with even sum which satisfies property (H0).
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1.5 Chung-Lu graph

Let us mention an inhomogeneous version of the Erdős-Rényi graph, namely the Chung-Lu
graph, see Chung and Lu (2006). Its level of difficulty ranges between the Erdős-Rényi graph
and the configuration model. In these notes it will mostly be used as a source of exercises. Let
λ = (λi)1≤i≤n be collection of non-negative real numbers. For integer n ≥ 1, let

‖λ‖1 =

n∑
i=1

λi.

We assume that ‖λ‖1 > 0. We build a graph G on [n] by putting independently the edge {i, j}
with i 6= j, with probability

pij =
λiλj
‖λ‖1

∧ 1.

We denote the corresponding graph ensemble by G(n, λ). The marginal probability is easy to
compute: for any graph H = ([n], E) ∈ G(n), we have

P(G = H) =
∏

1≤i<j≤n

(
(1− pij)1{i,j}/∈E + pij1{i,j}∈E

)
.

As usual, we may define the intensity distribution as the empirical measure

Pλ =
1

n

n∑
i=1

δλi .

It is interesting to consider a sequence of intensities λn = (λ1(n), · · · , λn(n)) such that the
following assumption holds, for p > 0,

(H ′0) Pλn converges weakly to P ∈ P(R+), P ({0}) < 1.

(H ′p) H ′0 holds and, if Λ(n) and Λ have law Pλn and P ,

lim
n→∞

EΛ(n)p = EΛp <∞.

If the sequence of λ = (λi)i∈N is iid with common law Λ on (0,∞), then we shall denote the
distribution of this random graph as G(n,Λ). In the next chapter, we will see how to compute

the asymptotic degree distribution of a sequence of graphs Gn
d∼ G(n, λn) which satisfy the

above assumption.

Exercise 1.8 Assume that for all i ∈ [n], λi = c > 0. What is then the distribution G(n, λ) ?

Exercise 1.9 Assume that for any 1 ≤ i, j ≤ n, λiλj ≤ ‖λ‖1. If G
d∼ G(n, λ), check that the

average degree of vertex i ∈ [n] is Edeg(i;G) = ‖λ‖1−λi
‖λ‖1 λi.

Exercise 1.10 Check that (H ′p) implies that max1≤i≤n λi(n) = o(n1/p) and that (H ′2) implies
that for all n large enough, any 1 ≤ i, j ≤ n, λi(n)λj(n) ≤ ‖λn‖1.
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1.6 Dynamic graphs

Of course, there are many models of random graphs besides the above defined models : Erdős-
Rényi graph, uniform graph with given degree sequence or Chung-Lu graphs. In this manuscript,
to keep the exposition clear, we shall restrict to the study ourselves to these 3 models. Roughly
speaking, there are two main ways of defining a random graph. First way: the random graph is
defined for fixed n according to some random connectivity rule (like our 3 models). Second way:
the graph is defined iteratively by a random aggregation rule, the most studied being arguably
the preferential attachment model (introduced in Barabási and Albert (1999)), for another
interesting direction, we may mention the Kronecker graphs (refer to Leskovec et al. (2010)).
The focus there is to use a simple aggregation dynamics as an explanation of phenomena in ’real
world’ graphs (e.g. power law degree distribution, clustering, or small world phenomenon).



Chapter 2

Subgraph counts and Poisson
approximation

2.1 Average subgraph counts

2.1.1 Erdős-Rényi graphs

In this chapter, we will count the number of times a given subgraph appears in a random graph.
More precisely, let G ∈ Ĝ(V ) and H ∈ Ĝ(k) be finite multigraphs on V and [k], with k ≤ |V |.
We define

X(H;G) =
∑
F⊂G

1(F ' H),

where the sum is over all subgraphs of G (of k elements).

If n is a non-negative integer and k a positive integer, we define

(n)k = n(n− 1) · · · (n− k + 1) and (n)0 = 1.

Similarly, for n even we define,

((n))k = (n− 1)(n− 3) · · · (n− 2k + 1) and ((n))0 = 1

If G is an Erdős-Rényi random graph, it is easy to compute the first moment of X.

Proposition 2.1 (Subgraph count in Erdős-Rényi graph) Let 1 ≤ k ≤ n, H ∈ G(k) with
m edges and c elements in its automorphism group. If G is a random graph with distribution
G(n, λ/n), λ ≤ n, then

EX(H;G) = c−1(n)k

(
λ

n

)m
∼n→∞ c−1λmn−exc(H).

19
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Proof. By assumption,

X(H;G) =
1

c

∑
τ

1(τ(H) ⊂ G),

where the sum is over all injective maps from [k] to [n]. There are (n)k such injective maps.
Now, if τ is an injective map from [k] to V , from Equation (1.1),

P(τ(H) ⊂ G) =

(
λ

n

)m
.

The conclusion follows. 2

This lemma implies that the structure of the Erdős-Rényi graph is far from the lattice graph
Zd. For example, the lattice graph Zd ∩ [1,m]d on n = md vertices has subgraphs of any excess
in number of order n. For an Erdős-Rényi graph, the only connected subgraphs in number of
order n are trees. Proposition 2.1 gives the convergence of the average of subgraph counts. We
will also give a deviation inequality for P(|X(H;G)−EX(H;G)| ≥ t) in the forthcoming chapter
3 which will be meaningful when H is a tree.

Corollary 2.2 (Large excess subgraph in Erdős-Rényi graph) Let k ≥ 4 be an integer
and H be a graph in G(k) with exc(H) ≥ 1. For each n ∈ N, let Gn be an Erdős-Rényi graph
with distribution G(n, λ/n). Then, in probability, X(H;Gn)→ 0.

Proof. From Markov inequality P(X(H;Gn) ≥ 1) ≤ EX(H;Gn). Then by lemma 2.1 we
have P(X(H;Gn) ≥ 1) = O(n−exc(H)). 2

As an simple corollary, we also have

Corollary 2.3 (Cycle count in Erdős-Rényi graph) Let H = ([k], {{1, 2}, {2, 3}, · · · {k, 1}})
be a cycle of length k ≥ 3, we have

lim
n→∞

EX(H;G) =
λk

2k
.

2.1.2 Configuration model

We now turn to the configuration model. We consider a array of integers (d1(n), · · · , dn(n))
satisfying condition (H0) and such that for all integer n,

∑n
i=1 di(n) is even. We define the

random variable
D

d∼ P.

Proposition 2.4 (Subgraph count for configuration model) Let 1 ≤ k ≤ n, H ∈ Ĝ(k)
with m edges and maximal degree p ≥ 1. Assume that H has b and c elements in its edge- and

(vertex)-automorphism groups. Let G
d∼ Ĝ(dn) with dn satisfying (Hp), then

EX(H;G) =∼n→∞ n−exc(H)

∏k
i=1 E

[
(D)deg(i;H)

]
bc(ED)m

,
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where D has distribution P .

As a corollary, we get immediately,

Corollary 2.5 (Cycle count for configuration model) Assume that G
d∼ Ĝ(dn) with dn

satisfying (H2). If H1 = ({1}, {{1, 1}}) is a single loop then

lim
n→∞

EX(H1;G) =
E(D)2

2ED
.

If H2 = ({1, 2}, {{1, 2}, {1, 2}}) is a single multi-edge then

lim
n→∞

EX(H2;G) =
(E(D)2)2

4(ED)2
.

If k ≥ 3 and Hk = ([k], {{1, 2}, {2, 3}, · · · {k, 1}}) is a cycle of length k then

lim
n→∞

EX(Hk;G) =
(E(D)2)k

2k(ED)k
.

As in corollary, 2.2, we get:

Corollary 2.6 (Large excess subgraph in configuration model) Let k ≥ 1 be an integer

and H ∈ Ĝ(k) with exc(H) ≥ 1 and maximal degree p. Let G
d∼ Ĝ(dn) with dn satisfying (Hp).

Then, in probability, X(H;Gn)→ 0.

Proof of proposition 2.4. For ease of notation, let us skip the parameter n. Let S =
∑n

i=1 di.
From (Hp), for all real a,

lim
n→∞

S − a
n

= ED > 0. (2.1)

Arguing as in the proof of proposition 2.1,

EX(H;G) = c−1
∑
τ

EY (τ(H);G), (2.2)

where the sum is over all injective maps from [k] to [n] and Y (H;G) is the number of times
that H ⊂ G. Note that since G is a multigraph Y (H;G) may be larger than 1. We think as
∆i = {(i, j) : 1 ≤ j ≤ di} as a set of half-edges adjacent to vertex i. These half-edges are matched
to other half-edges by a uniformly drawn matching of ∆ = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ di}. Let
mi = deg(i;H), we have

EY (H;G) =

∏k
i=1(di)mi
b ((S))m

. (2.3)

Indeed, arguing as in the proof of lemma 1.6, there are b−1
∏k
i=1(di)mi ways of choosing the half-

edges to be matched in order to give the subgraph H. Then, given the choice of the half-edges,
the probability that they are effectively matched is 1/(S − 1)(S − 3) · · · (S − 2m+ 1).
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From (2.2), we deduce that

EX(H;G) =
1

bc ((S))m

∑
τ

k∏
i=1

(dτ (i))mi =
(n)k

bc ((S))m
E

k∏
i=1

(Di(n))mi , (2.4)

where (D1(n), · · · , Dk(n)) is uniformly sampled without replacement on dn = (d1(n), · · · , dk(n)).

Now, from (2.1), we have
((S))m ∼ nm(ED)m.

On the other hand, lemma 1.4 implies that

E
k∏
i=1

(Di(n))mi →
k∏
i=1

E [(D)mi ] .

This concludes the proof. 2

2.2 Poisson Approximation

2.2.1 Method of moments

In the next Section, we will give a closer look at the random variable X(H;G) when exc(H) = 0.
From propositions 2.1, 2.4 we know that the expectation EX(H;G) has a non-degenerate limit
when the size of the graph tends to infinity. We will see in the next section that if H is simple
enough, we can actually prove that X(H;G) converges weakly to a Poisson random variable.

Let X be a real random variables with all its moments finite : for any integer k ≥ 1,
E[Xk] = mk <∞. Assume further that there exists a unique probability measure P on R such
that for all integer k ≥ 1,

∫
xkdP = mk. In the latter case, we say that P is uniquely determined

by its moments. Carleman’s theorem asserts that it is indeed the case if∑
k≥1

m
− 1

2k
2k =∞.

If the random variable has bounded support, the Carleman condition is satisfied.

A commonly used method to prove that a sequence of real random variables (Xn)n≥1

converges in distribution to the random variable X is to show that for all integer k ≥ 1,
limn→∞ E[Xk

n] = E[Xk] = mk. More formally, the method of moments is contained in the
next lemma.

Lemma 2.7 (Method of moments) Let (Pn)n≥1 be a sequence of real probability measures.
Assume that P ∈ P(R) is uniquely determined by its moments. If for all k ≥ 1,

lim
n→∞

∫
xkdPn(x) =

∫
xkdP

then Pn  P .
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Proof. We have
∫
x2dPn = m2 + o(1) ≤ c for some c. In particular, from Markov inequality

Pn([−t, t]2) ≤ c/t2. Hence, from Prohorov’s theorem {Pn, n ≥ 1} is relatively compact. Let Q
be a weak accumulation point of Pn, Pn`  Q along some subsequence.

Now, since
∫
x2kdPn = m2k + o(1) ≤ ck for some ck, the function x 7→ xk is uniformly

integrable for (Pn)n≥1. It implies that
∫
xkdQ(x) = lim`→∞

∫
xkdPn` . However, by assumption,

the latter is equal to
∫
xkdP (x). Since the law of P is uniquely determined by its moments, we

have Q = P . 2

If X is a Poisson random variable with intensity λ > 0, there is a variant of this method. For
integer k ≥ 1, the k-th factorial moment of X has a simple expression: E[(X)k] = λk. Hence,
in order to prove that (Xn)n∈N converges weakly to X is sufficient to show that for all integer
k ≥ 1, limn E[(Xn)k] = λk.

There are many drawbacks to this method. First, the random variable Xn needs to have
finite moments of any order for all n large enough. Secondly, the computation of moments can
be tedious. This method is usually used when no other method actually works and we shall not
use it here.

2.2.2 Total variation distance and coupling

The total variation distance between two probability measures P and Q on a common σ-field
(S,S) is

dTV (P,Q) = sup
A∈S
|P (A)−Q(A)| .

Since P (Ac)−Q(Ac) = −(P (A)−Q(A)), we note that the absolute value can be removed in the
definition. If S is a countable set, the supremum is reached for A = {x ∈ S : P (x) ≥ Q(x)}. We
have P (A)−Q(A) =

∑
x∈A |P (x)−Q(x)| and P (Ac)−Q(Ac) = −

∑
x∈Ac |P (x)−Q(x)|. Since

P (Ac)−Q(Ac) = −(P (A)−Q(A)), we get the simple formula:

dTV (P,Q) =
1

2

∑
x∈S
|P (x)−Q(x)| .

A coupling of two probability measures P and Q on (S,S) is a probability measure Π on (S2,S2)
such that P = Ππ−1

1 and Q = Ππ−1
2 , where π1(x, y) = x, π2(x, y) = y for (x, y) ∈ S2. In a more

probabilistic rephrasing, a coupling of two probability measures P and Q is the distribution of
a pair of random variables (X,Y ) on S2 such that X has law P and Y has law Q. For example
the product measure P ⊗Q is a coupling of P and Q. For an introduction to coupling, we refer
to Lindvall (1992).

Lemma 2.8 (Coupling inequality) Let P and Q be two probability measures on a common
σ-field (S,S). For any coupling (X,Y ) of P and Q, we have

dTV (P,Q) ≤ P(X 6= Y ).
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Proof. For A ∈ S, we write,

P (A)−Q(A) = E [1(X ∈ A)− 1(Y ∈ A)] = E [(1(X ∈ A)− 1(Y ∈ A))1(X 6= Y )] ≤ E [1(X 6= Y )] .

2

The coupling inequality calls for a converse statement.

Theorem 2.9 (Maximal coupling) Let P and Q be two probability measures on a common
σ-field (S,S). There exists a coupling (X,Y ) of P and Q such that

dTV (P,Q) = P(X 6= Y ).

Proof. Consider the measure λ = P + Q, we denote by f = dP/dλ and g = dQ/dλ the
Radon-Nikodym derivatives of P and Q with respect to λ. Considering the set A = {x ∈ S :
f(x) ≥ g(x)}. We deduce as above that

dTV (P,Q) =

∫
A

(f − g)dλ =
1

2

∫
|f − g| dλ.

Now, writing |f − g| = (f − f ∧ g) + (g − f ∧ g), we get

1

2

∫
|f − g| dλ = 1−

∫
f ∧ g dλ.

Let γ =
∫
f ∧g dλ. In order to prove the statement it is thus sufficient to find a coupling (X,Y )

such that P(X = Y ) ≥ γ. If P and Q are mutually singular measures, there is nothing to prove,
indeed, dTV (P,Q) = 1 and the product coupling P ⊗Q achieves the bound. Assume otherwise
that P and Q are not mutually singular, then γ > 0. We may also assume γ < 1 otherwise,
P = Q and the coupling (X,X) where X has law P achieves the bound. We define (X1, Y1, Z, U)
a quadruple of independent random variables, X1 has distribution (f − f ∧ g)dλ/(1 − γ), X2

has distribution (g − f ∧ g)dλ/(1 − γ), Z has distribution f ∧ gdλ/γ, and U is a Bernoulli
random variables with parameter P(U = 1) = γ. Then we may define the coupling (X,Y ) where
X = (1− U)X1 + UZ and Y = (1− U)X2 + UZ. We have P(X = Y ) ≥ P(U = 1) = γ. 2

2.2.3 Basics of Stein’s method

There is a powerful technique to compare a probability measure to another one. This method
is called the Stein’s Method by the name of its author. We will sketch briefly the general idea
and then apply it to the Poisson distribution in the next paragraph. The seminal paper on the
topic is Stein (1972). For an introduction, we refer the reader to Barbour and Chen (2005).

Let (S,S) be a complete metric space. We consider two probability measures P and P0 on
(S,S). Let H be a set of measurable functions from S to R. We assume that all functions in H
are P and P0 integrable. The goal of Stein’s method is to estimate the difference over all h ∈ H,∫

hdP −
∫
hdP0.
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The measure P0 is thought as being a good approximation of P and H is thought as a set of
test functions. In most applications, we shall assume that

dH(P,Q) = sup
h∈H

∣∣∣∣∫ hdP −
∫
hdQ

∣∣∣∣
is a distance on the set of probability measures on (S,S). In this setting, the goal of Stein’s
method is to find good bounds for the distance dH(P, P0). For example, ifH = {1A : A measurable},
then dH = dTV is the total variation distance:

dTV (P,Q) = sup
A
|P (A)−Q(A)| .

If S = R and H = {1(−∞,x] : x ∈ R} then dH is the Kolmogorov-Smirnov distance. If S = R and
H = {h : R→ R; ‖h′‖ ≤ 1}, where ‖h‖ = supx∈R |h(x)| then dH is the L1-Wasserstein distance.

We assume that there exists a set F of measurable S → R functions, and a linear mapping
T : F → H such that for all h ∈ H, there exists a function f = fh ∈ F such that

Tf = h−
∫
hdP0

Then we obviously get ∫
hdP −

∫
hdP0 =

∫
TfhdP (2.5)

T is called a Stein operator of the measure of P0 and fh is the Stein transform of h. In particular,
we note that for all h ∈ H, ∫

TfhdP0 = 0,

and

dH(P, P0) = sup
h∈H

∣∣∣∣∫ TfhdP

∣∣∣∣ .
There are general procedures to find Stein operators. The goal being to find an operator where
we can estimate nicely |

∫
TfdP |. It is not in the scope of these notes to develop further in this

direction.

We should however mention that if P0(dx) = 1√
2π
e−x

2/2dx is the standard Gaussian distri-

bution N (0, 1) and all functions in H are bounded, then

Tf : x 7→ f ′(x)− xf(x)

is a Stein operator for P0 and

fh(x) = ex
2/2

∫ x

−∞

(
h(t)−

∫
hdP0

)
e−t

2/2dt.

This operator was the starting point of Stein’s work and much can be said about it.
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2.2.4 Stein’s method for the Poisson distribution

Chen (1975) has found a Stein operator for the Poisson distribution. Recall that the Poisson
distribution with intensity λ ∈ R+, Poiλ, is the probability measure on N defined by, for n ∈ N,

Poiλ({n}) = e−λ
λn

n!
.

To fit with the above framework, we consider the space S = N and define H = {1A : A ⊂ N}.
Then, as already mentioned, dH = dTV is the total variation distance. Let F ≈ RN be the set
of real bounded functions on N, we define the operator from F to F ,

Tf : k 7→ λf(k + 1)− kf(k).

It is easy to check that if f ∈ F and Y is a random variable with Poisson distribution with
intensity λ, then

E[Tf(Y )] = E[λf(Y + 1)− Y f(Y )] = 0.

Moreover, for all h ∈ F , there exists a unique f = fh such that f(0) = 0 and

Tf = h− E[h(Y )].

Indeed, the sequence

λf(n+ 1) = nf(n) + h(n)− E[h(Y )]

is easily solved by recursion. We find

f(n+ 1) =

n∑
k=0

(n)k
λk+1

(h(n− k)− E[h(Y )]) =
n!

λn+1

n∑
k=0

λk

k!
(h(k)− E[h(Y )]) .

For h = 1A, we define the function fλ,A = f1A that we shall often simply denote by f , we get

f(0) = 0 and f(n+ 1) =
Poiλ(A ∩ [0, n])− Poiλ(A)Poiλ([0, n])

λPoiλ({n})
.

Theorem 2.10 (Properties of Chen-Stein operator) The function f = fλ,A has the fol-
lowing properties:

(i) For any random variable X on N:

E [λf(X + 1)−Xf(X)] = P(X ∈ A)− Poiλ(A).

(ii) supn |f(n)| ≤ min
(

1,
√

2
eλ

)
.

(iii) supn |f(n+ 1)− f(n)| ≤ λ−1(1− e−λ) ≤ 1.
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Proof. Point (i) follows from (2.5). The proof of (ii)-(iii) is performed in (Barbour and
Eagleson, 1983, lemma 4), we omit it. 2

Corollary 2.11 (Distance to Poisson) For any random variable X on N and λ > 0,

dTV (L(X),Poiλ) = max
A⊂N

E [λfλ,A(X + 1)−Xfλ,A(X)] .

In order to illustrate the strength of Stein’s method, consider (Y1, · · · , Yn) a sequence of
independent Bernoulli variable with P(Yi = 1) = 1 − P(Yi = 0) = pi and set λ =

∑n
i=1 pi. We

define X =
∑n

i=1 Yi and Xi =
∑

j 6=i Yj = X − Yi. We write

λf(X + 1)−Xf(X) =
n∑
i=1

pi (f(X + 1)− f(Xi + 1)) (2.6)

+
n∑
i=1

(pi − Yi)f(Xi + 1) +
n∑
i=1

Yi (f(Xi + 1)− f(X)) .

From theorem 2.10(iii), |f(X+ 1)− f(Xi+ 1)| ≤ λ−1(1− e−λ)Yi. We notice also that Yif(X) =
Yif(Xi + 1), and Xi and Yi are independent variables. Hence, taking expectation,

E[λf(X + 1)−Xf(X)] ≤ λ−1(1− e−λ)
n∑
i=1

p2
i ≤

∑n
i=1 p

2
i∑n

i=1 pi
.

In conclusion, from corollary 2.11, we thus deduce that

dTV (L(X),Poiλ) ≤
∑n

i=1 p
2
i∑n

i=1 pi
≤ max

1≤i≤n
pi.

We have found without much effort a striking formula. If all pi are equal and 0 ≤ λ ≤ n, we
obtain

dTV

(
Bin

(
n,
λ

n

)
,Poiλ

)
≤ λ

n
. (2.7)

Exercise 2.12 Let λ and µ be two positive real, show that dTV (Poiλ,Poiµ) ≤ |λ − µ|. (Hint:
first bound dTV

(
Bin

(
n, λn

)
,Bin

(
n, µn

))
by using the coupling inequality).

Exercise 2.13 Let λn = (λ1(n), · · · , λn(n)) be an array of positive real numbers satisfying (H ′2).
Let Gn be a Chung-Lu graph with distribution G(λn). Show that there exists a constant c > 0
such that for all integers n and any i ∈ [n],

dTV (deg(i;Gn),Poiλi) ≤ c
λi(n)

n
.

(Hint: use exercises 1.10 and 2.12).



28 CHAPTER 2. SUBGRAPH COUNTS AND POISSON APPROXIMATION

2.3 Cycle counts

2.3.1 Erdős-Rényi graphs

We now compute the limit of X(H;G) when H is a cycle of length k. We start with the simpler
case of Erdős-Rényi graphs.

Theorem 2.14 (Poisson asymptotic for cycles in Erdős-Rényi graphs) Let H = ([k], {{1, 2}, {2, 3}, · · · {k, 1}})
be a cycle of length k ≥ 3. Let λ ∈ R+ and for n ≥ 1, let Gn be an Erdős-Rényi graph with
distribution G(n, λ/n). Then, with µ = λk

2k ,

X(H;Gn)
d→ Poiµ,

Proof. We have

X(H;Gn) =
∑
F∈H

YF where YF = 1(F ⊂ Gn),

and H = {F : graph with VF ⊂ [n] and F ' H}. Recall that |H| = (n)k/(2k). We define

XF =
∑

F ′∈H:F∩F ′=∅

YF ′ .

Let f = fµ,A be as in theorem 2.10 and µn = EX(H;Gn) = |H|pn where pn = P(H ⊂ Gn) =
(λ/n)k. As in (2.6), we write

µf(X + 1)−Xf(X) = (µ− µn)f(X + 1) +
∑
F∈H

pn (f(X + 1)− f(XF + 1)) (2.8)

+
∑
F∈H

(pn − YF )f(XF + 1) +
∑
F∈H

YF (f(XF + 1)− f(X)) .

By theorem 2.10(ii) and proposition 2.1, the first term of (2.8) goes to 0 uniformly over the
choice of A. For the second term, we notice that X −XF =

∑
F ′:F ′∩F 6=∅ YF ′ . Note also that for

F ∈ H, by construction

|{F ′ ∈ H : F ′ ∩ F 6= ∅}| ≤ k(n− 1)k−1 = 2k2n−1|H|.

Indeed, to each element in {F ′ ∈ H : F ′ ∩ F 6= ∅} we may associate injectively, one element in
F and k − 1 distinct elements in [n]. Thus, by theorem 2.10(iii),

E
∑
F∈H

pn (f(X + 1)− f(XF + 1)) ≤
∑
F∈H

pn
∑

F ′:F ′∩F 6=∅

P(F ′ ⊂ Gn)

≤ p2
n|H|22k2n−1

= 2k2µ2
nn
−1.
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It follows that the second term of (2.8) goes to 0 (uniformly over the choice of A). The event {F ⊂
Gn} is measurable with respect to the filtration generated by the events ({{i, j} ∈ E}, i, j ∈ F ),
while XF is measurable with respect to the filtration generated by the events ({{i, j} ∈ E}, i, j ∈
[n]\F ). Hence, the variables YF and XF are independent, it follows

E
∑
F∈H

(pn − YF )f(XF + 1) = 0.

For the last term of (2.8), we note that

YF (X −XF − 1) = YF
∑

F ′ 6=F,F ′∩F 6=∅

YF ′ .

We obtain by theorem 2.10(iii), with c = λ−1(1− e−λ),∑
F∈H

YF (f(XF + 1)− f(X)) ≤ c
∑
F∈H

∑
F ′ 6=F,F ′∩F 6=∅

YF∪F ′

= c
∑
L

X(L;Gn),

where the sum is over all equivalence classes of graphs L such that L ' F ∪ F ′ with F, F ′ ∈ H,
F ′ 6= F and F ′ ∩ F 6= ∅. There is a finite number of such classes. Fix such a graph L = F ∪ F ′.
If F and F ′ have 1 vertex in common, then L has is a union of two cycles glued at a single
vertex. In such case, exc(L) = 1 and by proposition 2.1, we get for some new constant c,

EX(L;Gn) ≤ cn−1. (2.9)

Otherwise, L has a subgraph L′ which is formed by a cycle and a line with 1 ≤ ` ≤ k− 1 edges,
connecting two vertices the cycle. In such case, exc(L′) = 1. Since X(L;Gn) ≤ X(L′;Gn) (or
using exc(L) ≥ exc(L′), see exercice 1.3), we may again apply proposition 2.1 : for some new
constant c, (2.9) still holds.

So finally the fourth term of (2.8) goes to 0 (uniformly over the choice of A). We may then
conclude by applying corollary 2.11.

2

We note that in the proof of theorem 2.14, we could have given an upper bound for µf(X +
1)−Xf(X) as a function of k and n. We may obtain, for some constant C > 0 independent of
A,

µf(X + 1)−Xf(X) ≤ (Ck)kn−1.

Then, from corollary 2.11, we get an explicit bound for dTV (L(X(H;Gn)),Poiµ). One of the
strength of the Stein method is precisely to give explicit upper bounds for the rates of conver-
gence. We will not however pursue seriously this goal here.

There is a multivariate version of the previous theorem.
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Theorem 2.15 (Poisson asymptotic for joint cycles in Erdős-Rényi graphs) For inte-
gers k ≥ 3 and 3 ≤ ` ≤ k, let H` be a cycle of length `. Let λ ∈ R+ and for n ≥ 1,

let Gn be an Erdős-Rényi graph with distribution G(n, λ/n). Then, with µ` = λ`

2` and any
(a1, · · · , ak) ∈ {0, 1}k,

k∑
`=3

a`X(H`;Gn)
d→ Poi∑k

`=3 a`µ`
.

Obviously, this result hints loudly that in fact (X(H3;Gn), · · · , X(Hk;Gn)) converges to
⊗k

`=3 Poiµ` .
To prove this stronger result with Stein’s method, we should define a Stein operator for Poisson
compound distributions, we will not pursue this goal here. Another possibility would be to use
a multivariate method of moments.

Proof of theorem 2.15. For 1 ≤ ` ≤ k, let H` = {F : graph with VF ⊂ [n] and F ' H`},
YF = 1(F ⊂ Gn) and H = ∪k`=3H`. We have |H`| = (n)`/(2`) and

X =
k∑
`=3

a`X(H`;Gn) =
k∑
`=3

a`
∑
F∈H`

YF =
∑
F∈H

aFYF

where if F ∈ H`, aF = a`. As in the proof of theorem 2.14, for F ∈ H, we define

XF =
∑

F ′∈H:F∩F ′=∅

YF ′ .

Let f = fµ,A be as in theorem 2.10, µ =
∑k

`=3 a`µ` and µn = E
∑k

`=3 a`X(H`;Gn) =
∑k

`=3 a`|H`|pn,`
where pn,` = P(H` ⊂ Gn) = (λ/n)`. If F ∈ H`, we set pF = pn,`. We write,

µf(X + 1)−Xf(X) = (µ− µn)f(X + 1) +
∑
F∈H

aF pF (f(X + 1)− f(XF + 1))

+
∑
F∈H

aF (pF − YF )f(XF + 1) +
∑
F∈H

aFYF (f(XF + 1)− f(X)) .

The first term goes to 0 by proposition 2.1. As in the proof of theorem 2.14, for the second
term, we use the identity X −XF =

∑
F ′:F ′∩F 6=∅ YF ′ and for F ∈ H,

|{F ′ ∈ H` : F ′ ∩ F 6= ∅}| ≤ k(n− 1)`−1 = 2k`n−1|H`|.

Then, by theorem 2.10(iii), |f(x+ 1)− f(x)| ≤ 1 and

E
∑
F∈H

aF pF (f(X + 1)− f(XF + 1)) ≤
∑
F∈H

aF pF
∑

F ′:F ′∩F 6=∅

P(F ′ ⊂ Gn)

≤
∑
F∈H

aF pF

(
k∑
`=3

pn,`2k`n
−1|H`|

)

≤ 2k2µn

(
k∑
`=3

EX(H`;Gn)

)
n−1.
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By proposition 2.1, the above expression goes to 0 as n goes to infinity. The remainder of the
proof of theorem 2.14 carries over here also. 2

Exercise 2.16 (Subgraph count for Chung-Lu graphs) Let P ∈ P(R+) and λ(n) ∈ Rn+
an array satisfying (H ′p), p ≥ 1. Gn be a Chung-Lu graph with distribution G(λn).

1. Let H ∈ G[k] with m edges, c elements in its automorphism group and max degree p. Show
that, as n goes to infinity,

EX(H;Gn) ∼ c−1n−exc(H) (Eλ)−m
k∏
i=1

Eλdeg(i;H).

2. Assume now that H is a cycle of length k ≥ 3 and p = 2. We set µ =
(Eλ2)

k

2k(Eλ)k
. Show that

X(H;Gn) converges weakly to Poiµ.

2.3.2 Configuration model

Theorem 2.14 has a natural analog in the configuration model. Let P ∈ P(Z+) be a probability
measure on integers and for dn = (d1(n), · · · , dn(n)) an array of integers such that for any n,∑n

i=1 di(n) is even. We may then consider a random graph Gn with distribution G(dn).

Theorem 2.17 (Poisson asymptotic for cycles in configuration model) For integer k ≥
3, let Hk = ([k], {{1, 2}, {2, 3}, · · · {k, 1}}) be a cycle of length k, let H1 = ({1}, {{1, 1}}) be a

single loop and let H2 = ({1, 2}, {{1, 2}, {1, 2}}) be a single multi-edge. Let Gn
d∼ Ĝ(dn) with dn

satisfying (H2). Then for all k ≥ 1,

X(Hk;Gn)
d→ Poiµk ,

with µk = (E(D)2)k

2k(ED)k
and D has distribution P .

Proof. The proof follows the same strategy than theorem 2.14. For ease of notation, we
fix k ≥ 1, set µ = µk, H = Hk and write di in place of di(n). As in the proof of proposition
2.4, we define Y (H;Gn) as the number of times that H ⊂ Gn, for i ∈ [n], let S =

∑n
i=1 di. If

YF = Y (F ;Gn) and pn(F ) = E[YF ], we define

µn =
∑
F∈H

pn(F ),

where as in the proof of theorem 2.14, H = {F : multigraph with VF ⊂ [n] and F ' H}. We
have EX(H;Gn) = µn. Let f = fµ,A be as in theorem 2.10 and

XF =
∑

F ′∈H:F∩F ′=∅

YF ′ .
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We write

µf(X + 1)−Xf(X) = (µ− µn)f(X + 1) +
∑
F∈H

pn(F ) (f(X + 1)− f(XF + 1)) (2.10)

+
∑
F∈H

(pn(F )− YF )f(XF + 1) +
∑
F∈H

YF (f(XF + 1)− f(X)) .

As shown in the proof of proposition 2.4,

µn =
1

2k

∑
τ

∏k
i=1(dτ(i))2

((S))k
→ µ,

where the sum is over the set of injective maps from [k] to [n]. Hence the first term (2.10) goes
to 0.

The argument used in the proof of theorem 2.14 carries over here as well for the second and
last term of (2.10) with minor changes. More precisely, by theorem 2.10(iii), |f(x+1)−f(x)| ≤ 1,
we write ∑

F∈H
pn(F )E (f(X + 1)− f(XF + 1)) ≤

∑
F∈H

pn(F )E
∑

F ′:F∩F ′ 6=∅

YF ′

=
1

(2k)2

∑
∗

∏k
i=1(dτ(i))2(dτ ′(i))2

((S))k((S))k
,

where the sum is over all pairs (τ, τ ′) of injective maps [k]→ [n] such that the images of τ and
τ ′ have a non empty intersection. We set

M(n) = max(d1, · · · , dn).

Since the image of such map (τ, τ ′) has cardinal at most 2k − 1, we have

1

n2k

∑
∗

k∏
i=1

(dτ(i))2(dτ ′(i))2 ≤ M(n)2

n

1

n2k−1

∑
1≤i1,··· ,i2k−1≤n

2k−1∏
`=1

di`(n)2

=
M(n)2

n

(
1

n

n∑
i=1

d2
i

)2k−1

=
M(n)2

n

(
ED(n)2

)2k−1
,

where D(n) has distribution Fdn . Now, from lemma 1.5, we have

M(n)2 = o(n). (2.11)

Moreover, from (2.1), ((S))k((S))k ∼ n2k(ED)2k. It follows that the second term of (2.10) goes
to 0.
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We now turn to the last term of (2.10). Let E be the event that for all F ∈ H, YF ∈ {0, 1}.
Note that if YF ≥ 2, then X(L;Gn) ≥ 1, where L is the multiset union of H and the edge
{1, 2} (or the loop {1, 1} if k = 1). The maximum degree of L is 4 and exc(L) = 1. Then, if
assumption (H4) holds, we could apply corollary 2.6, and get, as n→∞,

P(Ec) = P(X(L;Gn) ≥ 1) ≤ EX(H ∪H;Gn)→ 0. (2.12)

With the sole assumption (H2), the above equation (2.12) still holds. Indeed, if mi = deg(i;L),
from (2.4),

EX(L;Gn) ≤
∑
τ

∏k
i=1(dτ(i)(n))mi

((S))k+1
≤ M(n)2

((S))k+1

(
n∑
i=1

di(n)2

)k
,

where the first sum is over all injective maps τ : [k] → [n]. Using (2.11) and (2.1), we deduce
that (2.12) holds.

We have, by theorem 2.10(ii)-(iii), |f(x)| ≤ 1 and |f(x+ 1)− f(x)| ≤ 1,

E
∑
F∈H

YF (f(XF + 1)− f(X)) ≤ 2P(Ec) + E
∑
F∈H

∑
F ′ 6=F,F ′∩F 6=∅

YF∪F ′

= 2P(Ec) +
∑
L

EX(L;Gn),

where the sum is over all equivalence classes of graphs L such that L ' F ∪ F ′ with F, F ′ ∈ H,
F ′ 6= F and F ′∩F 6= ∅. In the proof of theorem 2.14, we have seen all such L satisfies exc(L) ≥ 1.
Fix such L ∈ Ĝ(k′), it has k′ vertices, m′ ≥ k′ + 1 edges and m′i = deg(i;L),

∑
im
′
i = 2m′.

Moreover, from (2.4),

EX(L;Gn) ≤ EX(L′;Gn) ≤
∑
τ

∏k′

i=1(dτ(i)(n))m′i
((S))m′

≤ M(n)2

((S))m′

(
n∑
i=1

di(n)2

)m′−1

,

where the first sum is over all injective maps τ : [k′] → [n]. We may then conclude by a new
application of lemma 1.4-1.5 that the above expression goes to 0. It follows that the fourth term
of (2.10) goes to 0.

For the third term of (2.10), a new difficulty arises compared to the proof of theorem 2.14,
XF and YF are no longer independent. We should prove

E
∑
F∈H

(pn(F )− YF )f(XF + 1)→ 0.

From (2.12), we find∑
F∈H

∑
k≥2

kP(YF = k)→ 0 or equivalently
∑
F∈H

(pn(F )− P(YF = 1))→ 0.



34 CHAPTER 2. SUBGRAPH COUNTS AND POISSON APPROXIMATION

By theorem 2.10(ii), |f(x)| ≤ 1. Hence, in order to prove that the third term goes to 0, it is
sufficient to prove that

E
∑
F∈H

pn(F ) (Ef(XF + 1)− E[f(XF + 1)|YF ≥ 1])→ 0. (2.13)

We will use a coupling argument. Let σ be the uniform matching of ∆ = {(i, j) : i ∈ [n], 1 ≤
j ≤ di} that matches the half-edges of Gn. Let x 6= y ∈ ∆. The switch of σ at (x, y) is the
matching σ′ such that σ′(x) = y, σ′(σ(x)) = σ(y) while σ′(z) = σ(z) for all z /∈ {x, y, σ(x), σ(y)}
(see figure 2.1). Note that, since σ is a uniform matching, the switch of σ at (x, y) is a random
matching sampled uniformly among all matchings m ∈M(∆) such that m(x) = y.

si

��
j sj

�� ��
i

��
Figure 2.1: A switch : σ is plain and the switch of σ is dashed.

Similarly, let {σ(i, j) : i ∈ VF , 1 ≤ j ≤ di}, where VF = {i1, · · · , ik} is the vertex set of
F (see figure 2.2). The law of Gn given {YF ≥ 1} is realized by taking independently, for
1 ≤ ` ≤ k, a distinct pair (j`, j

′
`) uniformly distributed on {1, · · · , di`} and perform a switch

of σ at ((i1, j1), (i2, j
′
2)), then at ((i2, j2), (i3, j

′
3)), and we continue up to ((ik, jk), (i1, j

′
1)). (In

this construction, we implicit assume that i` ≥ 2, otherwise, YF = 0). We define σ̃ as the
corresponding matching and G̃n ∈ Ĝ(d) is the multi-graph associated to σ̃. We set HF = {F ′ ∈
H : F ′ ∩ F = ∅}, ỸF ′ = Y (F ′; G̃n) and

X̃F =
∑

F ′∈HF

YF ′ .

Then, by theorem 2.10(ii), it follows that

E
∑
F∈H

pn(F ) (Ef(XF + 1)− E[f(XF + 1)|YF ≥ 1]) ≤ 2
∑
F∈H

pn(F )P
(
XF 6= X̃F

)
.

By construction, σ and σ̃ may only differ on the half-edges involved in the switches

∆0 = {(i`, j`), (i`, j′`), σ(i`, j
′
`), σ(i`, j

′
`)}.

Also note that X̃F ≥ XF and the inequality is strict only if one of the switch, say (x, y), creates a
new cycle [n]\VF which contains the new edge formed by the half-edges x′ = σ(x) and y′ = σ(y).
In such case, the half-edges x′ and y′ are part in Gn of a subgraph formed with half-edges in
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Figure 2.2: F and Gn\F

∆\∆0 and isomorphic to a line of length k. From the union bound, this probability is bounded
by

k
∑
τ

∏k−2
`=1 (dτ(`))2

((S − 4k))k−1
,

where the sum is over all injective maps [k − 2]→ [n]\VF . The term k in front comes from the
possible pairs (x, y) involved in the switch. The term S − 4k comes from the fact the half-edges
in ∆\∆0 are uniformly matched and |∆0| ≤ 4k. The above is bounded by

2k
∑

i1≤···≤ik−2

∏k−2
`=1 (dτ(`))2

((S − 2k))k−1
=

2knk−2

((S − 2k))k−1

(
1

n

n∑
i=1

(di)2

)k−2

.

From (2.1), ((S−2k))k−1 ∼ (ED)k−1nk−1. Using (Hp), we deduce that the above term is bounded
by c/n for some constant c = c(k) independent of F . This concludes the proof of (2.13). We
may then conclude by applying corollary 2.11. 2

Again, there is a multivariate version of the previous theorem.

Theorem 2.18 (Poisson asymptotic for joint cycles in configuration model) For inte-
gers k ≥ 1, let H1 = ({1}, {{1, 1}}) be a single loop, H2 = ({1, 2}, {{1, 2}, {1, 2}}) be a single
multi-edge and for 3 ≤ ` ≤ k, let H` = ([`], {{1, 2}, {2, 3}, · · · {`, 1}}) be a cycle of length `. Let

Gn
d∼ Ĝ(dn) with dn satisfying (H2). Then for any (a1, · · · , ak) ∈ {0, 1}k,

k∑
`=1

a`X(H`;Gn)
d→ Poi∑k

`=1 a`µ`
,
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with ` ≥ 1, µ` = (E(D)2)`

2l(ED)`
and D has distribution P .

Proof. The proof is an extension of theorem 2.17 and follows the same strategy than theorem
2.15. With the notation of the proof of theorem 2.15, we have

X =
∑
F∈H

aFYF ,

and

µf(X + 1)−Xf(X) = (µ− µn)f(X + 1) +
∑
F∈H

aF pn(F ) (f(X + 1)− f(XF + 1))

+
∑
F∈H

aF (pn(F )− YF )f(XF + 1) +
∑
F∈H

aFYF (f(XF + 1)− f(X)) .

The first, second and last term are treated as in the proof of theorem 2.15. For the third term,
the argument used in theorem 2.17 works. We leave the details to the reader. 2

2.4 Graphs with given degree sequence

Theorem 2.18 and its variants have important consequences on the labeled graphs with given
degree sequence. Recall that a degree sequence (d1, · · · , dn) is graphic is there exists a graph G
in G(n) such that for all i ∈ [n], deg(i;G) = di. As usual, we consider P , a probability measure
on Z+.

Lemma 2.19 (Asymptotic graphic sequence) Let dn = (d1(n), · · · , dn(n)) be an array of
integers such that for any n,

∑n
i=1 di(n) is even and (H2) holds. Then, for all n large enough,

(d1(n), · · · , dn(n)) is graphic.

Proof. Let Gn be a random multigraph with distribution Ĝ(dn). We have

P(Gn ∈ G(d)) = P(X(H1;Gn) +X(H2;Gn) = 0).

Then from theorem 2.18,

lim
n

P(Gn ∈ G(d)) = e
−E(D)2

2ED −
(E(D)2)2

4(ED)2 > 0. (2.14)

It implies in particular that G(d) is not empty and hence dn is a graphic for all n large enough.
2

Lemma 2.19 is a nice instance of the probabilistic method : we have used random variables
to deduce the existence of a deterministic object. We refer to Alon and Spencer (2008) for a
beautiful account of this method. The next theorem implies that the configuration model is a
powerful tool to analyze the probability measure G(dn). The original proof of the next result
can be found in (Janson, 2009, theorem 1.1).
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Theorem 2.20 (Contiguity of Ĝ(dn) and G(dn)) Let dn = (d1(n), · · · , dn(n)) be an array
of integers such that for any n,

∑n
i=1 di(n) is even and (H2) holds. For n ∈ N, let An be a

subset of Ĝ(n). We denote by Ĝn a random multigraph with distribution Ĝ(dn) and, if dn is
graphic, by Gn a random graph with distribution G(dn). We assume that

lim
n→∞

P(Ĝn ∈ An) = 1.

Then
lim
n→∞

P(Gn ∈ An) = 1.

Proof. By theorem 2.18, lim infn P(X(H1; Ĝn) +X(H2; Ĝn) = 0) > 0. Hence

lim
n

P(Ĝn ∈ An|Ĝn ∈ G(n)) = 1.

Now, by lemma 1.6, the distribution of Ĝn given {Ĝn ∈ G(n)} has the same distribution than
Gn. The statement follows. 2

In the sequel, we will use repeatedly theorem 2.20. For example, it implies that the statement
in probability of Corollary 2.6 holds with G(dn) replaced by Ĝ(dn) provided that (H2) holds.

There is also an important combinatoric consequence of the above argument in terms of
counting the cardinality of G(d), the set of graphs on [n] with degree sequence d.

Theorem 2.21 (Asymptotic number of graphs with given degree sequence) Let dn =
(d1(n), · · · , dn(n)) be an array of integers such that for any n, Sn =

∑n
i=1 di(n) is even and (H2)

holds. Then, as n goes to infinity,

|G(dn)| ∼
√

2e
−E(D)2

2ED −
(E(D)2)2

4(ED)2

(
Sne

−1
)Sn

2∏n
i=1(di)!

.

For d-regular graph, the above theorem specializes to a nice formula.

Corollary 2.22 (Asymptotic number of regular graphs) Let d ≥ 2. For integer n, let
G(n, d) denote the (possibly empty) set of d-regular graphs on [n]. Then for dn even and n going
to infinity,

|G(n, d)| ∼
√

2e−
(d2−1)

4

(
dd/2

ed/2d!

)n
ndn/2.

Proof of theorem 2.21. For n = 2m− 1 odd, let n!! = n(n− 2) · · · 1 = (2m)!
2mm! . We consider the

configuration model Ĝ(dn). Let ∆ = {(i, j) : i ∈ [n], 1 ≤ j ≤ di} be the set of half-edges. For
each matching σ of ∆, we denote by G(σ) the d-regular multigraph on [n] associated to σ. The
number of possible matchings of ∆ is

(Sn − 1)!! =
(Sn)!

2
Sn
2

(
Sn
2

)
!
.
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By lemma 1.6, each graph in G(d) can be obtained by
∏n
i=1(di)! different matchings. We thus

get

|G(d)| = 1∏n
i=1(di)!

∑
σ

1(G(σ) ∈ G(n))) =
(Sn)!

2
Sn
2

(
Sn
2

)
!
∏n
i=1(di)!

P(Gn ∈ G(n)),

where the sum is over all matchings of ∆ and Gn is a random multigraph with distribution
Ĝ(n, d). Now, we use the identity P(Gn ∈ G(n)) = P(X(H1;Gn) + X(H2;G) = 0). It remains
to apply (2.14) and use Stirling’s formula, n! ∼n

√
2πn

(
n
e

)n
. 2



Chapter 3

Local weak convergence

3.1 Weak convergence in metric spaces

In this paragraph, we recall some facts on weak convergence in metric spaces. For proofs and
details on the weak convergence, we refer the reader to Chapter 1 in Billingsley (1999). Let S
be a metric space endowed with its Borel σ-algebra, S.

Theorem 3.1 (Characterization of measures) Probability measures P and Q on (S,S) co-
incide if and only if for all bounded continuous functions f : S 7→ R,

∫
fdP =

∫
fdQ.

The proof of this theorem will be included in the forthcoming theorem 3.2.

A sequence of probability measures (Pn)n∈N on S converges weakly to a probability measure
P if for every bounded continuous function f ,

∫
fdPn converges to

∫
fdP . This convergence is

usually denoted by Pn  P . With a slight abuse of notation, if Xn is a random variable with

law Pn and X with law P , we shall also write Xn
d→ X.

Theorem 3.2 (Portemanteau theorem) The following conditions are equivalent.

(i) Pn  P .

(ii)
∫
fdPn →

∫
fdP for all bounded, uniformly continuous functions f .

(iii) lim supPn(F ) ≤ P (F ) for all closed sets F .

(iv) lim inf Pn(G) ≥ P (G) for all open sets G.

(v) limPn(A) = P (A) for all A ∈ S such that P (∂A) = 0.

39
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Proof. Let d(x, y) be the distance in S. (i)⇒ (ii) is trivial. For (ii)⇒ (iii), let ε > 0, F be
a closed set, F ε = {x ∈ S : d(x, F ) ≤ ε}, and

f(x) = min(0, 1− ε−1d(x, F )).

This function is bounded and uniformly continuous because |f(x)−f(y)| ≤ ε−1d(x, y). Moreover
for every x ∈ S,

1F (x) ≤ f(x) ≤ 1F ε(x).

Indeed if x ∈ F , then d(x, F ) = 0 and f(x) = 1 , while if x /∈ F ε, d(x, F ) ≥ ε and f(x) = 0. It
follows that

Pn(F ) ≤
∫
fdPn ≤ Pn(F ε).

By assumption (ii), letting n tend to infinity, it implies that

lim supPn(F ) ≤
∫
fdPn ≤ P (F ε).

Since F is closed, as ε goes to 0, 1F ε\F (x) converges to 0 for all x ∈ S. Thus by the dominated
convergence theorem, limε↓0

∫
1F ε\FdP = 0. It follows that limε↓0 P (F ε) = P (F ) and (iii) fol-

lows. The statements (iii) and (iv) are equivalent by complementation. To prove that (iii)&(iv)
imply (v), let Ȧ and Ā denote the interior and closure of A. Assumption (iii) and (iv) imply

P (Ȧ) ≤ lim inf Pn(Ȧ) ≤ lim inf Pn(A) ≤ lim supPn(A) ≤ lim supPn(Ā) ≤ P (Ā).

The extreme left hand and right hand side are equal because P (∂A) = 0, and (v) follows. It
remains to check that (v)⇒ (i). We may assume that 0 ≤ f ≤ 1. Then from Fubini’s theorem,∫

fdP =

∫ 1

0
P ({x : f(x) > t})dt,

and similarly for Pn. Since f is continuous, ∂{x : f(x) > t} ⊂ {x : f(x) = t}. The probability
measure on [0, 1], Q = Pf−1 has at most a countable number of atoms. Hence, from (v), for
almost all t ∈ [0, 1],

lim
n
Pn({x : f(x) > t}) = P ({x : f(x) > t}).

It follows, by dominated convergence that

lim
n

∫
Pn({x : f(x) > t})dt =

∫
P ({x : f(x) > t})dt.

and (i) follows. 2

Let Π be a collection of probability measures of measure on S. We say that Π is tight if for
all ε > 0 there exists a compact set K such that for all P ∈ Π, P (K) > 1 − ε. The collection
Π is relatively compact if for every sequence of elements (Pn) in Π, there exists a subsequence
(Pnk) and a probability measure Q such that Pnk  Q. Prohorov’s theorem states that the two
notions are equivalent in complete separable metric spaces.
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Theorem 3.3 (Prohorov) If Π is tight then it is relatively compact. If (S,S) is complete and
separable, the converse also holds : if Π is relatively compact then it is tight.

The most difficult part in the theorem is the first statement. The second statement implies
in particular that a single probability measure is always tight.

Proof of the second statement of theorem 3.3. Consider a increasing sequence of open sets Gn
covering S. Then for all ε > 0 there exists an n such that for all P ∈ Π, P (Gn) > 1− ε. Indeed
otherwise, for some ε > 0 there would exist a sequence (Pn) ∈ Π such that Pn(Gn) ≤ 1−ε. Since
Gn is increasing, that for all n0 and n ≥ n0, Pn(Gn0) ≤ 1 − ε. By relative compactness, there
would exist a measure Q and a subsequence (nk), such that Pnk  Q. We deduce from theorem
3.2 that for all n0, Q(Gn0) ≤ 1− ε. Letting n0 go to infinity, this leads to a contradiction since
Gn ↑ S and Q(S) = 1.

Now, by separability, for every integer k, there exists a collection Bk1, Bk2, · · · of open balls
of radius 1/k covering S. From what precedes, there exists nk such that P (∪i≤nkBki) > 1−ε/2k
for all P ∈ Π. By completeness, the closure K of ∩k≥1 ∪i≤nk Bki is a compact set. Finally from
the union bound, P (K) > 1− ε for all P ∈ Π. 2

3.2 The space of rooted unlabeled networks

In the previous chapter, we have counted subgraphs in a random graph with a non-negative
excess. A connected graph with excess −1 is a tree and we are now going to look at the subtrees
of a random graph. From propositions 2.1, 2.4, the number of occurrences of a given tree in a
random graph is of order of a magnitude its number of vertices. This motivates the introduction
of rooted graphs.

Let Ω be a complete separable metric space with distance dΩ. We shall consider networks
(V,E, ω) with ω : V ∪ E → Ω.

A rooted network G = (V,E, ω, ø) is the pair formed by a network (V,E, ω) and a distin-
guished vertex ø ∈ V , called the root. A rooted isomorphism between two rooted networks is an
isomorphism that takes the root of one to the root of the other. As for networks isomorphisms,
we will also denote by ”'” the equivalence relation of rooted isomorphisms.

If G = (V,E, ω, ø) is a rooted network, [G] will denote the class of rooted graphs that
are rooted isomorphic to G. With the terminology of graph theory, [G] is an unlabeled rooted
network.

Let G∗(Ω) denote the set of all [G], with G ranging over connected locally finite networks
with mark space Ω. In other words, G∗(Ω) is the set of rooted unlabeled connected locally finite
networks with mark space Ω.

If Ω = {1}, then we can identify, G∗ := G∗({1}) with the set of unlabeled locally finite
rooted graphs. Similarly, if Ω = Z+ = {0, 1, · · · }, Ĝ∗ := G∗(Z+) is the set of rooted unlabeled
connected locally finite multigraphs.
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There is a natural metric on G∗. First, let G = (V,E, ω) be a connected network. For any
pair u, v in V , we define dG(u, v) as the infimum of the length of the paths from u to v. This is
the distance induced by G on V . The ball of radius t and center u is

BG(u, t) := {v ∈ V : dG(u, v) ≤ t}.

For the rooted network G = (V,E, ω, ø) and real t > 0, let (G)t denote the network whose
vertex set is BG(ø, t) and whose edge set consists of the edges of G that have both vertices in
BG(ø, t).

Consider two elements g1 and g2 in G∗(Ω). There exists, for i ∈ {1, 2}, a network Gi =
(Vi, Ei, ωi, øi) with [Gi] = gi. Then, the distance between g1 and g2 is defined as 1/(1 + T ),
where

T = sup {t > 0 : there exists a rooted isomorphism σ from (V1, E1, ø1)t to (V2, E2, ø2)t

and for all v ∈ V(G1)t , e ∈ E(G1)t , dΩ(ω1(v), ω2(σ(v)) ≤ 1/t , dΩ(ω1(e), ω2(σ(e)) ≤ 1/t
}
.

Note that the value of T does not depend on the particular choice of the rooted network in
the equivalence class. For the case of graphs G∗ or multigraphs, Ĝ∗ (or more generally for Ω
discrete), the distance is equivalently defined as 1/(1 + T ), where

T = sup{t > 0 : there exists a rooted isomorphism from (G1)t to (G2)t}.

The next lemma follows from the mere definition but is essential.

Lemma 3.4 (Properties of G∗(Ω)) The space G∗(Ω) is separable and complete.

Proof. We start with separable. Since Ω is separable, let (xn)n≥1 be a dense collections of
elements in Ω. For n ≥ 1, consider the countable family Xn of rooted networks on [n] rooted
at 1 with mark space (xn)n≥1. We define the countable family X = ∪nXn. Let g ∈ G∗(Ω) with
G = (V,E, ω, ø) in the equivalence class of g, [G] = g. For any real t > 0, since G is locally
finite, there exists an integer n such that (G)t has n vertices. Hence, for some F ∈ Xn ⊂ X ,
there exists a rooted isomorphism from (V,E, ø)t to (VF , EF , 1)t which distorts the marks by a
distance less than 1/t. It follows that the distance between [F ] and [G] is less than 1/(t+ 1).

We now turn to G∗(Ω) complete. Let (gn)n≥1 be a Cauchy sequence in G∗(Ω). We consider a
sequence (Gn)n≥1 of elements in their equivalence class: [Gn] = gn. We may assume that VGn =
Vn = {1, · · · ,Kn} and Gn rooted at 1. We set Gn = (Vn, En, ωn, 1) and Hn = (Vn, En, 1). By
assumption, there is an increasing sequence (nt)t∈N, such that for all n ≥ nt, m ≥ 0, the distance
between Gn and Gn+m is less than 1/(t+ 1). In particular, for all m ≥ 0, (Hnt)t and (Hnt+m)t
are rooted isomorphic and the corresponding marks in Gnt and Gnt+m are within distance 1/t.
Let Nt be the number of vertices in (Hnt)t, and assume for example that limNt =∞. We may
then define iteratively a graph H = (V,E, 1) with V = N rooted at 1 such that for all t ≥ 1,
(H)t ' (Hnt)t. It follows that ([Hn])n≥1 converges to [H] in G∗.
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Now, by construction, there is a rooted isomorphism σt from (H)t to (Hnt)t such that for
any v ∈ V , e ∈ E, and t large enough, v ∈ Vt, e ∈ Et and the marks ωnt(σt(v)), ωnt(σt(e)) are
Cauchy sequences. Since Ω is complete, they converge to say ω(v) and ω(e). This defines a limit
network G = (V,E, ω, 1) and (gn) converges to [G] in G∗(Ω). 2

The next elementary lemma may be useful to prove tightness of sequence of probability
measures in Ĝ∗. For a finite rooted multigraph, G = (V,E, ø) we set |G| = |V | + |E| (beware
that |E| is here the cardinal of a multiset).

Lemma 3.5 (Criterion of compactness) Let h : N→ N be an increasing function. The set

K = {g ∈ Ĝ∗ : if [G] = g, for all t ≥ 0 |(G)t| ≤ h(t)}.

is compact.

Proof. For each t ≥ 1, there is a finite number of equivalence classes of rooted multigraphs
Ft,1, · · · , Ft,nt such that |F | ≤ h(t). Therefore, the collection A1,1, · · · , At,nt where At,k = {[G] ∈
Ĝ∗ : (G)t ' Ft,k} is a finite covering of K of radius 1/(1 + t). 2

3.3 Converging graph sequences

In the above section, we have described a natural metric space for rooted connected networks.
However, our prime interest in the preceding chapters was on networks not on rooted network.
There is a way to lift the above setting to the case of unrooted and not necessarily connected
networks. This is called the local weak convergence, a notion that was introduced and developed
in Benjamini and Schramm (2001), Aldous and Steele (2004), Aldous and Lyons (2007). The
word ”local” stems for the fact that the metric is defined through a root, the term ”weak” from
the choice of a random root.

For ease of notation, we fix the mark space Ω and write G∗ in place of G∗(Ω). We introduce
the Borel σ-algebra of G∗ and define P(G∗) as the set of probability measures on G∗ and endow
this space of measures with the topology of weak convergence. By lemma 3.4, G∗ is a separable
metric space (Polish space). It implies that P(G∗) is also a Polish space. We are in the framework
of the standard theory of weak convergence of probability measures, as in the preceding section
3.1.

To a finite network G = (V,E, ω), we can associate a probability measure U(G) in P(G∗)
defined as the law of [G(ø), ø], where ø is a uniformly chosen vertex in V and, for v ∈ V , G(v)
denotes the sub-network of G spanned by the vertices in the connected component of v. In other
words,

U(G) =
1

|V |
∑
v∈V

δ[G(v),v].

where δ is the Dirac delta function.
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Definition 3.6 (Converging graph sequence) A sequence of finite networks (Gn)n≥1 has
random weak limit ρ ∈ P(G∗) if U(Gn) ρ.

Not all probability measures ρ ∈ P(G∗) can be random weak limits. Due to the uniform
rooting, there should satisfy a form of stationarity. This is formalized by the notion of unimod-
ularity which plays a crucial role in local weak convergence theory. Consider networks with two
roots or distinguished vertices : (G, ø, o) with G = (V,E, ω) and ø, o ∈ V . Then, the natural
notion of equivalence classes is with respect to isomorphisms which preserves the two roots. Let
G∗∗ be the set of equivalence classes of locally finite connected networks with two roots. We
endow G∗∗ with the natural metric which generalizes directly the metric on G∗. With a slight
abuse of notation, if f is a function from G∗∗ to R+ and (G, u, v) is in the equivalence class of
g ∈ G∗∗, [G, u, v] = g, we define f(G, u, v) := f(g).

Definition 3.7 (Unimodularity) A measure ρ ∈ P(G∗) is unimodular if for all measurable
non-negative functions f : G∗∗ → R+,

Eρ
∑
v∈VG

f(G, ø, v) = Eρ
∑
v∈VG

f(G, v, ø), (3.1)

where under Pρ, [G, ø] has law ρ.

Note that the fact the expectation could be infinite in the definition of unimodularity is not
issue from Fubini-Tonnelli theorem. If f(G, u, v) is thought as an amount of mass sent from u
to v, the unimodularity is a mass transport principle.

Let G be a finite network. We notice that U(G) is unimodular : indeed, if u and v are
connected then G(u) = G(v). It follows that

EU(G)

∑
v∈VG(ø)

f(G(ø), ø, v) =
1

|VG|
∑
u∈VG

∑
v∈VG(u)

f(G(u), u, v)

=
1

|VG|
∑
v∈VG

∑
u∈VG(v)

f(G(u), u, v)

= EU(G)

∑
v∈VG(ø)

f(G(ø), v, ø).

Lemma 3.8 (Random weak limits are unimodular) Let ρ ∈ P(G∗). Assume that there
exists a sequence of finite networks (Gn)n≥1 with random weak limit ρ. Then ρ is unimodular.

Proof. We should prove that the set of unimodular measures is closed for the weak topology.
Let ρn be a sequence of unimodular probability measures converging weakly to ρ. From Lusin’s
theorem, it is sufficient to check (3.1) for f continuous and such that both terms in (3.1) are finite.
For τ > 0, we define a function fτ : G∗∗ → R+ by setting, with g = [G, u, v], fτ (g) = τ ∧ f(g)
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if u and v are at distance less than τ in G and if there are less than τ vertices in BG(u, τ).
Otherwise, we set fτ (G, u, v) = 0.

Then, by construction, [G, ø] 7→
∑

v∈VG fτ (G, ø, v) is continuous and bounded by τ2. The
dominated convergence theorem implies that

lim
n→∞

Eρn
∑
v∈VG

fτ (G, ø, v) = Eρ
∑
v∈VG

fτ (G, ø, v)

and similarly for Eρn
∑

v∈VG fτ (G, v, ø). Since ρn is unimodular, we get

Eρ
∑
v∈VG

fτ (G, ø, v) = Eρ
∑
v∈VG

fτ (G, v, ø),

It remains to let τ tend to infinity and apply the monotone convergence theorem. 2

We will see in the next chapters that surprisingly many functions are continuous with respect
to the local weak convergence. The following criterion is quite convenient to prove unimodularity.
It is called the involution invariance property.

Lemma 3.9 (Involution invariance) Let ρ ∈ P(G∗) and assume that (3.1) holds for all func-
tions f : G∗∗ → R+ such that f(G, u, v) = 0 unless {u, v} ∈ EG. Then ρ is unimodular.

Proof. It is sufficient to prove (3.1) holds for all functions such that f(G, u, v) = 0 unless
dG(u, v) = τ for some integer τ ≥ 1. Indeed any function can be written as a sum of such
functions. We prove the property that (3.1) holds for all functions such that f(G, u, v) = 0
unless dG(u, v) = τ by recursion on τ . The case τ = 1 is the involution invariance. We now take
a general τ ≥ 2. For integer k ≥ 1, ∂BG(u, k) = BG(u, k)\BG(u, k − 1) is the set of vertices at
distance k from u ∈ VG. If x ∈ ∂BG(u, τ), let π(G, u, x) ≥ 1 be the number of geodesic paths
from u to x. If y ∈ ∂BG(u, τ − 1), we denote by π(G, u, x, y) the number of geodesic paths from
u to x whose first visited vertex is y. By construction, if x ∈ ∂BG(u, τ), we have the balance
equation

π(G, u, x) =
∑

y∈∂BG(u,τ−1)

π(G, u, x, y). (3.2)

Now consider a function such that f(G, u, x) = 0 unless dG(u, x) = τ or equivalently x ∈
∂BG(u, τ). We define the function, for y ∈ ∂BG(u, τ − 1),

h(G, u, y) =
∑

x∈∂BG(u,τ)

f(G, u, x)
π(G, u, x, y)

π(G, u, x)
.

and h(G, u, v) = 0 if v /∈ ∂BG(u, τ − 1). From (3.2), we find∑
v∈VG

h(G, u, v) =
∑

y∈∂BG(u,τ−1)

∑
x∈∂BG(u,τ)

f(G, u, x)
π(G, u, x, y)

π(G, u, x)
=
∑
v∈VG

f(G, u, v).

This proves the recursion step. 2
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3.4 Unimodular Galton-Watson trees

In the next sections we will be interested by proving the convergence of U(Gn) where (Gn)n≥1 is
a sequence of graphs either sampled from the Erdős-Rényi law G(n, λ/n), from the configuration
model Ĝ(dn), or from G(dn), uniform law on graphs with degree distribution dn. As we shall
see, the unimodular limit will be supported on trees.

3.4.1 Galton-Watson trees

Let Nf = ∪k≥0Nk, with the convention N0 = {ø}. For k ≥ 1 and i = (i1, · · · , ik) ∈ Nk, we
call (i1, · · · , ik−1) ∈ Nk−1 the ancestor or genitor of i. We consider a sequence (Ni), i ∈ Nf , of
integers. We define the set

V = {ø} ∪ {i = (i1, · · · , ik) ∈ Nf : for all 1 ≤ ` ≤ k, 1 ≤ i` ≤ Ni1,··· ,i`−1
}. (3.3)

Note that the ancestor of an element in V is in V . For i ∈ V , we call the set {(i, 1), · · · , (i, Ni)},
the set of offsprings of i. Then, we define a rooted tree T = (V,E, ø) by putting an edge
between all vertices in V and their ancestors. In particular, if i 6= ø, the degree of i in T is
deg(i;T ) = Ni+1, and deg(ø;T ) = Nø. The set of vertices in V ∩Nk is called the k-th generation
vertices. The descendants of a given vertex i ∈ V are the vertices in

Vi = V ∩ {(i, j) : j ∈ Nf}.

Finally, we denote by Ti the subtree rooted at i of vertices in Vi.

Let P ∈ P(Z+) be a probability distribution on Z+. If the sequence (Ni), i ∈ Nf , is an i.i.d.
sequence with distribution P , the random rooted tree T is called a Galton-Watson tree with
offspring distribution P̂ . We will denote by GWT(P ) the probability distribution of [T ] in G∗.

Now, assume further that P has a positive finite first moment. We define P̂ as the distribution
on Z+, defined for k ≥ 1 by

P̂ (k − 1) =
kP (k)∑
` `P (`)

. (3.4)

Then, the GWT with degree distribution P is the random rooted tree T where (Ni), i ∈ Nf\{ø},
is an i.i.d. sequence with distribution P̂ , independent of Nø with distribution P . We will then
denote by GWT∗(P ) the probability distribution of [T ].

It is interesting to note that P is a Poisson random variable Poiλ with λ > 0, then P̂ = P .
Thus, for the Poisson distribution, GWT’s with degree and offspring distribution are identical.
See also figure 3.1 for the case of regular trees.

We will prove that GWT∗(P ) is the random weak limit of some finite random graph se-
quence (Gn)n≥1 defined in the previous chapters. In particular, by lemma 3.8, it will prove that
GWT∗(P ) is unimodular. Let us however give a direct proof of this statement.
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Figure 3.1: Left: representation of a 3-ary tree. Right: representation of a 3-regular tree.

Lemma 3.10 (Unimodular Galton-Watson trees) If P ∈ P(Z+) has positive first mo-
ment, then GWT∗(P ) is a unimodular measure in P(G∗).

Proof. We should prove that (3.1) holds. By lemma 3.9, we may restrict to functions
f : G∗∗ → R+ such that f(G, u, v) = 0 unless {u, v} ∈ EG. If (T0, T1, · · · , Tk) are rooted trees,
we denote by Ru(T1, · · · , Tk) a tree T where u ∈ VT has k neighbors and the subtrees spanned
by the neighbors of u are isomorphic to T1, · · · , Tk. Similarly Ru,v(T0, · · · , Tk) is a tree T with
u, v ∈ VT where u has k + 1 neighbors, v with subtree isomorphic to T0 and k others with
subtrees isomorphic to T1, · · · , Tk (see figure 3.2).

Now, let T = (V,E) be a Galton-Watson tree with degree distribution P built from the
sequence of random variables (Ni)i∈Nf . We find

E
Nø∑
i=1

f(T, ø, i) =

∞∑
k=1

P (k)

k∑
i=1

E[f(T, ø, i)|Nø = k] =

∞∑
k=1

kP (k)E[f(T, ø, 1)|Nø = k].

Now, consider (Ti), i ≥ 1, i.i.d. Galton-Watson trees with offspring distribution P̂ . Then given
Nø = k, [T ] and [Rø(T1, · · · , Tk), ø] have the same law. If N and N̂ are independent variables
with law P and P̂ , we get

E
Nø∑
i=1

f(T, ø, i) = EN
∞∑
k=0

P̂ (k)Ef(Rø,1(T1, · · · , Tk+1), ø, 1)

= ENEf(Rø,1(T1, · · · , TN̂+1
), ø, 1).

Now, up to a rooted isomorphism, (Rø(T2, · · · , TN̂+1
), ø) has same law than T2. Define Su,v(T1, T2)

as a tree where u and v are connected by an edge, and besides this edge u has a subtree isomor-
prhic to T1 and v has a subtree isomorprhic to T2 (see figure 3.2). Using the symmetry of Su,v,
we deduce that
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T2

T1 T2 T3 T0 T1 T2 T3

u
u

v

u v

T1

Figure 3.2: Left, Ru(T1, T2, T3). Center Ru,v(T0, · · · , T3). Right Su,v(T1, T2)

E
Nø∑
i=1

f(T, ø, i) = ENEf(Sø,1(T1, T2), ø, 1) = ENEf(Sø,1(T1, T2), 1, ø).

Similarly, we perform the same computation for

E
Nø∑
i=1

f(T, i, ø) =
∞∑
k=1

P (k)
k∑
i=1

E[f(T, i, ø)|Nø = k] =
∞∑
k=1

kP (k)E[f(T, 1, ø)|Nø = k].

As above we find

E
Nø∑
i=1

f(T, i, ø) = ENEf(Sø,1(T1, T2), 1, ø).

This proves that (3.1) holds. 2

Exercise 3.11 Let P ∈ P(Z+) with positive first moment. Prove that GWT(P ) is unimodular
if and only if P is a Poisson random variable. (Hint : use (3.1) with f(G, u, v) = 1(deg(G, u) =
k)).

3.5 Convergence of random graphs

3.5.1 Erdős-Rényi graphs

Let Gn be an Erdős-Rényi graphs with distribution G(n, λ/n) with λ > 0 and n ∈ N. We define
the random probability measure on G∗:

U(Gn) =
1

n

n∑
i=1

δ[Gn(i),i].
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where δ is a Dirac mass. As already pointed, the measure U(Gn) corresponds to the distribution
of the random rooted graph [Gn(ø), ø] where the root is drawn uniformly over the vertex set.
Averaging over the randomness of the graph, we get for any event A in G∗,

EU(Gn)(A) =
1

n

n∑
i=1

P([Gn(i), i] ∈ A) = P([Gn(1), 1] ∈ A),

where we have used exchangeability. In other words, the measure EU(Gn) is simply the distri-
bution of [Gn(1), 1]. The aim of this paragraph is to prove the following theorem.

Theorem 3.12 (Local convergence in Erdős-Rényi graph) Let λ > 0 and, for integer
n ≥ 1, let Gn be an Erdős-Rényi graph with distribution G(n, λ/n). Then, as n goes to in-
finity EU(Gn) GWT(Poiλ).

This theorem should be compared with theorem 2.14 which asserts that there exists a Poisson
number of cycles of finite length in G(n, λ/n). By exchangeability of the variable, it implies that
the probability that i is in a cycle of fixed length k is of order 1/n.

The proof of theorem 3.12 is based on an exploration of the connected component G(v)
of a graph G = (V,E) that contains v ∈ V . This exploration is called the breadth-first search.
Consider the total order in Nf : for two elements i = (i1, · · · , in) and j = (j1, · · · , jm) we set i < j
if n < m or if n = m and there exists k such that (i1, · · · , ik) = (j1, · · · , jk) and ik+1 < jk+1.
We build an bijective map φ from S ⊂ Nf to the vertex set of G(v). The set S will be of the
type (3.3) and the map φ are defined iteratively and if i < j are both in S then the value of φ(i)
will be determined before the value of φ(j).
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Figure 3.3: φ(ø) = 1, φ(1) = 2, φ(2) = 3, φ(3) = 4, φ((2, 1)) = 5, φ((2, 2)) = 6, φ((2, 2, 1)) = 7,
φ((2, 2, 2)) = 8.

This exploration is iterative, at integer step t, a vertex may belong to the active set At, to
the unexplored set Ut or to the connected set Ct = V \(At ∪ Ut). We start with A0 = {v},
C0 = ∅, U0 = V \{v} and φ(ø) = v. For integer t ≥ 0, if At 6= ∅, we define vt+1 = φ(it+1) as the
vertex in At such that whose preimage by φ is minimal for the order on Nf . Let It+1 = {u ∈
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Ut : {u, vt+1} ∈ E} be the set of neighbors of vt+1 in Ut, we set
At+1 = At\{vt+1} ∪ It+1

Ut+1 = Ut\It+1

Ct+1 = Ct ∪ {vt+1}
(3.5)

If Nit+1 = |It+1| and It+1 = {u1, · · · , uNit+1
}, we also set φ((it+1, 1)) = u1, · · · , φ((it+1, Nit+1)) =

uNit+1
. If At = ∅, then the process stops. It follows by construction that

|G(v)| = inf{t ≥ 1 : At = ∅}.

For integer t, the image by φ of the vertices of generation t in S, φ(S∩Nt), are the set of vertices
in G at distance t from v.

For ease of notation, we set Xt+1 = Nit+1 = |It+1| and τ = |G(v)|. So that, for t < τ ,

|At| = 1 +
t∑

k=1

(Xk − 1) , |Ut| = n− 1−
t∑

k=1

Xk , |Ct| = t. (3.6)

Now, we consider the breadth-first search when v = 1 and the graph G = Gn is an Erdős-
Rényi graph with distribution G(n, λ/n). We define the filtration

Ft = σ((A0, U0, C0), · · · , (At, Ut, Ct)).

The hitting time τ = inf{t ≥ 1 : At = ∅} is a stopping time for this filtration. Notice that for
any integer t ≥ 0, given Ft, if {t < τ} ∈ Ft then Xt+1 has distribution a binary random variable
Bin(|Ut|, λ/n).

Lemma 3.13 (Convergence of exploration) On an enlarged probability space, there exists
a sequence (X ′t)t≥1 of i.i.d. Poiλ variables such that

P
(
(X1, · · · , Xt∧τ ) 6= (X ′1, · · · , X ′t∧τ )

)
≤ λ(λ+ 1)(t+ 1)2

n
.

Proof. The stopping property implies that {t < τ} is Ft-measurable. We note also that from
(3.6),

E [(|At| − 1)1t<τ ] ≤
t−1∑
s=0

E(Xs+1 − 1)1s<τ ≤ λt, (3.7)

where we have used the fact that if {t < τ} holds then E(Xt+1|Ft) = λ|Ut|/n ≤ λ.

Now, on an enlarged probability space, let ξt+1 be, given Ft, a binary variable Bin(n −
|Ut|, λ/n) independent of Xt. Then Yt+1 = Xt+1 + ξt+1 is a binary variable Bin(n, λ/n) and (Yt)
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is an i.i.d. sequence. Hence, from the union bound,

P ((X1, · · · , Xt∧τ ) 6= (Y1, · · · , Yt∧τ )) ≤ E
t∑

s=1

1s<τP (Xs 6= Ys|Fs)

≤
t∑

s=1

1s<τP (ξs 6= 0|Fs) .

If s < τ , then |Ut| ≥ n− t− |At|. It follows that

P (ξs 6= 0|Fs) = 1− (1− λ/n)n−|Us| ≤ λ(n− |Us|)/n ≤ λ (s+ |As|) /n.

In particular, from (3.7), we get

P ((X1, · · · , Xt∧τ ) 6= (Y1, · · · , Yt∧τ )) ≤
t∑

s=1

λ(1 + (λ+ 1)s)

n
≤ λt+ λ(λ+ 1)t2

n
.

Then from (2.7), dTV (L(Y1, · · · , Yt),Poi⊗tλ ) ≤ λt/n. We conclude by using the maximal coupling
inequality. 2

Lemma 3.14 (Asymptotically tree-like) For integer t ≥ 0, let Jt = {u ∈ At : {u, vt+1} ∈
E}. We have

P (∃1 ≤ s ≤ t ∧ τ : |Js| 6= 0) ≤ λ2t2

n
.

If {∀1 ≤ s ≤ t : |Js| = 0}, the subgraph of Gn spanned by Ct is a tree.

Proof. Given Ft, if t < τ , |Jt| is a binary variable Bin(|At|− 1, λ/n). The union bound yields

P (∃1 ≤ s ≤ t ∧ τ : |Js| 6= 0) ≤ E
t∑

s=1

1s<τP (|Js| 6= 0|Fs)

≤ E
t∑

s=1

1s<τ

(
1−

(
1− λ

n

)|At|−1
)

≤
t∑

s=1

λ

n
E(|As| − 1)1s<τ .

It remains to use (3.7) and the first statement follows.

To prove the second statement, we note that for all integer s, there cannot be an edge between
an element of Cs and Us. Therefore, if there is an edge between u = φ(is) and v = φ(is′)
with s ≤ s′, then either is is the genitor of is′ , or is and is′ are both active at time s. If
{∀1 ≤ s ≤ t : |Js| = 0} holds the latter cannot happen. In particular, on this event, every vertex
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in Ct\{1} has a unique neighbor with a smaller index (its genitor). It follows that the graph
spanned by Ct cannot have cycles. 2

Proof of theorem 3.12. For ease of notation, we denote by ρn = EU(Gn) the law of [Gn(1), 1].
With an abuse of notation, let us also write (Gn, 1) instead of (Gn(1), 1). Define A = AT =
{[G] ∈ G∗ : (G)t ' T} where T is a finite rooted tree of depth at most t. We first prove that
ρn(A) converges to ρ(A), where ρ = GWT(Poiλ). The number of vertices of T is equal to some
integer m. Let K be the set of elements [G] of G∗ such the number of vertices in (G)t is less or
equal than m. With the notation of lemma 3.14, if for all 1 ≤ s ≤ m∧τ , |Js| = 0 and [Gn, 1] ∈ K
then (Gn, 1)t is a tree. Moreover, from lemma 3.13, , if [Gn, 1] ∈ K, there is a coupling such that
the offsprings of the vertices of (Gn, 1)t are equal to independent Poisson variables on an event
of probability at least 1− λ(λ+ 1)(m+ 1)2/n. We deduce that

|P((Gn, 1)t ' T )− ρ(A)| = |P((Gn, 1)t ' T ;Gn ∈ K)− ρ(A)| ≤ λ(λ+ 1)(m+ 1)2 + λ2m2

n
.

Letting n tend to infinity, we obtain for any finite rooted tree T ,

lim
n
ρn(AT ) = ρ(AT ).

We are going to check that theorem 3.2(ii) holds. Let f be a bounded uniformly continuous
function and ε > 0. By assumption there exists t such that |f((G)t)− f(G)| ≤ ε for all G ∈ G∗.
Also there exists a finite collection of trees S such that∑

T∈S
ρ(AT ) > 1− ε.

From what precedes, it follows that for n large enough,
∑

T∈S ρn(AT ) > 1− 2ε and∣∣∣∣∫ fdρn −
∫
fdρ

∣∣∣∣ ≤ ε(1 + 3‖f‖∞) +
∑
T∈S

f(T ) |ρn(AT )− ρ(AT )| .

Letting n tend to infinity and then ε goes to zero, we deduce the statement. 2

3.5.2 Configuration model

Let (dn) ∈ Zn+ be a vector of integers with even sum. We consider Gn a random multi-graph

with distribution Ĝ(dn). Again, we define the random probability measure on Ĝ∗:

U(Gn) =
1

n

n∑
i=1

δ[Gn(i),i].

The measure EU(Gn) is the law of [Gn(ø), ø] where ø is an independent and uniform on [n], law
with respect to the randomness of Gn and ø.
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Theorem 3.15 (Local convergence in configuration model) Let Gn
d∼ Ĝ(dn) with dn sat-

isfying (H2), then as n goes to infinity, EU(Gn) GWT∗(P ).

As for Erdős-Rényi graphs, the proof is based on an exploration of the connected component
G(v) of a multigraph G = (V,E) that contains v ∈ V . We will also build an bijective map φ
from S ⊂ Nf to the vertex set of G(v). The value of φ is defined iteratively and if i < j are in S
then the value of φ(i) will be determined before the value of φ(j). However, we change slightly
the exploration procedure to be more adapted to the configuration model.

Let d = (dv)v∈V be a sequence of integers with
∑

v∈V dv even. We consider the set ∆ =
{(v, j) : v ∈ V, 1 ≤ j ≤ dv} and we call ∆v = {(v, j) : 1 ≤ j ≤ dv} the set of half-edges
with endpoint v. As in the configuration model, to a matching say σ on ∆, we associate the
multigraph G = G(σ) ∈ Ĝ(d) where the half-edges are matched to form the edges of G.

The exploration is on the set of half-edges ∆ and it is iterative. At integer step t, we partition
∆ in 3 sets, an half-edge may belong to the active set At, to the unexplored set Ut or to the
connected set Ct = ∆\(At ∪ Ut). At stage t, a vertex with an half-edge in Ct ∪ At will have a
pre-image by φ in Nf . We start with v ∈ V , A0 = ∆v, C0 = ∅ and U0 = ∆\∆v. Finally we set
φ(ø) = v.

For integer t ≥ 0, if At 6= ∅, we define et+1 = (φ(it), jt) as the half-edge in At such that it is
minimal and (φ(it), k) /∈ At for k = 1, · · · , jt − 1. Let It+1 = (∆vt+1\{σ(et+1)}) ∩ Ut where vt+1

is the vertex such that σ(et+1) ∈ ∆vt+1 . It+1 is the set of new half-edges and our partition of ∆
is updated as 

At+1 = At\{et+1, σ(et+1)}
⋃
It+1

Ut+1 = Ut\ (It+1 ∪ {σ(et+1)})
Ct+1 = Ct ∪ {et+1, σ(et+1)}.

(3.8)

If σ(et+1) /∈ At, we also set φ((it, jt)) = vt+1. Finally, if At = ∅, then the process stops.

We notice that the elements in Ct are the half-edges for which we know by step t their
matched half-edge. It implies that σ(et+1) ∈ At ∪ Ut. Moreover, for any vertex u, we cannot
have simultaneously ∆u ∩ Ut 6= ∅ and ∆u ∩ At 6= ∅. With a slight abuse, we may thus write
u ∈ Ut or u ∈ At if, respectively, ∆u ∩ Ut 6= ∅ or ∆u ∩ At 6= ∅. Now, if vt+1 ∈ Ut, then
It+1 = ∆vt+1\{σ(et+1)}, otherwise vt+1 ∈ At and It+1 = ∅. Again, for integer k, the image by φ
of the vertices of generation k in S, φ(S ∩Nk), are the set of vertices in G at distance k from v.

For ease of notation, we set X0 = dv, Xt+1 = |It+1|,

εt+1 = 1vt+1∈At = 1σ(et+1)∈At

and
τ = inf{t : At = ∅}.

We get

|At| = dv +

t∑
k=1

(Xk − 1− εk) , |Ut| = |∆| − dv −
t∑

k=1

(Xk + 1− εk) , |Ct| = 2t.
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Setting for t > τ , εt = 0, we have by construction

|G(v)| = 1 + τ −
∑
t≥1

εt.

As in the statement of theorem 3.15, consider a random multi-graph Gn with distribution Ĝ(dn).
For t ∈ N, we consider the filtration Ft = σ((A0, U0, C0), · · · , (At, Ut, Ct)). The hitting time τ is
a stopping time for this filtration. Also, the matching σ being uniformly distributed, given Ft,
if {t < τ}, σ(et+1) is uniformly distributed on Ut ∪At\et+1. It follows that for u ∈ [n],

P(vt+1 = u|Ft) =
|∆u ∩ (Ut ∪At\{et+1})|

|Ut|+ |At| − 1

=
1u∈Utdu

|Ut|+ |At| − 1
+

1u∈At(|∆u ∩At| − 1et+1∈∆u)

|Ut|+ |At| − 1
.

If σ(et+1) ∈ Ut, then Xt+1 = dvt+1 − 1 otherwise, σ(et+1) ∈ At and Xt+1 = 0. We recall also
that |Ut|+ |At| = |∆| − |Ct| = |∆| − 2t. We get, for k ≥ 1

P(Xt+1 = k|Ft) =

{ ∑
u∈Ut

1du=k+1(k+1)
|∆|−2t−1 k ≥ 1,∑

u∈Ut
1du=1

|∆|−2t−1 + |At|−1
|∆|−2t−1 k = 0.

(3.9)

For integer t, the variable |At| depends on the size n of graph and from the initial condition
v. The next lemma implies that under P, the sequence of random variables |At| is tight in n
when v = ø is uniformly distributed on [n].

Lemma 3.16 (Tightness of active set) Under the assumption of theorem 3.15, consider the
exploration process on the rooted graph (Gn(ø), ø). There exists a constant c > 0 such that, for
each integer t ≥ 0, E|At∧τ | ≤ c(t+ 1).

Proof. Let us use write d instead of dn. We order the sequence set d = (d1, · · · dn) in non-
decreasing order, we get a permutation π of [n] such that dπ(1) ≥ dπ(2) · · · ≥ dπ(n). Let n0 be
the number of non-null degrees. From assumption (H0), P (0) < 1 and for all n large enough,
n0 ≥ 2. We may then define the set

Π̂ =
{
π(i) : 1 ≤ i ≤ n0

2

}
.

This is the subset of vertices with the n0/2 larger degrees. We denote by ∆̂ = ∪i∈Π̂∆i and Qd

be the distribution on N,

Qd({k}) =
k + 1

|∆̂|

∑
i∈Π̂

1di=k+1, for k ≥ 0.

We note that
|∆|
2
≤ |∆̂| ≤ |∆| − n0

2
.
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We first define a sequence (Yt)t≥1 of i.i.d. variables with distribution Qd, such that for all
1 ≤ t ≤ n0/4− 1,

Xt∧τ ≤ Yt∧τ . (3.10)

For t ≥ 0, this is done explicitly by setting Yt+1 = dut+1 − 1 for some random ut+1 ∈ Π̂ such

that P(ut+1 = u|Ft) = du/|∆̂|. We order decreasingly the half-edges from 1 to ∆ :

(π(1), 1) � (π(1), 2) · · · � (π(1), dπ(1)) � (π(2), 1) · · · � (π(n), dπ(n)).

In particular, ∆̂ is the set of |∆̂| largest half-edge of ∆. We recall that |Ut ∪At| = |∆| − 2t and
that σ(et+1) is uniformly distributed on Ut∪At\et+1. Now, let 1 ≤ t ≤ τ ∧ (n0/4− 1), if σ(et+1)
is the k-th largest half-edge of Ut ∪ (At\et+1) and k ≤ |∆̂| then we define ut+1 as the vertex
such that the k-th largest half-edge of ∆ is in ∆ut+1 . Otherwise, dvt+1 is less or equal to any

degrees in Π̂ and we define ut+1 as the vertex such that the N -th largest half-edge of ∆̂ is in
∆ut+1 , where N is an independent variable uniformly distributed in ∆̂. Since 1 ≤ t ≤ n0/4− 1,

we have |Ut ∪ At\et+1| = |∆| − 2t − 1 ≥ |∆| − n0/2 ≥ |∆̂|. It follows that P(Yt+1 ∈ ·|Ft) = Qd

and Xt ≤ Yt. We deduce that (3.10) holds for 1 ≤ t ≤ n0/4− 1.

It yields that for 1 ≤ t ≤ n0/4− 1,

t∧τ∑
i=1

Xi ≤
t∧τ∑
i=1

Yi. (3.11)

Now, the inequality, |∆|/2 ≤ |∆̂| gives

E[Y ] ≤
∑
i∈Π̂

di(di − 1)

|∆̂|
≤ 2

n∑
i=1

di(di − 1)

|∆|

Let D be a variable with law P . By lemma 1.4 we deduce,

lim sup
n→∞

E[Y ] ≤ 2
ED(D − 1)

ED
,

and
lim
n→∞

n0

n
= P(D ≥ 1).

In particular, for n large enough, t ≤ n0/4− 1. Similarly, we have X0 = dø and by lemma 1.4,
we find

lim
n→∞

E[X0] = ED.

Finally, using (3.11), we take the expectation of |At| = X0 +
∑t

k=1(Xk − 1− εk) and the claim
follows. 2

We extend the sequence (X0, · · · , Xτ ) for t ≥ τ + 1, by setting for all s ≥ 1, Xτ+s = Ys for
some iid sequence (Yt)t≥1 with distribution P̂ .
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Lemma 3.17 (Convergence of exploration) Under the assumption of theorem 3.15, con-
sider the exploration process on the rooted graph (Gn(ø), ø). The variable (X0, X1, · · · , Xt) con-
verges in distribution to P ⊗ P̂⊗t.

Proof. Since X0 = dø, X0 converges in distribution to P . Note also that |At|+ 2t half-edges
are not in Ut. It follows by (3.9) that, if {t < τ} holds, for any k ≥ 0,∣∣∣∣∣P(Xt+1 = k|Ft)−

k + 1

|∆| − 2t− 1

n∑
i=1

1di=k+1

∣∣∣∣∣ ≤ k + 1

|∆| − 2t− 1
(2t+ |At|) .

By lemma 1.4 implies that |∆|/n converges to ED, where D has law P . Hence, for any a > 0,
we get on the event {|At| ≤ a},

lim
n→∞

P(Xt+1 = k|Ft) = P̂ ({k}).

However, by lemma 3.16, for each t ≥ 1, P(|At∧τ | ≥ a) ≤ c(t+ 1)/a. Hence the probability that
there exists 1 ≤ s ≤ t ∧ τ such that |As| > a is bounded above by ct(t+ 1)/a.

Letting n tend to infinity and then a to infinity, it implies that (X0, X1, · · · , Xt) converges
weakly to P ⊗ P̂⊗t. 2

We introduce a variable that counts the number of times that two elements in the active sets
are matched by step t :

Et =
t∑

k=1

εk.

Lemma 3.18 (Asymptotically tree-like) Under the assumption of theorem 3.15, consider
the exploration process on the rooted graph (Gn(ø), ø). For every integer t ≥ 0, we have

lim
n

P (Et∧τ 6= 0) = 0.

If t ≤ τ and Et = 0, the subgraph of Gn spanned by the vertices with all their half-edges in Ct is
a tree.

Proof. We start with the second statement. To every vertex u with an half-edge in Ct ∪ At,
there is an element i in Nf such that φ(i) = u. We may thus order these vertices by the order
through φ−1 in Nf . Every such vertex is adjacent to its genitor. By construction if Et = 0 or
equivalently if for all 1 ≤ s ≤ t, εs = 0, then every vertex with an half-edge in Ct ∪ At has a
unique adjacent vertex with a smaller index (and it is its ancestor). It follows easily that there
cannot be a cycle in the subgraph spanned by these vertices.
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If Et∧τ 6= 0, there exists an integer s ≤ t ∧ τ such that σ(es) ∈ As−1. It follows from the
union bond and the fact that {s < τ} ∈ Fs,

P(∃1 ≤ s ≤ t ∧ τ : σ(es) ∈ As−1) ≤ E

∑
s≥0

1s<t∧τP(vs+1 ∈ As|Fs)


≤ E

t−1∑
s=0

(|As| − 1)+

|∆| − 2s− 1
.

From lemma 3.16, for each t ≥ 0, E|At| ≤ c(t+ 1). Also, by lemma 1.4, |∆|/n converges to ED,
where D has law P . The conclusion of the first statement follows. 2

Proof of theorem 3.15. The proof follows the argument of the proof of theorem 3.12. For ease
of notation, we write (Gn, ø) in place of (Gn(ø), ø). We denote by ρn, the law of [Gn, ø] and
ρ = GWT∗(P ). Define A = {[G] ∈ G∗ : (G)t ' T} where T is a finite rooted tree of depth at
most t. From theorem 3.2, it is sufficient to prove that for any integer t ≥ 1 and any such rooted
tree T , ρn(A) converges to ρ(A).

The number of vertices of T is equal to some integer m. Let K be the set of elements of G∗
such the number of vertices in (G)t is less or equal than m. From lemma 3.18, if Em∧τ = 1 and
[Gn, ø] ∈ K then (Gn, ø)t is a tree. Moreover, by lemma 3.17, if [Gn, ø] ∈ K, the number of off-
springs of vertices different from ø in (Gn, ø)t converges in distribution to independent variables
with distribution P̂ . The number of offsprings of root vertex ø converges to an independent
variable with distribution P . We deduce that

lim
n
|P((Gn, ø)t ' T )− ρ(A)| = lim

n
|P((Gn, ø) ' T ; [Gn, ø] ∈ K)− ρ(A)| = 0.

The conclusion follows. 2

Exercise 3.19 Let Gn be a Chung-Lu graph with distribution G(n, λn) with λn satisfying (H ′2).
By extending the proof of theorem 3.12, show that EU(Gn) converges weakly to GWT∗(Q) where
Q(k) =

∫
Poiλ(k)P (dλ).

3.6 Concentration and convergence of random graphs

3.6.1 Bounded difference inequality

Let X1 · · · Xn be metric spaces and let F be a measurable function on X = X1 × · · · × Xn and
P a product measure on X . There is very powerful tool to bound the deviation of F from its
mean when F is Lipschitz for a weighted Hamming distance, i.e. for every x and y in X ,

n∑
k=1

ak1xk 6=yk ≤ F (x)− F (y) ≤
n∑
k=1

bk1xk 6=yk . (3.12)
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for some a = (a1, · · · , an) ∈ Rn−, b = (b1, · · · , bn) ∈ Rn+. We denote by ‖y‖2 =
√∑

i y
2
i , the

usual Euclidean norm.

Theorem 3.20 (Azuma-Hoeffding’s inequality) Let F be as above, then

P

(
F −

∫
FdP ≥ t

)
≤ exp

(
−2t2

‖b− a‖22

)
.

This type of result is called a concentration inequality. It has found numerous applications in
mathematics over the last decades. For more on concentration inequalities, we refer to Ledoux
(2001). As a corollary, we deduce the Hoeffding’s inequality.

Corollary 3.21 (Hoeffding’s inequality) Let (Xk)1≤k≤n be an independent sequence of real
random variables such that for all integer k, Xk ∈ [ak, bk]. Then,

P

(
n∑
k=1

Xk − EXk ≥ t

)
≤ exp

(
−t2

2
∑n

k=1(bk − ak)2

)
. (3.13)

The proof of theorem 3.20 will be based on a lemma due to Hoeffding.

Lemma 3.22 Let X be real random variable in [a, b] such that EX = 0. Then, for all λ ≥ 0,

EeλX ≤ e
λ2(b−a)2

8 .

Proof. By the convexity of the exponential,

eλX ≤ b−X
b− a

eλa +
X − a
b− a

eλb.

Taking expectation, we obtain, with p = −a/(b− a),

EeλX ≤ b

b− a
eλa − a

b− a
eλb

=
(

1− p+ peλ(b−a)
)
e−pλ(b−a)

= eϕ(λ(b−a)),

where ϕ(x) = −px+ ln(1− p+ pex). The derivatives of ϕ are

ϕ′(x) = −p+
pex

(1− p)e−x + p
and ϕ′′(x) =

p(1− p)
((1− p)e−x + p)2 ≤

1

4
.

Since ϕ(0) = ϕ′(0) = 0, we deduce from Taylor expansion that

ϕ(x) ≤ ϕ(0) + xϕ′(0) +
x2

2
‖ϕ′′‖∞ ≤

x2

8
.
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2

Proof of theorem 3.20. Let (X1, · · · , Xn) be a random variable on X with distribution P . We
shall prove that

P(F (X1, · · · , Xn)− EF (X1, · · · , Xn) ≥ t) ≤ exp

(
−t2

2‖b− a‖22

)
.

For integer 1 ≤ k ≤ n, let Fk = σ(X1, · · · , Xk), Z0 = EF (X1, · · · , Xn), Zk = E[F (X1, · · · , Xn)|Fk],
Zn = F (X1, · · · , Xn). We also define Yk = Zk − Zk−1, so that E[Yk|Fk−1] = 0. Finally,
let (X ′1, · · · , X ′n) be an independent copy of (X1, · · · , Xn). If E′ denote the expectation over
(X ′1, · · · , X ′n), we have

Zk = E′F (X1, · · · , Xk, X
′
k+1, · · · , X ′n).

It follows by (3.12)

Yk = E′F (X1, · · · , Xk, X
′
k+1, · · · , X ′n)− E′F (X1, · · · , Xk−1, X

′
k, · · · , X ′n) ∈ [ak, bk].

Since E[Yk|Fk−1] = 0, we may apply Lemma 3.22: for every λ ≥ 0,

E[eλYk |Fk−1] ≤ e
λ2(bk−ak)2

8 .

This estimates does not depend on Fk−1, it follows that

Eeλ(Zn−Z0) = E[eλ
∑n
k=1 Yk ] ≤ e

λ2‖b−a‖22
8 .

From Chernov bound, for every λ ≥ 0,

P(F (X1, · · · , Xn)− EF (X1, · · · , Xn) ≥ t) ≤ exp

(
−λt+

λ2‖b− a‖22
8

)
.

Optimizing over the choice of λ, we choose λ = 4t/‖b− a‖22. 2

3.6.2 Almost sure convergence of Erdős-Rényi random graphs

Let Gn be an Erdős-Rényi graph with distribution G(n, λ/n) with λ > 0 and n ∈ N. As above,
we consider the random probability measure on G∗:

U(Gn) =
1

n

n∑
i=1

δ[Gn(i),i],

where δ is the Dirac mass. The measure U(Gn) corresponds to the distribution of the random
rooted graph [Gn(ø), ø] where the root is drawn uniformly over the vertex set.

Theorem 3.23 (Almost sure local weak convergence of Erdős-Rényi graphs) Let λ >

0 and for integer n ≥ 1, Gn
d∼ G(n, λ/n) built on a common probability space. As n goes to

infinity, a.s. U(Gn) GWT(Poiλ).
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Proof. Define ρn = U(Gn), A = {[G] ∈ G∗ : (G)t ' H} where H is a finite rooted graph of
diameter at most t. From theorem 3.12, it is sufficient to check that |ρn(A)−Eρn(A)| converges
a.s. to 0. For 1 ≤ k ≤ n, let Zk = {1 ≤ i ≤ k : {i, k} ∈ En}, where En is the edge set of Gn.
The vector (Z1, · · · , Zn) is an independent vector and for some function F (depending on n) :

ρn(A) =
n∑
i=1

δ[Gn,i](A) =
n∑
i=1

1(Gn,i)t'H = F (Z1, · · · , Zn).

If Xk is the set of subsets of [k], F is a function from X = X1× · · · ×Xn to N. We cannot apply
directly theorem 3.20 since the function F is Lipschitz with bad constants in (3.12). We shall
reduce our set X to obtain better Lipshitz constants. This makes the proof a little cumbersome.

Let M = max1≤i≤n |Zi|. For each 1 ≤ i ≤ n, the variable |Zi| is a Binary random variable
Bin(i− 1, λ/n). For θ ≥ 0, hence

Eeθ|Zi| =
(

1− λ

n
+
λ

n
eθ
)i−1

≤ eλ(eθ−1).

From Chernov bound, we get

P(M ≥ log n) ≤ nP(|Z1| ≥ log n)

≤ ne−θ logneλ(eθ−1). (3.14)

We define En, Pn, as the conditional expectation and probabilities given {M < log n}. Since
0 ≤ ρn(A) ≤ 1, we find easily

|EnF − EF | ≤ 2
P(M ≥ log n)

1− P(M ≥ log n)
.

Choosing any θ > 1 in (3.14) yields to

lim
n→∞

|EnF − EF | = 0. (3.15)

Let c =
∑t−1

s=0 d
s, where d is the maximal degree of H and take n sufficiently large such

that log n ≥ c. We define X̃k as the set of subsets of [k] of cardinal less than log n, and
X̃ = X̃1 × · · · × X̃n. As a function on X̃ , F satisfies (3.12) with −ak = bk = 2c log n. Indeed,
assume that xk = yk for all but one coordinate, say i. Let G be the graph with edge set
x1 ∪ · · · ∪ xi−1 ∪ xi+1 ∪ · · · ∪ xn. To affect the value of F (x) − F (y) an edge must be of the
type {i, j} where 1 ≤ j ≤ i satisfies for some v ∈ [n], j ∈ BG(v, t) and (G, v)t is isomorphic to
a subgraph of H. Also, since the maximal degree in H is d, for this vertex j there is at most
c(log n) vertices v ∈ [n] with j ∈ BG(v, t) and (G, v)t isomorphic to a subgraph of H. Since the
|xi| ≤ log n, we deduce |F (x)− F (y)| ≤ 2c(log n)2.

Given {M ≤ log n}, the vector (Z1, · · · , Zn) is still independent, we deduce from theorem
3.20 that

Pn (|F − EnF | ≥ s) ≤ 2 exp

(
−ns2

8c2(log n)4

)
.
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So finally, we use the inequality

P (|F − EnF | ≥ s) ≤ Pn (|F − EnF | ≥ s) + P (M ≤ log n) .

The conclusion follows from (3.14) with θ = 3, equation (3.15) and Borel-Cantelli lemma. 2

A near consequence of theorem 3.23 and proposition 2.1 is the following.

Corollary 3.24 (Almost sure convergence of subtree counts) Under the assumptions of
3.23, let T be a tree with m edges and c elements in its automorphism group. Then, as n goes
to infinity X(T ;Gn)/n converges a.s. to c−1λm.

Proof (sketch). Let H be a finite graph. From proposition 2.1, it is sufficient to check that
|X(H;Gn)/n − EX(H;Gn)/n| converges a.s. to 0. Define the continuous function f(G, ø) =∑

F⊂G 1ø∈VF 1F'H . We have

nU(Gn)(f) =
n∑
i=1

∑
F'H

1i∈VF 1F⊂Gn = |VH |X(H;Gn).

Note that we cannot apply directly theorem 3.23 since f is not bounded. To overcome this
difficulty, it is in fact simpler to prove directly that a.s. X(H;Gn) converges. We skip the
details, but it is possible to compute the 4-th moment of X(H;Gn). It gives that

E(X(H;Gn)− EX(H;Gn))4 ≤ c′

n2
.

In particular, X(H;Gn)− EX(H;Gn) converges a.s. to 0. 2

Remark 3.25 (Concentration for graph functionals) In the proof of theorem 3.23, we have
checked the following inequality. Assume that L is a map from G(n) to R such that for some
δ, c > 0 and any G = ([n], E) ∈ G(n) with degree bounded by δ and e ∈ E, we have

|L(G)− L(G− e)| ≤ c,

where G− e = ([n], E\{e}). Then, if G
d∼ G(n, p), for any θ > 0 and t > 0, we have

P (|L(G)− µ| ≥ t) ≤ ne−θδenp(eθ−1) + 2 exp

(
−t2

8c2δ2

)
,

where µ = E(L(G)|M ≤ δ) and M was defined in the proof of theorem 3.23. This concentration
inequality is certainly not optimal but it will be useful in a few applications.
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3.6.3 Concentration inequality on uniform matchings

We start with an alternative statement of Azuma-Hoeffding’s inequality.

Theorem 3.26 (Azuma-Hoeffding’s inequality, second form) Let Z0, · · · , Zn be a real mar-
tingale with respect to a filtration F0, · · · ,Fn. Assume that for any integer 1 ≤ k ≤ n, almost
surely Zk − Zk−1 ∈ [ak, bk], then

P (Zn − Z0 ≥ t) ≤ exp

(
−2t2

‖b− a‖22

)
.

Proof. Setting Yk = Zk+1 − Zk, the proof is contained in the proof of theorem 3.20. 2

From this form of Azuma-Hoeffding’s inequality, we are able to derive a concentration in-
equality on matchings. Let ∆ be a finite set with even cardinal. We say that two matchings σ, σ′

on ∆ differ from at most a switch if there exists a subset J , with |J | ≤ 4, such that σ(k) = σ′(k)
for all k ∈ ∆\J . Note that if |∆| is even and σ, σ′ differ from at most a switch then either σ = σ′

(corresponding to J = ∅) or there exist i 6= j such that σ(i) 6= j, σ′(j) = i and σ′(σ(j)) = σ(i)
(corresponding to |J | = 4, see figure 2.1).

The next corollary is stated in (Wormald, 1999, theorem 2.19).

Corollary 3.27 (Concentration on uniform matchings) Let ∆ be a finite set with even
cardinal and F be a real function on matchings of ∆ such that

|F (m′)− F (m)| ≤ c,

if m,m′ differ from at most a switch. Then, if σ is a uniformly drawn matching of ∆,

P (F (σ)− EF (σ) ≥ t) ≤ exp

(
−t2

|∆|c2

)
.

Proof. Without loss of generality, we assume that ∆ = {1, · · · , n}, with n = |∆|. We may
identify a matching of ∆ as the set of n/2 matched pairs. We order these n/2 pairs by the
index of their smallest element. We then define F0 as the trivial σ-algebra and for 1 ≤ k ≤ n/2,
we define Fk as the σ-algebra generated by the first k pairs of matched elements of σ. We
set Zk = E[F (σ)|Fk], so that Z0 = EF (σ), Zn/2−1 = F (σ). By construction, Zk is a Doob
martingale.

Let M(∆) be the set of matchings of ∆. For 1 ≤ k ≤ n/2, an element σ of M(∆) can be
uniquely decomposed into (σ−k−1, σ

+
k ) where σ−k−1 ∈M(∆k−1) is the restriction of σ to the k− 1

smallest pairs and σ+
k ∈M(∆\∆k−1) is the restriction of σ to ∆\∆k−1.

If vk is the smallest element of ∆\∆k−1, we set wk = σ(vk) ∈ ∆\∆k−1, so that ∆k =
∆k−1∪{vk, wk}. Now, for w ∈ ∆\(∆k−1∪{vk}), let Mw denote the set of matchings of ∆\∆k−1



3.6. CONCENTRATION AND CONVERGENCE OF RANDOM GRAPHS 63

such that m(vk) = w. Then for any w,w′ ∈ ∆\(∆k−1 ∪ {vk}), each m ∈ Mw corresponds to a
unique m′ ∈ Mw′ through the switch {{vk, w}, {w′, z}} → {{vk, w′}, {w, z}}, where m(w′) = z.
This gives a bijection between Mw and Mw′ , and we set Nk = |Mw|. By assumption, we deduce
that for any w,w′, ∣∣∣∣∣∣

∑
m∈Mw

F (σ−k ,m)−
∑

m∈Mw′

F (σ−k ,m)

∣∣∣∣∣∣ ≤ c.
Applying the above inequality to wk, we deduce that∣∣∣∣∣∣ 1

Nk

∑
m∈Mwk

F (σ−k ,m)− 1

n− 2k + 1

∑
w∈∆\(∆k−1∪{vk})

1

Nk

∑
m∈Mw

F (σ−k ,m)

∣∣∣∣∣∣ = |Zk − Zk−1| ≤ c.

We may then apply theorem 3.26. 2

3.6.4 Almost sure convergence in the configuration model

For integer n, let dn be an array of variables satisfying assumption (H2). Consider a sequence
(Gn)n∈N of random multigraphs with distribution Ĝ(dn). As usual, we define the random prob-
ability measure on Ĝ∗:

U(Gn) =
1

n

n∑
i=1

δ[Gn(i),i].

Theorem 3.28 (Almost sure LWC in configuration model) Let (dn)n≥1 be an array sat-

isfying (Hp) for some p > 2. Consider a sequence random multigraph Gn
d∼ Ĝ(dn) built on a

common probability space. Then as n goes to infinity, almost surely U(Gn) GWT∗(P ).

Proof. Define ρn = U(Gn) and A = {[G] ∈ G∗ : (G)t ' H} where H is a finite rooted graph
of depth at most t. By theorem 3.15, it is sufficient to check that ρn(A)−Eρn(A) converges a.s.
to 0. We write

nρn(A) =
n∑
i=1

1((Gn(i), i)t ' T ) = F (σ),

where F is a function on matchings of ∆ = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ di} and σ is uniformly
drawn matching on ∆.

Let M = maxi∈[n] di(n) and d be the maximal degree of H and c =
∑t−1

s=0 d
s. If two matchings

m,m′ of ∆ differ by at most a switch then |F (m)−F (m′)| ≤ 4cM . Indeed, a switch changes the
status 4 edges and, arguing as in the proof of theorem 3.23, the addition or the removal of an
edge can modify for at most cM vertices the value of 1((Gn(i), i)t ' H). From corollary 3.27,
we get

P (|F (σ)− EF (σ)| > nt) ≤ 2 exp

(
−n2t2

16|∆|c2M2

)
. (3.16)
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By lemma 1.5, M = o(n1/p). From Borel Cantelli lemma, we deduce that F (σ)−EF (σ) converges
a.s. to 0. 2

Corollary 3.29 (Almost sure LWC in graphs given degree sequences) Let (dn)n≥1 be

an array satisfying (Hp) for some p > 2. Consider a sequence random multigraph Gn
d∼ G(dn)

built on a common probability space. Then as n goes to infinity, almost surely U(Gn)  
GWT∗(P ).

Proof. Let Ĝn
d∼ Ĝ(dn) build from the random matching σ. With the notation of the proof

of theorem 3.28,

P(|ρn(A)− Eρn(A)| ≥ t) ≤ P (|F (σ)− EF (σ)| > nt)

P(Ĝn is a graph)
.

It remains to apply (2.14), lemma 1.6 and (3.16). 2

A consequence of theorem 3.28 and proposition 2.4 is the following. It can be proved along
the line of corollary 3.24.

Corollary 3.30 (Almost sure convergence of subtree counts) Let 1 ≤ k ≤ n, T be a
tree with k vertices and maximal degree bounded by p ≥ 2. Assume that T has c elements in its
automorphism groups. Let (dn)n≥1 be an array satisfying (H4p) and consider a sequence random

multigraph Gn
d∼ Ĝ(dn) built on a common probability space. Then a.s.

lim
n

X(T ;Gn)

n
= c−1(ED)−k−1

k∏
i=1

E
[
(D)deg(i;T )

]
,

where D has distribution P .

Remark 3.31 (Concentration for graph functionals) The proof of theorem 3.28 contains
the following concentration inequality. Let d = (d1, · · · , dn) be integer vector with S =

∑n
i=1 di

even. Assume that L is a map from Ĝ(d) to R such that for some c > 0 and any G,G′ ∈ Ĝ(d)
which differ by a single switch of edges, we have

|L(G)− L(G′)| ≤ c,

Then, if G
d∼ Ĝ(d), for any t > 0,

P (|L(G)− EL(G)| ≥ t) ≤ 2 exp

(
−t2

c2S

)
.

If moreover d is graphic, then the same bound holds for G
d∼ G(d) by replacing EL(G) by EL(Ĝ)

and the constant 2 in front of the exponential by 2/P(Ĝ is a graph) where Ĝ
d∼ Ĝ(d).



Chapter 4

The giant connected component

In this chapter, we will study the size of the connected components of our random graphs. In the
first two sections, we shall start with some classical results on Galton-Watson trees and random
walks.

4.1 Growth of Galton-Watson trees

A GWT can be an infinite or a finite tree. Consider a GWT with offspring distribution P , and
let Zn = |V ∩ Nn| be the total number of n-th generation vertices, we have

Z0 = 1 and Zn+1 =
∑

i∈V ∩Nn
Ni,

with the usual convention that the sum over an empty set is 0. We denote by (Xn,1, · · · , Xn,Zn)
the number of offsprings of n-th generation vertices, we get

Z0 = 1 and Zn+1 =

Zn∑
i=1

Xn,i. (4.1)

The collection (Xn,i) is an i.i.d. array of random variables with distribution P . The process
(Zn), n ∈ N, is called a Galton-Watson branching process. It represents the evolution with
generations of the size of a population. There are Zn individual of generation n and all individuals
give birth independently of a random number of children with common distribution P . It is clear
that the state 0 is an absorbing state of the process (Zn), n ∈ N. The probability of extinction ρ
is defined as

ρ = P(∃n ≥ 1 : Zn = 0) = P
( ∑
n≥0

Zn <∞
)
.

65
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The probability of extinction is the probability that the GWT is finite. We define the generating
function, for z ∈ [0, 1],

ϕ(z) = E[zX ] =
∑
k≥0

P ({k})zk,

where X has distribution P .

Theorem 4.1 (Extinction probability for GWT) For a GWT with offspring distribution
P ,

(i) If EX < 1, then ρ = 1.

(ii) If EX > 1, then ρ is the unique fixed point in (0, 1) of x = ϕ(x).

(iii) If EX = 1 and P(X = 1) < 1 then ρ = 1.

For a GWT with degree distribution P , we still denote by ρ the probability of extinction,
i.e. the probability that the tree is finite. Let X̂ be a random variable with distribution P̂ and

ϕ̂(z) = E[zX̂ ] =
∑

k≥0 P̂ ({k})zk be the generating function of P̂ . With the above notation for
P , we find

ϕ̂(z) =
ϕ′(z)

ϕ′(1)
and EX̂ =

E[X(X − 1)]

E[X]
.

Corollary 4.2 (Extinction probability for GWT∗) For a GWT with degree distribution P
and 0 <

∑
` `P (`) <∞,

(i) If E[X(X − 2)] < 0, then ρ = 1.

(ii) If E[X(X − 2)] > 0, then ρ = ϕ(ρ̂) where ρ̂ is the unique fixed point in (0, 1) of x = ϕ̂(x).

(iii) If E[X(X − 2)] = 0 and P(X = 2) < 1 then ρ = 1.

Corollary 4.3 (Extinction probability for Poisson-GWT) If the offspring distribution is
Poiλ for some λ > 0. Then if λ ≤ 1, ρ = 1, while if λ > 1, ρ is the unique solution in (0, 1) of
the equation

x = eλ(x−1). (4.2)

Proof of theorem 4.1. We define the moment generating function of Zn, ϕn(x) = E[xZn ]. From
(4.1), it follows that

ϕ0(x) = x and ϕn+1(x) =
∑
k

P(Zn = k)E

[
k∏
i=1

xXn,i

]
= ϕn(ϕ(x)).
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We deduce that ϕn = ϕ ◦ · · · ◦ ϕ is the n-th composition of ϕ. The event {Zn = 0} is non-
decreasing in n. It follows that

ρ = lim
n

P(Zn = 0) = lim
n
ϕn(0).

Now ρn = ϕn(0) satisfies ρ0 = 0, ρn+1 = ϕ(ρn) and limn ρn = ρ. We deduce that ρ is the
smallest solution in [0, 1] of the equation x = ϕ(x).

Since ϕ is convex, the derivative of f(x) = ϕ(x) − x, f ′(x) = ϕ′(x) − 1 is non-decreasing,
f ′(1) = EX − 1. If EX < 1, f is decreasing and the unique fixed point of ϕ is ρ = 1. If EX > 1,
f there is a second fixed point in (0, 1). This proves (i)− (ii).

For (iii), we notice that if EX = 1, then Zn is a non-negative mean one martingale with
respect to the filtration Fn = σ(Z0, Z1, · · · , Zn). Let F∞ = σ(∪nFn), from Doob’s martingale
convergence theorem, there exists a F∞-measurable random variable Z, such that a.s. limn Zn =
Z and Zn = E[Z|Fn]. Let A = {Z = 0}, since Zn = 0 implies Z = 0, we have ρ = P(A).
Similarly, E[1A|Fn] is a bounded martingale and from Doob’s martingale convergence theorem,
a.s. limn E[1A|Fn] = 1A (Levy’s 0-1 law).

Now, we notice that P(A|Fn) ≥ P(Xn,1 = · · · = Xn,Zn = 0) = P ({0})Zn > 0. From what
precedes Zn converges a.s. to Z and we deduce that a.s.

1A = lim
n

E[1A|Fn] ≥ P ({0})Z > 0.

It follows that a.s. 1A = 1. 2

Proof of corollary 4.2. Let T be a GWT∗(P ), for 1 ≤ i ≤ Nø, let Ti be the rooted subtree of T
on the vertex set Vi = V ∩ {i ∈ Nf : i1 = i}. Then T1 · · · , TNø are i.i.d. GWT(P̂ ), independent
of Nø. The event {T is finite} is equal to the event that all subtrees are finite, hence,

ρ =
∑
k≥0

P(Nø = k)ρk = ϕ(ρ).

To conclude, we apply theorem 4.1. 2

Corollary 4.4 (Growth of GWT) With the above notation, let µ = EX and µ̂ = EX̂ =
E[X(X − 1)]/E[X].

(i) For a GWT with offspring or degree distribution P , there exists a random variable W such
that a.s.

lim
n

Zn
µn

= W.

(ii) For a GWT with degree distribution P , there exists a random variable W such that a.s.

lim
n

Zn
µµ̂n−1

= W.
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Moreover, conditioned on non-extinction, W is positive. Finally, if
∫
xpdP <∞ for some p > 1

in case (i) or p > 2 in case (ii) then EW = 1.

Proof. We note that for (i) and (ii), Zn/µ
n and Zn/(µµ̂

n−1) are non-negative martingale with
mean 1 with respect to their natural filtration. The statement follows then from the martingale
convergence theorem. 2

We conclude this section with the continuity of the extinction probability as a function of
the offspring distribution. For a probability measure P ∈ P(Z+), we define ρ(P ) ∈ [0, 1] as the
smallest solution of ϕ(x) = x where ϕ is the generating function of P .

Lemma 4.5 (Continuity of extinction probability) The map P 7→ ρ(P ) from P(Z+) to
[0, 1] is continuous for the weak convergence at any P 6= δ1.

Proof. Take P 6= δ1. Fix a sequence of probability measures Pn with Pn  P . Setting
ρn = ρ(Pn), ρ = ρ(P ) we should prove that ρn → ρ. We denote by ϕn and ϕ the generating
functions of Pn and P . For any ε > 0, we have the uniform convergence

max
x∈[0,1−ε]

|ϕn(x)− ϕ(x)| → 0. (4.3)

We first prove that lim infn ρn ≥ ρ. Consider a subsequence of ρn′ converging to ρ′ ∈ [0, 1]. If
ρ′ < 1 then for some ε > 0 and all n′ large enough ρn′ ∈ [0, 1 − ε]. Hence using (4.3), we find
that

0 = ϕn′(ρn′)− ρn′ = ϕ(ρn′)− ρn′ + o(1) = ϕ(ρ′)− ρ′ + o(1).

In particular ϕ(ρ′) = ρ′ and ρ′ = ρ < 1 since there is at most one solution in [0, 1) of ϕ(x) = x.
Indeed, since P 6= δ1, ϕ is strictly convex.

To conclude of the proof of the lemma, it remains to check that lim supn ρn ≤ ρ. We may
assume that ρ < 1 otherwise there is nothing to prove. Fix any x ∈ (ρ, 1), the function ϕ being
strictly convex ϕ(x)− x < 0. From (4.3), we deduce that for all n large enough, ϕn(x)− x < 0.
In particular ρn < x. Since x may be arbitrarily close to ρ, we get lim supn ρn ≤ ρ. 2

4.2 Random walks and branching processes

We consider a Galton-Watson Branching process (Zn)n≥0 with offspring distribution P :

Z0 = 1 and Zn+1 =

Zn∑
i=1

Xn,i,

where (Xn,i), (n, i) ∈ N2, is an i.i.d. array of random variables with distribution P . When the
process reaches 0, we pay attention to the total population size

τ =
∑
n≥0

Zn.
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We will interpret τ has the time that a random walk hits 0. Informally, imagine that we reveal
one by one, for each individual, its number of offsprings. For integer t ≥ 0, we define At as the
set of active individuals, i.e. the set of individuals whose parent has been revealed but whose
offsprings are still unknown. At time 0, there is one ancestor individual in A0. For integer t ≥ 0,
if At 6= ∅, we pick an individual in At. We remove this individual from At, add its offsprings
and we get At+1. The process stops when At is empty for the first time.

More formally, an individual is defined as a couple v = (n, i), n ≥ 1, 1 ≤ i ≤ Zn, where
n is its generation, and i its index within its generation. The individual v has Xv = Xn,i

offsprings. Now since Zn+1 is the sum of the number of offsprings of generation n individuals,
we may define the set of offsprings of (n, 1) as I(n,1) = {(n+ 1, 1), · · · , (n+ 1, Xn,1)}, of (n, 2) as

I(n,2) = {(n + 1, Xn,1 + 1), · · · , (n + 1, Xn,1 + Xn,2)} and up to I(n,Zn) = {(n + 1,
∑n−1

k=1 Xn,k +
1), · · · , (n+ 1, Zn+1)}. We set A0 = {(0, 1)}. For integer t ≥ 0, if At 6= ∅, we define vt+1 as the
oldest individual in At (i.e. the smallest individual in lexicographic order) and set

At+1 = At\{vt+1} ∪ Ivt+1 .

Notice that |Ivt+1 | is independent from At. In particular, if St = |At| and Xt+1 = Xvt+1 , we have
S0 = 1 and

St+1 = St − 1 +Xt+1,

and (Xt) is an i.i.d. sequence with distribution P . (St) is nothing else that a random walk with
i.i.d. increment (Xt − 1). Moreover

τ = inf{t ≥ 1 : St = 0}.

Therefore, hitting time properties on random walks translate into properties on the the total
population size in Galton-Watson branching processes.

4.3 Hitting time for random walks

Let P be a probability measure on R and let X, (Xn), n ∈ N, be a sequence of i.i.d random
variables with distribution P . For integer t ≥ 1, let St = x+

∑t
i=1Xi be a simple random walk

starting at S0 = x > 0. (St) is a Markov chain and we denote by Px is distribution given S0 = x.
We define

τ = inf{t ≥ 1 : St ≤ 0}.

We assume that E|X| <∞. It follows easily from the law of large numbers that if EX < 0 then
τ is a.s. finite while if EX > 0, the event {τ = ∞} has positive probability under Px, x ≥ 0.
Recall that if the characteristic function ϕ(θ) = EeθX is differentiable in a neighborhood of 0
then

ϕ′(0) = EX.

In particular if EX < 0, there exists θ > 0 such that ϕ(θ) < 1. Similarly, if EX > 0, there exists
θ < 0 such that ϕ(θ) < 1.
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Theorem 4.6 (Hitting time estimates) Let X be a real random variable and (St)t≥0 be as
above.

(i) If EX < 0, let θ > 0 in the domain of ϕ such that ϕ(θ) ≤ 1. Then Px(τ ≥ t) ≤ eθxϕ(θ)t.

(ii) If EX > 0, let θ < 0 in the domain of ϕ such that ϕ(θ) ≤ 1. Then Px(τ <∞) ≤ eθx.

Proof. Assume first that EX < 0. Mt = eθSt/ϕ(θ)t is non-negative martingale with mean
M0 = eθx with respect to the filtration Ft = σ(S0, · · · , St). From Doob’s optional stopping time
theorem, we have

Ex[Mτ ] ≤ Ex[ϕ(θ)−τ ] = eθx.

Then, since 0 < ϕ(θ) ≤ 1, from Markov inequality,

P(τ ≥ t) = P(ϕ(θ)−τ ≥ ϕ(θ)−t) ≤ eθxϕ(θ)t.

Assume now that EX > 0. Let (Mt) be as above and t ≥ 1 be a fix integer. From Doob’s
optional stopping time theorem, we have

Ex[Mτ∧t] = eθx.

Now, we notice that Mτ∧t ≥ 1τ≤tMτ . In particular, since Mτ ≥ ϕ(θ)−τ ≥ 1, we get

P(τ ≤ t) ≤ eθx.

The above inequality holding for all t ≥ 1, we deduce statement (ii). 2

Corollary 4.7 (Hitting time for Binary variables) Let λ > 0, n be an integer, and α =
λ−1− log λ > 0. We assume that X = Y −1 where Y is a binary random variable Bin(n, λ/n).
Then

(i) If λ < 1, then Px(τ ≥ t) ≤ λ−xe−αt.

(ii) If λ > 1, then Px(τ <∞) ≤ λ−x.

Proof. From the inequality for all real z, (1 + z) ≤ ez, we get for real θ,

EeθY1 =

(
1− λ

n
+
λ

n
eθ
)n
≤ eλ(eθ−1).

The left hand side if the characteristic function of a Poisson random variable. We get

ϕ(θ) ≤ eλeθ−λ−θ.

We then minimize the exponential over θ, it gives θ = − log λ and ϕ(θ) ≤ e−α. We may now
apply theorem 4.8. 2

The next lemma is a follows direcetly from Chernov bound.



4.3. HITTING TIME FOR RANDOM WALKS 71

Lemma 4.8 (Chernov bound) Let X be a real random variable and (St)t≥0 be as above and
ϕ(θ) = EeθX . Then for any x > 0 and integer t ≥ 0,

(i) If θ > 0 is in the domain of ϕ then P0(St − ESt ≥ x) ≤ e−θxϕ(θ)te−tθEX .

(ii) If θ < 0 is in the domain of ϕ then P0(St − ESt ≤ −x) ≤ eθxϕ(θ)te−tθEX .

Corollary 4.9 (Chernov bound for Binary variables) Let λ > 0, n be an integer, and
γ(x) = (x+ 1) log(1 + x)− x ≥ 0. We assume that X is a binary random variable Bin(n, λ/n),
and let (St)t≥0 be as above. Let x > 0, then

(i) P0(St − tλ ≥ λtx) ≤ e−λtγ(x).

(ii) P0(St − tλ ≤ −λtx) ≤ e−λtγ(x).

Theorem 4.10 (Hitting time for heavy-tailed variables) Let X be real random variable
and (St)t≥0 be as above. If EX < 0 and E|X|α < ∞ for some α ≥ 1, then for any x ≥ 0,
Ex[τα] <∞.

Lemma 4.11 If Y is a real random variable such that EY < 0 and E|Y |α <∞ for some α ≥ 1.
There exists a constant x0 > 0 such that for all x ≥ x0, E|x+ Y |α ≤ xα.

Proof. It is sufficient to prove that,

lim
x→∞

E
[
x
(
|1 + x−1Y |α − 1

)]
= αEY < 0.

Let n = [α] ≥ 1 be the integer part of α, and r = α−n ∈ [0, 1). For all y ≤ 0, (1+y)u ≤ 1+yu∧y,
and

(1 + y)α = (1 + y)n(1 + y)u ≤ 1 + y +

n∑
k=1

(
n

k

)
(yk + yk+u).

For all x > 0, |1 + x−1Y |α ≤ (1 + |x−1Y |)α, we get

x

(∣∣∣∣1 +
Y

x

∣∣∣∣α − 1

)
≤ |Y |+

n∑
k=1

(
n

k

)(
|Y |k

xk−1
+
|Y |k+u

xk+u−1

)
.

The conclusion follows by dominated convergence. 2

Proof of theorem 4.10. We set S0 = x and µ = EX. There exists L > 0, such that
EX1X≥−L < 0. The hitting time of the negative half plane of the random walk with increments
(Xt1Xt≥−L)t is larger than the hitting time of the original random walk with increments (Xt)t.
It is thus sufficient to prove the theorem for a random variable X with support in [−L,∞) for
some L > 0. Then since Sτ−1 > 0, we note that Sτ ≤ −L. We introduce the random variables

Yt = 1− 2Xt

|µ|
and Mt =

t∑
s=1

Ys = t− 2(St − x)

|µ|
.
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we write

τα =

(
τ∑
t=1

(1− 2

|µ|
Xt) +

2

|µ|

τ∑
t=1

Xt

)α
≤ 2α−1

(
|Mτ |α +

(
2|Sτ − x|
|µ|

)α)
≤ 2α−1|Mτ |α + 2α−1

(
2(L+ x)

|µ|

)α
.

It is thus sufficient to prove that E|Mτ |α < ∞. For t integer, let Zt = |Mt∧τ |α, then (Zt)t
converges a.s. to |Mτ |α and

EZt ≤ E

(
t∑

s=1

|Ys|

)α
≤ tα−1

t∑
s=1

E |Ys|α ≤ tαE |Y1|α <∞.

Now, since {τ ≥ t+ 1} is Ft-measurable,

E[Zt+1 − Zt] = E[(Zt+1 − Zt)1τ≥t+1]

= E
[
E
[
|Mt+1|α − |Mt|α

∣∣ Ft]1τ≥t+1

]
= E

[
E
[
|Mt + Yt+1|α − |Mt|α

∣∣ Ft]1τ≥t+1

]
By construction, for all 1 ≤ t < τ , St > 0, and in particular, Mt = t − 2(St − x)/|µ| > t. We
may then apply lemma 4.11, we get that for all t ≥ x0, E[Zt+1 − Zt] ≤ 0. We have proved that

sup
t≥1

EZt ≤ sup
1≤t≤x0

EZt <∞.

We conclude by Fatou’s lemma: E|Mτ |α ≤ lim inft EZt <∞. 2

Remark 4.12 Let (Pn)n be a sequence of probability measures on R. We assume that under
Pn, (Xt)t≥1 is an i.i.d. sequence with distribution Pn. We consider the random walk St =
x+

∑t
s=1Xs started at x > 0. We assume that for some µ < 0, for all n, EnX =

∫
xdPn ≤ µ,

and that the random variable |X|α is uniformly integrable over (Pn)n. Then the proof of theorem
4.10 actually shows that there exists a constant C > 0, such that for all n, Enτα < C.

4.4 Emergence of the giant component

We now take interest to existence of a giant connected component in a random graph. To be
more precise, let G = (V,E) be a locally finite graph. For v ∈ V , we define G(v) as the connected
component of the graph G that contains the vertex v. If V is finite, we may take interest to the
size of the largest component: maxv∈V |G(v)|. If G is an Erdős-Rényi random graph, there is a
celebrated phase transition for the size of the largest component.
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Theorem 4.13 (Giant component in Erdős-Rényi graph) Let λ > 0, α = λ−1− log λ >
0, and let Gn be a sequence of Erdős-Rényi graphs with distribution G(n, λ/n) built on a common
probability space.

(i) If 0 < λ < 1, then for any c > 1/α,

lim
n→∞

P
(

max
v∈[n]

|Gn(v)| ≥ c log n

)
= 0.

(ii) If λ > 1, then a.s.

lim
n→∞

maxv∈[n] |Gn(v)|
n

= 1− ρ,

where ρ is given by (4.2). Moreover there exists c > 0 such that a.s. for all n large enough
the second largest connected component is larger that c log n.

This theorem is consistent with theorem 3.12. Indeed, (Gn(1), 1) converges in distribution to
GWT(Poiλ). Since the event {|Gn(1)| ≤ t} is measurable with respect to (G(1), 1)t, we deduce
that

lim
n

P(|Gn(1)| ≤ t) = P(τ ≤ t),

where τ is the total population of a Galton-Watson branching process with offspring distribution
Poiλ. We deduce that

lim
t→∞

lim
n

P(|Gn(1)| ≤ t) = ρ.

In the proof of theorem 4.13, we shall see that if 0 < λ < 1, a.s.

lim sup
n→∞

maxv∈[n] |Gn(v)|
log n

≤ 2

α
.

Similarly, if G is a graph with given degree sequence, there is a phase transition for the
size of the largest component. The probability of extinction of a Galton-Watson with degree
distribution P is a scalar ρ given by corollary 4.2(ii):

ρ = ϕ(ρ̂) with ρ̂ smallest solution of ϕ̂(z) = z. (4.4)

Theorem 4.14 (Giant component in configuration model) Let (dn)n≥1 be an array sat-

isfying (H2). Consider a sequence random multigraph Gn
d∼ Ĝ(dn) built on a common probability

space. Let D be a random variables with distribution P .

(i) If ED(D − 2) < 0 and (H1+α) holds for some α > 1 then for any c > 1/α,

lim
n→∞

P
(

max
v∈[n]

|Gn(v)| ≥ nc
)

= 0.
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(ii) If ED(D − 2) > 0, then a.s.

lim
n→∞

maxv∈[n] |Gn(v)|
n

= 1− ρ,

where ρ is given by (4.4). Moreover there exists c > 0 such that a.s. for all n large enough
the second largest connected component is larger that c log n.

The statement of theorem 4.14(i) could not be much improved. Indeed, notice that the
maximum degree of a graph is a lower bound on the size of the largest connected component.
However, if β > α and P(D ≥ t) ∼ t−1−β then ED1+α <∞ and the maximum degree in Gn will
typically be of order n1/(1+β).

Using corollary 2.20, we will find that

Corollary 4.15 (Giant component in configuration model) Let (dn)n≥1 be an array sat-

isfying (H2). Consider a sequence random multigraph Gn
d∼ G(dn) built on a common probability

space. Then the conclusion of theorem 4.14 also holds for Gn.

In the next two sections, we give a proof of theorems 4.13, 4.14. It will be based on the
correspondence between random walk and branching processes. For example, for the proof of
theorem 4.13, we will explore the connected component G(v) as in (3.5). With the notation of
section 4.2, we define Xt = |It| and St = |At|. So that

St = 1 +

t∑
k=1

(Xk − 1) , |Ut| = n− 1−
t∑

k=1

Xk

and
|G(v)| = τ = inf{t ≥ 1 : St = 0}.

We will have to deal with a non-homogeneous random walk.

4.5 Erdős-Rényi graph : proof of theorem 4.13

4.5.1 Proof of theorem 4.13(i)

Step one : coupling from above. Let G = Gn is an Erdős-Rényi graph with distribution
G(n, λ/n) and 0 < λ < 1. We consider the exploration procedure (3.5) started from v ∈ [n]. We
introduce the filtration Ft = σ((A0, U0, C0), · · · , (At, Ut, Ct)). The hitting time τ is a stopping
time for this filtration. Also, for integer t ≥ 0, given Ft, if {t < τ}, Xt+1 has distribution
a binary random variable Bin(|Ut|, λ/n). In particular, if ξt+1 is given Ft, a binary variable
Bin(n−|Ut|, λ/n) independent of Xt. Then Yt+1 = Xt+1 + ξt+1 is a binary variable Bin(n, λ/n).
In particular,

t∧τ∑
i=1

Xi ≤
t∧τ∑
i=1

Yi.
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It follows that

τ ≤ τ+ = inf

{
t ≥ 1 : 1 +

t∑
i=1

(Yi − 1) = 0

}
. (4.5)

Step two : fast extinction. Now, from corollary 4.7, we deduce that

P(τ+ ≥ t) ≤ λ−1e−αt. (4.6)

Let c > 1/α. It follows that, for v ∈ [n],

P(τ ≥ c log n) = P(|G(v)| ≥ c log n) ≤ λ−1n−αc.

The union bond yields to

P
(

max
v∈[n]

|G(v)| ≥ c log n

)
≤ λ−1n1−αc.

We obtain theorem 4.13(i).

4.5.2 Proof of theorem 4.13(ii)

Step one : coupling from below. This time we shall try to lower bound Xt. We assume
that λ > 1. Let 1/2 < β < 1, we define the stopping time

τβ = τ ∧ inf

{
t ≥ 1 :

t∑
i=1

Xi ≥ 2nβ

}
.

Also, for integer t ≥ 0, given Ft, if {t < τβ}, Xt+1 has distribution a binary random variable
Bin(|Ut|, λ/n) and |Ut| ≥ n − 2nβ. In particular, on the event if {t < τβ}, we may define
Zt+1 =

∑
u 1{vt+1,u}∈E , where the sum is over the first m = n − d2nβe elements of Ut in

lexicographic order. By construction, given Ft, Zt+1 is a binary variable Bin(m,λ/n) and
Xt+1 ≥ Zt+1. In particular,

t∧τβ∑
i=1

Zi ≤
t∧τβ∑
i=1

Xi. (4.7)

Step two : fast extinction or long survival. For ease of notation for any positive real, we
set At(v) = Abtc(v) where we write At(v) in place of At to explicit the dependence of the starting
point in the exploration procedure. We are first going to prove with probability tending to 1, for
all vertices v, either |G(v)| ≤ c1 log n or |Anβ (v)| ≥ c2n

β, where c1, is a positive constants that
will be chosen later and any 0 < c2 < 1 ∧ (λ − 1). Note in particular that this implies that for
all vertices either |G(v)| ≤ c1 log n or |G(v)| ≥ c2n

β. The complement of this event is contained
in the event

Ωn =
{
∃v ∈ [n] : Ac1 logn(v) 6= ∅ and ∃ c1 log n ≤ t ≤ nβ : |At(v)| ≤ c2t

}
.
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From the union bond, its probability is upper bounded by

P(Ωn) ≤ nP
(
Ac1 logn 6= ∅ and ∃ c1 log n ≤ t ≤ nβ : |At| ≤ c2t

)
≤ nP

(
Ac1 logn 6= ∅ and ∃ c1 log n ≤ t ≤ nβ : |At∧τβ | ≤ c2(t ∧ τβ)

)
. (4.8)

Indeed, if for some integer t,
∑t

i=1Xi ≥ 2nβ then for all t ≤ s ≤ nβ, |As| ≥ 1 + 2nβ − s > s
(recall that |At| = 1− t+

∑t
i=1Xi). We may thus use (4.7),

P
(
Ac1 logn 6= ∅ and ∃ c1 log n ≤ t ≤ nβ : |At∧τβ | ≤ c2(t ∧ τβ)

)
≤

∞∑
t=dc1 logne

P

(
t∑
i=1

Zi ≤ (1 + c2)t

)
.

We define λ′ = EZ1 = mλ
n = λ(1 − d2nβe/n), then for all n large enough, λ′ − 1 is larger than

c2. It follows

P

(
t∑
i=1

Zi ≤ (1 + c2)t

)
= P

(
t∑
i=1

(Zi − λ′) ≤ −t(λ′ − 1− c2)

)

≤ e
−λ′tγ

(
λ′−1−c2

λ′

)
,

where we have applied corollary 4.9. From (4.8), it follows easily that

P (Ωn) ≤ n
1−c1λ′γ

(
λ′−1−c2

λ′

)

1− n1−c1λ′γ
(
λ′−1−c2

λ′

) .
Now as n goes to infinity, λ′ converges to λ. Thus, if we pick some c1 > 1/(λγ(λ− 1− c2)/λ)),
we have proven that with probability tending to 1, for all vertices v, either |G(v)| ≤ c1 log n or
|Anβ (v)| ≥ c2n

β.

More generally, for any a > 0, the constant c1 can be taken large enough so that Ωn has
probability O(n−a).

Step three : at most one giant component. Assume that Ωc
n holds and that there are

two vertices u, v such that |G(u)| ≥ c1 log n and |G(v)| ≥ c1 log n. Then, either the exploration
processes will intersect by step nβ and G(v) = G(u) or they have disjoint active sets At(u), As(v),
for all 0 ≤ s, t ≤ nβ and Anβ (u), Anβ (v) have cardinal at least c2n

β. In such case, given
(Anβ (u), Cnβ (u), Anβ (v), Cnβ (v)), the probability that there is no edge between Anβ (u) and
Anβ (v) is (

1− λ

n

)|A
nβ

(u)||A
nβ

(v)|
≤
(

1− λ

n

)c22n2β

≤ exp
(
−λc2

2n
2β−1

)
.

Hence, since 1/2 < β < 1, we deduce that G(u) = G(v) with probability tending to 1. Thus the
probability that there is at least two components of size at least c1 log n is upper bounded by

P(Ωn) + n2 exp

(
−λc

2
2n

2β−1

2

)
,
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which goes to 0.

We will call the largest connected component of the graph, the giant component of the graph.
We have however not checked yet that there exists with high probability a component of size at
least nβ.

Step four : expected size of the giant component. Let n be an integer large enough
such that c1 log n ≥ 2nβ and τ− = inf{t ≥ 1 : 1 +

∑t
s=1(Zs − 1) = 0}. From (4.7), we note also

that P(|G(v)| ≥ c1 log n) ≥ P(τ− ≥ c1 log n). Also in section 4.2, we have seen that τ− has the
same distribution than the total population in a branching process with offspring distribution
Z1 = Bin(m,λ/n). If ρ− > 0 is the probability of extinction of this branching process, it follows
that

P(|G(v)| ≥ c1 log n) ≥ 1− ρ−.

Similarly, from (4.5),

P(|G(v)| ≥ c1 log n) ≤ P(τ+ ≥ c1 log n) = 1− ρ+ − P(c1 log n ≤ τ+ <∞),

where ρ+ is the probability of extinction of a branching process with offspring distribution
Y = Bin(n, λ/n). Remark that if τ+ = t then

1 +
t∑

s=1

(Ys − λ) = −t(λ− 1).

Hence, by corollary 4.9,

P(c1 log n ≤ τ+ <∞) ≤
∞∑

t=c1 logn

P

(
t∑

s=1

(Ys − λ) ≤ −t(λ− 1)

)

≤
∞∑

t=dc1 logne

e−λtγ(
λ−1
λ )

≤ n1−c1λγ(λ−1
λ )

1− n1−c1λγ(λ−1
λ )

.

For our choice of c1, the above expression goes to 0.

Recall that from (2.7), the binary random variables Bin(n, λ/n) and Bin(m,λ/n), m =
n− 2nβ, converge weakly to a Poisson random variable as n goes to infinity. Hence, by lemma
4.5, as n goes to infinity, ρ− and ρ+ converge to ρ, where ρ is given by (4.2). It yields that for
any v,

lim
n

P(|G(v)| ≥ c1 log n) = 1− ρ.

In particular the expected size of the giant component is equivalent to (1− ρ)n.
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Step five : a.s. size of the giant component. Now, it remains to improve this convergence.
Let Iv = 1|G(v)|≤c1 logn and Ln =

∑n
v=1 1|G(v)|≤c1 logn, we have already proved that

lim
n→∞

ELn
n

= 1− ρ.

The proof of theorem 4.13(ii) will be complete if we prove that a.s.

lim
n→∞

Ln − ELn
n

= 0. (4.9)

We may use a concentration inequality. Note that removing an edge e = {u, v} of the graph G
cannot decrease the function Ln(G). Moreover, if G′ = G − e is the graph where the edge has
been removed, we find

Ln(G′)− Ln(G) ≤ |G′(u)|1|G′(u)|≤c1 logn + |G′(v)|1|G′(v)|≤c1 logn ≤ 2c1 log n.

We may thus use remark 3.25 for δ = log n, θ = 3 and c = 2c1 log n. Statement (4.9) follows
from Borel-Cantelli lemma. 2

4.6 Configuration Model : : proof of theorem 4.14

4.6.1 Proof of theorem 4.14(i)

Step one : coupling from above. Let G = Gn with distribution Ĝ(dn). We consider now
the exploration procedure (3.8) starting from v ∈ [n]. We set τ = inf{t ≥ 1 : |At| = 0}, for
0 ≤ t ≤ τ − 1, εt+1 = 1vt+1∈At and εt = 0 for t > τ . Again, we define Xt = |It| and St = |At|.
So that

St = dv +

t∑
k=1

(Xk − 1− εk) , |Ut| = |∆| − dv −
t∑

k=1

(Xk + 1− εk),

and
|G(v)| = 1 + τ −

∑
t≥1

εt.

We also set

Et =
t∑

k=1

εk.

We consider the filtration Ft = σ((A0, U0, C0), · · · , (At, Ut, Ct)). The hitting time τ is a
stopping time for this filtration. We recall also that |Ut|+ |At| = |∆| − |Ct| = |∆| − 2t and from
(3.9), for every k ≥ 1

P(Xt+1 = k|Ft) =

{ ∑
u∈Ut

1du=k+1(k+1)
|∆|−2t−1 k ≥ 1,∑

u∈Ut
1du=1

|∆|−2t−1 + |At|−1
|∆|−2t−1 k = 0,

(4.10)
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Hence, as for Erdős-Rényi random graphs, we have to deal with a non-homogeneous random
walk. We will rely on coupling techniques. The argument will be slightly more involved. Let
α < β < 1 be a real number that we will chose later on. We order the sequence set d = (d1, · · · dn)
in non-decreasing order, we get a permutation π of [n] such that dπ(1) ≥ dπ(2) · · · ≥ dπ(n). Let
n0 be the number of vertices with degree different from 0. We then define the set

Π+ = {π(i) : 1 ≤ i ≤ n0 − nβ0}. (4.11)

This is the subset of vertices with the n0 − nβ0 larger degrees. We denote by ∆+ = ∪i∈Π+ ∆i

and Q+ denote the distribution on integers,

Q+(k) =
k + 1

|∆+|
∑
i∈Π+

1di=k+1, for k ≥ 0.

We first define a sequence (Yt)t≥1 of i.i.d. variables with distribution Q+, such that for all

1 ≤ t ≤ nβ0 ,

Xt∧τ ≤ Yt∧τ .

This is done explicitly by setting Yt+1 = dut+1 − 1 for some random ut+1 ∈ Π+ such that
P(ut+1 = u|Ft) = du/|∆+|. We order decreasingly the half-edges from 1 to ∆, by setting

(π(1), 1) � (π(1), 2) · · · � (π(1), dπ(1)) � (π(2), 1) · · · � (π(n), dπ(n)).

In particular, ∆+ is the set of |∆+| largest half-edge of ∆. We notice that |∆+| ≤ |∆| − nβ0
and recall that |Ut ∪ At| = |∆| − 2t. Now, let 1 ≤ t ≤ τ ∧ nβ0/2, if σ(et+1) is the k-th largest
half-edge of Ut ∪ At and k ≤ |∆+| then we define ut+1 as the vertex such that the k-th largest
half-edge of ∆. Otherwise, dvt+1 is smaller or equal than any degrees in Π+ and we define ut+1

as the vertex such that the N -th largest half-edge of ∆+ where N is an independent variable
uniformly distributed in ∆+. It follows easily that Pd(Yt+1 ∈ ·|Ft) = Q+ and Xt ≤ Yt.

From what precedes, for 1 ≤ t ≤ nβ0/2,

t∧τ∑
i=1

Xi ≤
t∧τ∑
i=1

Yi.

We set

τ+ = inf

{
t ≥ 1 : 1 +

t∑
i=1

(Yi − 1) = 0

}
.

It follows that for all 1 ≤ t ≤ nβ0/2,

{τ ≥ t} ⊂ {τ+ ≥ t}. (4.12)
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Step two : fast extinction. Now, in Π+, we have removed the nβ0 smallest positive degrees.
By assumption (H0),

lim
n

n0

n
= P(D ≥ 1) > 0. (4.13)

Also, there exists τ ≥ 1 such that q = P(1 ≤ D ≤ τ) > 0. Hence, by assumption (H0), for all n
large enough,

1

n

n∑
i=1

1(1 ≤ di ≤ τ) > q/2.

In particular, for all i ∈ {1, · · · , n}\Π+ and n large enough, di ≤ τ . We deduce that

|∆+| ≥ |∆| −
n∑
i=1

di1(i /∈ Π+) ≥
n∑
i=1

di − τnβ0 .

By assumption (H1), it yields

lim
n→∞

|∆+|
n

= ED.

From assumption (H2) and the definition of Q+, we have proved that

lim
n→∞

E[Y ] = lim
n→∞

∑
i∈Π+

di(di − 1)

|∆+|
=

ED(D − 1)

ED
< 1,

lim
n→∞

E[Y α] = lim
n→∞

∑
i∈Π+

di(di − 1)α

|∆+|
=

ED(D − 1)α

ED
.

We use the inequality E[|Y − 1|α] ≤ 2α−1(EY α + 1). Then, Markov inequality implies that

for any c > 2α−1(ED(D−1)α

ED + 1), for all n large enough and t ≥ 1, P[|Y − 1| ≥ t] < ct−α. This

implies for all 1 < α′ < α that the sequence of distributions P(|Y − 1|α′ ∈ ·) are uniformly
integrable in d = (d1, · · · , dn), n ∈ N.

We may thus apply theorem 4.10 to the variables (Y −1) and the scalar α′ (see remark 4.12).
We get from (4.12) that for some constant c1 > 0, there exists n1 such that for all n ≥ n1, and
1 ≤ t ≤ nβP(D > 0)/4,

P(τ ≥ t) ≤ c1t
−α′ .

Now, let 1/α < c < 1. We could have chosen β and α′ such that 1/α′ < c and c < β < 1,
then for all n all large enough nc ≤ nβP(D > 0)/2. We may thus apply the above inequality to
t = nc, from the union bond, for all n large enough,

P
(

max
v∈[n]

|G(v)| ≥ nc
)
≤ c1n

1−α′c.

We obtain theorem 4.13(i).
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4.6.2 Proof of theorem 4.14(ii)

Step one : coupling from below. Let 1/2 < β < 1, we define again the stopping time

τβ = τ ∧ inf

{
t ≥ 1 : dv +

t∑
i=1

Xi ≥ 4nβ

}
.

We may assume that n is large enough so that |∆| ≥ n0 > 4nβ. As abocve, we consider the
ordering ≺ on the set ∆. We define ∆− as the |∆| − d4nβe smaller terms of ∆. We set

Π− = {i ∈ [n] : ∃1 ≤ j ≤ di, (i, j) ∈ ∆−}.

If |Π−| = m, then Π− is the subset of vertices with the m smaller degrees.

We introduce the distribution on integers,

Q−(k) =
1

|∆−|
∑

(i,j)∈∆−

1di=k+1 =
1

|∆−|
∑
i∈Π−

|∆i ∩∆−|1di=k+1, for k ≥ 0.

We define two independent sequences (Wt)t≥1, (ζt)t≥1 of i.i.d. variables with distribution Q−
and Bernoulli

P(ζt = 1) = 1− P(ζt = 0) =
|∆−|
|∆|

,

such that for all integer t ≥ 1,
Xt∧τβ ≥Wt∧τβζt∧τβ . (4.14)

This is done explicitly by setting Wt+1 = (dut+1 − 1)1ut+1 for some ut+1 ∈ Π− such that

P(ut+1 = u|Ft) =
|∆u ∩∆−|
|∆−|

.

Let 0 ≤ t < τβ, we first notice that |Ut| = |∆| − dv −
∑t

i=1Xi ≥ |∆| − d4nβe = |∆−|. Now
if σ(et+1) is the k-th smallest half-edge of Ut and k ≤ |∆−| then we define ut+1 as the vertex
such that the k-th smallest half-edge of ∆− is in ∆ut+1 . This event {k ≤ |∆−|} happens with
probability |∆−|/(|∆| − t − Et) ≥ |∆−|/|∆|. Conditioned on this event, we set ζt+1 = 1 with
probability (|∆| − t − Et)/|∆| and ζt+1 = 0 otherwise. On the contrary if k ≥ |∆−|, then we
choose P(ut+1 = u|Ft) = |∆u ∩∆−|/|∆−| independently of Xt+1 and we set ζt+1 = 0. It follows
easily that P(Wt+1 = k, ζt+1 = 1|Ft) = Q−({k})|∆−|/|∆| and Xt ≥Wtζt.

We have

1

|∆−|

n∑
i=1

di(di − 1)− 1

|∆−|
∑

(i,j)∈∆\∆−

(di − 1) ≤ EW1 ≤
1

|∆−|

n∑
i=1

di(di − 1).

By (4.13), for n large enough, if 1 ≤ i ≤ d4nβe, we have dπ(i) ≥ 1. it follows that

1

|∆|

n∑
i=1

di(di − 1)− 1

|∆|

d4nβe∑
i=1

dπ(i)(dπ(i) − 1) ≤ E[W1ζ1] ≤ 1

|∆|

n∑
i=1

di(di − 1).
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Then if P has support included in [0, κ], we have 1
|∆|
∑nβ

i=1 dπ(i)(dπ(i) − 1) ≤ 4nβκ2

|∆| converges to

0. Otherwise the support is infinite and, for all κ > 0, the event {dπ(d4nβe) > κ} holds for n large
enough (indeed by assumption (H0), a positive fraction of degrees is larger that κ). Then, from
assumption (H2), for all ε > 0, there exists κ > 0 such that ED(D− 1)1D>κ ≤ ε. In particular,

lim supn
1
n

∑nβ

i=1 dπ(i)(dπ(i) − 1) ≤ lim supn
1
n

∑n
i=1 di(di − 1)1di>κ ≤ ε. This last bound holding

for all ε > 0, we deduce that

lim
n

1

n

nβ∑
i=1

dπ(i)(dπ(i) − 1) = 0.

We have thus checked that for all κ large enough,

lim
n→∞

E[W1ζ1] =
ED(D − 1)

ED
> 1,

lim
n→∞

E[W1ζ11{W1≤κ}] =
E[D(D − 1)1{D<κ}]

ED
> 1.

For ease of notation, we set
Zt = Wtζt1{Wt≤κ}.

and define Q′− as the distribution of Z. We may assume that n is large enough to guarantee
that E[Z] > 1.

Step two : fast extinction or long survival. As for Erdős-Rényi graphs, we are first
going to prove with probability tending to 1, for all vertices v, either |G(v)| ≤ c1 log n or

|Anβ (v)| ≥ c2n
β, where c1, is a positive constants that will be chosen later and c2 = 1 ∧ E[Z]−1

2 .
We may upper bound the probability of the complement of this event by (4.8). Arguing as for
Erdős-Rényi graphs, we get

P
(
Ac1 logn 6= ∅; |At∧τβ | ≤ c2t ∧ τβ

)
≤ P

(
t∑
i=1

Zi ≤ (1 + c2)t

)

= P

(
t∑
i=1

(Wi − E[Z]) ≤ −tE[Z]− 1

2

)

≤ exp

(
− t(E[Z]− 1)2

8κ2

)
.

Where we have applied Hoeffding’s inequality (3.13). From (4.8), it follows easily that

P
(
∃v ∈ [n] : Ac1 logn(v) 6= ∅ and ∃ c1 log n ≤ t ≤ nβ : |At(v)| ≤ c2t

)
≤ n1−c1(E[Z]−1)2/(8κ2)

1− e−(E[Z]−1)2/(8κ2)
.

Now as n goes to infinity, E[Z] converges to λ =
E[D(D−1)1{D<κ}]

ED > 1. Thus, if we chose some
c1 > (8κ2)/(λ− 1)2, we have proven that with probability tending to 1, for all vertices v, either
|G(v)| ≤ c1 log n or |Anβ (v)| ≥ c2n

β.
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Step three : at most one giant component. Assume there are two vertices u, v such that
|G(u)| ≥ c1 log n and |G(v)| ≥ c1 log n. Then, either the exploration processes will intersect by
step nβ or they have two disjoint active sets Anβ (u), Anβ (v) of cardinal at least c2n

β.

Indeed, assume that this event holds. We order the half-edges of Anβ (u) by lexicographic
order. We pick the smallest half-edge of Anβ (u), say e1, the probability that e1 is not matched
to an element of Anβ (v) is 1 − |Anβ (v)|/(|∆| − nβ − Enβ (v)) ≤ 1 − c2n

β/|∆|. Then, let e2 be
the smallest half-edge of Anβ (u)\{e1, σ(e1)}. Then given e1 is not matched to an element of
Anβ (v), the probability that e2 is not matched to an element of Anβ (v) is 1 − |Anβ (v)|/(|∆| −
nβ − Enβ (v) − 2) ≤ 1 − c2n

β/|∆|. We may continue this process for at least c2n
β/2 steps. We

get that the probability that there is no matching between Anβ (u) and Anβ (v) is upper bounded
by (

1− c2n
β

|∆|

) c2n
β

2

≤ exp

(
−c

2
2n

2β

2|∆|

)
.

Hence, since 1/2 < β < 1 and limn |∆|/n = ED, we deduce that G(u) = G(v) with probability
tending to 1. Thus with probability tending to 1 there is at most a unique giant component of
size at least nβ.

Step four : expected size of the giant component. We note also that by comparison
with (Zt)t that

P(|G(v)| ≥ c1 log n) ≥ 1− ρ−(v),

where ρ−(v) is the probability of extinction of a branching process where the progenitor has dv
offsprings and all other genitors have offspring distribution Q′−. We have ρ−(v) = ρdv− , where
ρ− is the probability of extinction in a Galton-Watson process with offspring distribution Q′−.

Similarly,

P(|G(v)| ≥ c1 log n) ≤ 1− ρdv+ − P(c1 log n < τ+ <∞).

We argue as in the proof of theorem 4.13(ii). Since Y ≥ −1, ϕ(θ) = EeθY is well defined for all
θ < 0. We find, from Chernov bound, for any θ < 0 and integer x > 0,

P(x < τ+ <∞) ≤
∞∑
t=x

P

(
t∑

s=1

Ys ≤ t

)

≤
∞∑
t=x

ϕ(θ)te−tθ.

Moreover, for any ε > 0, for all θ ∈ (aε, 0] close enough to 0, ϕ(θ) ≤ 1 + θ(EY − ε). Choosing
0 < ε < EY − 1, for some θ < 0, we get

ϕ(θ)te−tθ ≤ (1 + θ(EY − ε))te−tθ ≤ etθ(EY−ε−1).

In particular P(c1 log n < τ+ <∞) decreases polynomially to 0.
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Now, Q+ converges weakly to P̂ andQ′− converges weakly to the distribution P̂ ′ on {0, · · · , κ},
defined by P̂ ′({k}) = P̂ ({k}) for 1 ≤ k ≤ κ and P̂ ′({0}) = P̂ ({0}) + P̂ ([κ+ 1,∞)).

We note finally that for any integer dv and x, y ∈ [0, 1],

|xdv − ydv | ≤ |x− y|.

Hence, letting n tend to infinity and then κ, using lemma 4.5, we have checked that

lim
n→∞

max
v∈[n]

∣∣∣P(|G(v)| < c1 log n)− ρ̂dv
∣∣∣ = 0.

Summing over all n and using (H0), it yields to

lim
n→∞

1

n

∑
v∈[n]

P(|G(v)| ≥ c1 log n) = 1− ρ.

Step five : a.s. size of the giant component. Now, it remains to improve the convergence.
The concentration argument used in the proof of theorem 4.13 works in this case also. It suffices
to replace remark 3.25 by remark 3.31. 2

4.7 Application to network epidemics

4.7.1 A simple SIR dynamic

Network epidemics gives an insightful application to the emergence of a giant component in a
graph. Let G = ([n], E) be a finite graph on [n]. The propagation of an epidemic in the graph
is classically modeled as follows. Each vertex has a state either (S)usceptible, (I)nfected or
(R)esilient. The state of the network at discrete time t ∈ N is Xt = (St, It, Rt), where St, It and
Rt is the set of vertices in state S, I or R at time t. The evolution is as follows : any vertex in
state I at time t ∈ N becomes R at time t+ 1 and each of its neighbors in G in state S becomes
I with probability p ∈ (0, 1) independently. To keep the model simple, we assume that at time
t = 0, a single vertex, say 1 ∈ [n], is infected : X0 = ([n]\{1}, {1}, ∅).

More formally, let (ξ{i,j})i,j∈[n] be a collection of i.i.d. random variable with Bernoulli dis-
tribution P(ξe = 1) = 1 − P(ξe = 0) = p. The process (Xt)t∈N is a Markov chain on the set of
partitions of [n] in 3 sets : Xt+1 = (St+1, It+1, Rt+1), with

It+1 =
⋃
v∈It

{u ∈ St : {u, v} ∈ E, ξ{u,v} = 1}, St+1 = St\It+1, Rt+1 = Rt ∪ It.

This defines a Markov chain because each random variable ξe is used at most once. Recall that
an absorbing state of a Markov chain is a state such that P(X1 = x|X0 = x) = 1. Here, the
absorbing states are the states x = (s, ∅, r) with s ∩ r = ∅, s ∪ r = [n]. From Kolmogorov 0− 1
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law, the probability that P((Xt) reaches an absorbing state |X0 = x) ∈ {0, 1}. For any state
x = (s, i, r) the probability P(X1 is an absorbing state |X0 = x) > 0. We deduce that with
probability one, the chain (Xt)t∈N reaches an absorbing state (without invoking Kolmogorov
0− 1 law, we could also notice that P(Xn is an absorbing state |X0 = x) = 1).

Let τ = inf{t ≥ 1 : It = ∅} be the almost surely finite time the chain reaches an absorbing
state. With our choice of initial condition, the set Rτ is the set of vertices that have been
infected at some time before the epidemic stops. This pair (τ,Rτ ) is random and the basic
question in network epidemics is to analyze it. We denote by Hτ the subgraph of G spanned
by the vertices in Rτ . We also define the percolation graph Gp = (V,Ep) as the subgraph of G
defined by e = {u, v} ∈ Ep if and only if e ∈ E and ξe = 1.

Assume for a moment that G is a tree. Remark then that with our choice of initial condition,
for integer t ≥ 1, Rt is the set of vertices at distance t − 1 from 1 in Gp and It is the set of
vertices at distance exactly t from 1. In particular Hτ is the connected component of Gp that
contains 1.

More generally, even if G is not necessarily a tree, Hτ is also the connected component of Gp

that contains 1. Indeed, if v ∈ Hτ then it has been infected at some time k. Let ik = v and ik−1

be a vertex that has infected v : {ik−1, ik} ∈ E and ξ{ik−1,ik} = 1. By recursion, there exists a
sequence i0, i1, · · · , ik such that i0 = 1, ik = v which is a path in Gp. The reciprocal goes along
the same line.

4.7.2 Dynamic on the Erdős-Rényi graph

Now, assume that G = Gn = Kn is the complete graph on n vertices. Then Gpn has distribution
G(n, p). More generally, if Gn is a random graph with distribution G(n, λ/n) , independent of
(ξ{i,j}) then, Gpn is a random graph with distribution G(n, λp/n). In particular, we may apply
theorem 3.12 : (Gpn, 1) = (Hτ , 1) converges to a GWT(Poiλp). If λp < 1, then |Rτ | converges
to the total population in a Galton-Watson branching process with Poiλp offspring distribution
whose tail distribution is sub-exponential as shown in corollary 4.9. Also, from equation (4.6),

P(|Rτ | ≥ t) ≤ (pλ)−1e−αt,

with α = pλ− 1− log(pλ).

Otherwise, λp > 1 and by theorem 4.13(ii), there exists a giant component whose size is
equivalent to (1 − ρ)n, where ρ is given by (4.2) with λp replacing λ, and other connected
component are of size o(n). By exchangeability of the vertices, with probability 1− ρ, vertex 1
belongs to the giant component. We deduce that a.s. |Rτ |/n converges weakly to (1−ρ)δ1−ρ+ρδ0.
More quantitatively, for any fixed 0 < ε < ρ, with high probability, either |Rτ | ≤ c log n or
|Rτ | ∈ ((1−ρ−ε)n, (1−ρ+ε)n). Thus there exists a sharp threshold at λp = 1 on the behavior
of the epidemic.
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4.7.3 Dynamic on the configuration model

Now let P be a probability distribution on integers with positive finite second moment. We
assume instead that G = Gn has distribution Ĝ(dn) where dn satisfies (H2). We consider
independent Bernoulli random variables (ξe) on the edges of the multi-graph, independent of
Gn, P(ξe = 1) = 1− P(ξe = 0) = p.

Now, conditioned on the degree sequence dpn of Gpn, Gpn has distribution Ĝ(dpn). Note that
dpn is a random degree sequence. It is not hard to check that a.s. dpn satisfies (H2) with limit
degree distribution

Q(k) =
∞∑
`=k

P (`)

(
`

k

)
pk(1− p)`−k.

In other words, if M has distribution Q and N has distribution P , then M =
∑N

i=1 ξi, where
(ξi) are independent Bernoulli variables.

Hence, by theorem 3.15, the rooted graph [Hτ , 1] converges weakly to GWT∗(Q). Denote
by ψ the generating function of Q and ϕ the generating function of P : we have ψ(z) = ϕ(pz +
(1 − p)). From corollary 4.2, the threshold for non-extinction of a GWT∗(Q) is ψ′′(1) > ψ′(1),
it can be rewritten has p2ϕ′′(1) > pϕ′(1) or

ED
(
D − p+ 1

p

)
> 0.

where D has distribution P (indeed ϕ′(1) = ED and ϕ′′(1) = ED(D − 1)). Therefore, if

ED
(
D − p+1

p

)
< 0, we deduce that |Rτ | converges to the size of a GWT∗(Q) whose tail distri-

bution can be estimated by using theorem 4.10. On the contrary, if ED
(
D − p+1

p

)
> 0, then

we can adapt the argument of theorem 4.14(ii), |Rτ |/n converges a.s. to (1−ρ)δ1−ρ+ρδ0 where

ρ is given by (4.4) with ψ replacing ϕ and ψ̂ = ψ′(z)/ψ′(1) replacing ϕ̂.



Chapter 5

Continuous length combinatorial
optimization

To be continued...

5.1 Issues of combinatorial optimization

Consider a finite network G = (V,E, ω) with marks ω(v), ω(e) in R+. We can conveniently
think as such marks as lengths, weights, costs or rewards.

A matching M of G is a subset of edges M ⊂ E such that no two edges in M have a common
adjacent vertex. (Beware that this definition of a matching differs from the one we have already
used in the context of configuration model). We denote by M(G) the set of matchings of G.
The maximal weight of a matching of G is

max
M∈M(G)

∑
e∈M

ω(e). (5.1)

A matching reaching the above maximum is called a maximal matching. For ω ≡ 1, the above
is called the matching number of G, it is simply the cardinal of a largest matching of G.

Define similarly, an independent set S of G is a subset of vertices S ⊂ V such that no two
vertices in S have a common adjacent edge. We denote by I(G) the set of matchings of G. The
maximal weight of an independent set of G is

max
I∈I(G)

∑
v∈I

ω(v). (5.2)

An independent set reaching the above maximum is called a maximal independent set. For ω ≡ 1,
the above is called the independent set number of G, it is the cardinal of largest independent set
in G.
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Assume that G is connected. A spanning tree T of G is a subtree of G with vertex set V . If
T (G) is the set of spanning trees of G, the minimal length of a spanning tree of G is

max
T∈T (G)

∑
e∈E

ω(e)1(e ∈ T ). (5.3)

A spanning tree reaching the above minimum is called a minimal spanning tree (MST). If all
weights are distinct, the MST is unique. We shall denote by MST(G) the minimal spanning tree
of G.

From an algorithmic point of view, the three above network functionals are quite different.
Finding a maximal weight independent set is an NP-hard problem, finding a maximal matching
has complexity which is polynomial in the size of the network. Finally, they are greedy algorithms
which find the minimal spanning tree of a network.

In this chapter, we will try to understand the links between local weak convergence and
these network functionals. We should consider a sequence of finite networks having a local weak
limit. Our main goal will be to compute the asymptotic value of these functions as the size of
the networks grows large.

Note first that these functions are obviously invariant under network isomorphisms. Also,
taking for example the MST, if ρ = U(G) and

L(G) =
∑
e∈E

ω(e)1(e ∈ MST(G)).

is the total length of the MST, we find

L(G)

|V |
=

1

2|V |
∑
v∈V

∑
e∈E:v∈e

ω(e)1(e ∈ MST(G)) =
1

2
Eρ

∑
e∈E:ø∈e

ω(e)1(e ∈ MST(G)),

where under ρ, ø is uniformly distributed on V .

This remark invites us to study the function on rooted networks

(G, ø) 7→
∑

e∈E:ø∈e
ω(e)1(e ∈ MST(G)).

We are however immediately confronted to the problem that it is not a priori obvious to define
MST(G) on an arbitrary infinite network. We shall see that in some cases, it is possible to define
in a natural way the combinatorial structures : maximal independent set, maximal matching
and minimal spanning tree on infinite networks. There will be two strategies :

(i) give an explicit construction ;

(ii) give an iterative construction which is shown to converge for some networks.
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5.2 Limit of random networks

In the context of our random graphs, there is a natural limit unimodular network, the Galton-
Watson network with degree distribution P and weights distribution Q. Precisely, let Q ∈ P(R+)
and P ∈ P(Z+) with finite positive first moment. Consider a Galton-Watson tree with degree
distribution P . Put independently marks on edges and vertices which i.i.d. variables with law
Q. We obtain this way a random rooted network. We shall denote by GWN∗(P,Q) the law on
G∗(R+) of the equivalence class of this random rooted network.

Note that in our context, we will only care either about the weights on vertices (independent
set) or on the edges (matchings, spanning trees).

Consider a sequence of finite networks Gn = (Vn, En, ωn). The empirical distribution of the
vertex and edge weights Qvn and Qen are respectively

Qvn =
1

|Vn|
∑
v∈Vn

δωn(v) and Qvn =
1

|En|
∑
e∈En

δωn(e)

We shall say that the vertex or edge weights of Gn are uniformly integrable if Qvn or Qen is
uniformly integrable, i.e. if

lim
t→∞

sup
n≥1

∫
|x|1|x|≥t dQv/en (x) = 0.

For example, consider a random multi-graph Gn
d∼ Ĝ(dn) where (dn) satisfies (Hp), for some

p > 2. We could turn Gn into a network by adding independently i.i.d. weights on vertices and
edges with common law Q. Then, by theorem 3.28, it is not hard to check that a.s. U(Gn)
converges weakly to GWN∗(P,Q).

5.3 The minimal spanning tree

The minimal spanning tree is an example of a problem of combinatorial optimization where it
is possible to define explicitly the limit random structure. To be continued...

5.4 Maximal weight independent set

To be continued...

We now give a example of a combinatorial optimization which can be solved thanks to a
fixed point analysis. As in (5.3), for a finite network G, we set

I(G) = max
S∈I(G)

H(S),
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where
H(S) =

∑
v∈S

ω(v)

We define the P(R+) to P(R+) mapping :

A : F → L(Y ),

where

Y =

ω − N̂∑
i=1

Xi

+

,

and (Xi)i≥1 iid with law F , independent of (ω, N̂) with law Q⊗ P̂ . The next result is a slight
generalization of Gamarnik et al. (2006).

Theorem 5.1 (Maximal weight independent set - unique fixed point) Let Gn = (Vn, En, ωn)
be a sequence of finite networks with vertex set |Vn| = n. Assume that U(Gn) converges to
GWN∗(P,Q) with 0 <

∫
xdP < ∞ and Q has a density with respect to Lebesgue measure. As-

sume further that the vertex weights of Gn are uniformly integrable. If L ∈ P(R+) is the unique
fixed point of A2, then

lim
n→∞

I(Gn)

n
= Eω1ω>

∑N
i=1 Xi

,

with (Xi)i≥1 iid with law L, independent of (ω,N) with law Q⊗ P .

The important and very restrictive assumption is that A2 has a unique fixed point.

5.4.1 Proof of theorem 5.1

Step one : Iterated map analysis. In this paragraph, we prove that for any initial measure
F ∈ P(R+), At(F ) converges as integer t goes to infinity. As for more usual iterated maps f t(x)
with f from [0, 1] to [0, 1], the use of monotony will play a crucial role.

Lemma 5.2 The mapping A is continuous (for the topology of weak convergence).

Proof. The P(R+)2 to P(R+) functions which maps (F,G) to the law of max(X,Y ) and
X + Y where (X,Y ) has distribution F ⊗G are continuous functions. It follows that for every
integer n ≥ 0, the P(R+) to P(R+) function which maps F to the law of

∑n
i=1Xi where (Xi) iid

with distribution F , is a continuous function. We then write, for any m ≥ 1 and any bounded
continuous function f ,∣∣∣∣∣∣Ef

 N̂∑
i=1

Xi

− m∑
n=0

P̂ (n)Ef

(
n∑
i=1

Xi

)∣∣∣∣∣∣ ≤ ‖f‖∞P̂ ((m,∞)).



5.4. MAXIMAL WEIGHT INDEPENDENT SET 91

For m large enough, the right hand side is arbitrarily small. By composition, it then becomes
clear that the mapping A is continuous. 2

We define the following partial order relation on P(R+), we write

F ≤st G

if for all t ∈ R+, F (t,∞) ≤ G(t,∞). This is called stochastic domination. Note that if there
exists a coupling (X,Y ) of (F,G) such that a.s. X ≤ Y then F ≤st G. The converse is also
true.

Theorem 5.3 (Strassen) If F ≤st G then there exists a coupling (X,Y ) of (F,G) such that
X ≤ Y .

Proof. Define the pseudo-inverse of F and G as, for x ∈ [0, 1],

F←(x) = inf{t ≥ 0 : F (t,∞) ≤ x} and G←(x) = inf{t ≥ 0 : G(t,∞) ≤ x}.

If t is a continuity point of the non-increasing function x 7→ F (x,∞) and U is uniform on [0, 1]
then

P(F←(U) > t) = P(U < F (t,∞)) = F (t,∞).

Since there is at most a countable set of discontinuity points of x 7→ F (x,∞), we deduce that
X = F←(U) and Y = G←(U) have distributions F and G respectively. Also by assumption,
F←(x) ≤ G←(x), in particular, X ≤ Y . 2

Lemma 5.4 The map A is non-increasing : if F ≤st G then A(F ) ≥st A(G).

Proof. From Strassen theorem, there exists a coupling (X,Y ) of F and G such that X ≤ Y .
Consider an iid sequence (Xi, Yi)i≥1 of such couplings so that for all integer i, Xi ≤ Yi. Let
(ω,N) be independent of (Xi, Yi)i with law Q⊗ P , then(

ω −
N∑
i=1

Xi

)+

≥

(
ω −

N∑
i=1

Yi

)+

.

The left hand side has distribution A(F ) while the right hand side has distribution A(G). We
have thus found a coupling of A(F ) and A(G) that fulfills the conditions of the remark before
Strassen Theorem. 2

Lemma 5.5 As integer t goes to infinity, A2t(δ0) and A2t(Q) converge.

Proof. Since δ0 ≤st A(F ) ≤st Q, δ0 ≤st A2(δ0). By Lemma 5.4, A2 is non-decreasing and we
get

δ0 ≤st A2(δ0) ≤st A4(δ0) ≤st · · ·
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In particular for any s ≥ 0, A2t(s,∞) is non-decreasing and converges to say g0(s). For fixed t,
s 7→ A2t(s,∞) is non-increasing in s, hence g0 is also non-increasing. Also from A(F ) ≤st Q,
we deduce that g0(s) ≤ Q(s,∞) and lims→∞ g0(s) = 0. It follows that for all continuity points
s of g0, 1− g0(s) is the partition function of some probability measure L0. From Portemanteau
theorem 3.2(v), we deduce that A2t converges weakly to L0.

The same argument carries over with Q since we have A2(Q) ≤st Q. 2

Proposition 5.6 If L ∈ P(R+) is the unique fixed point of A2, then for any F ∈ P(R+), as
integer t goes to infinity, At(F )⇒ L and A(L) = L.

Proof. By Lemma 5.5, A2t(Q) and A2t(δ0) converge to LQ and L0 respectively. By lemma 5.2,
A2(A2t(Q)) = A2t+2(Q) and A2(A2t(δ0)) = A2t+2(δ0) converge to A2(LQ) = LQ and A2(L0) =
L0. We deduce that L = L0 = LQ. Now for any F ∈ P(R+), δ0 ≤st A(F ) ≤st Q and composing
by A2t we deduce that A2t+1(F ) converges to L. Applying the same argument to G = A(F ) we
deduce the statements. 2

Step two : Independent set on finite trees. Let G = (V,E, ω) be a finite rooted graph
network, with root denoted by ø. We define the rooted payoff as

X(G) = max
S∈I(G)

H(S)− max
S∈I∗(G)

H(S),

where I∗(G) is the set of independent sets S in I(G) which do not contain the root. From the
definition of X(G), if S∗ is a maximal weight independent set in I(G) (i.e. H(S∗) = I(G))
then X(G) > 0 implies ø ∈ S∗, while X(G) = 0 implies that there exists a maximal weight
independent set S∗ such that ø /∈ S∗.

Now, with Nf = ∪k≥0Nk, let (Ni)i∈Nf be a collection of integers. We build a forest on Nf
by connecting each vertex i to its offsprings (i, 1), · · · , (i, Ni). We define T the rooted tree on
V ⊂ Nf with root ø as the connected component of ø. The weight on vertex i, ω(i), is simply
denoted by ωi.

Proposition 5.7 If T is finite, then

X(T ) =

(
ωø −

Nø∑
i=1

X(Ti)

)+

,

where T1, · · · , TNø are the rooted subtrees rooted at 1, · · · , Nø.

Proof. Let S∗ be such that H(S∗) = maxS∈I∗(T )H(S). Then S∗∩Ti is a maximal independent
set for Ti : H(S∗ ∩ Ti) = I(Ti). It follows

max
S∈I∗(T )

H(S) =

Nø∑
i=1

I(Ti) =

Nø∑
i=1

max
S∈I(Ti)

H(S).
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Similarly, if S∗ is now such thatH(S∗) = maxS∈I(T ):ø∈S H(S), thenH(S∗∩Ti) = maxS∈I∗(Ti)H(S).
We get

max
S∈I(T ):ø∈S

H(S) = ωø +

Nø∑
i=1

max
S∈I∗(Ti)

H(S) = ωø −
Nø∑
i=1

X(Ti) +

Nø∑
i=1

max
S∈I(Ti)

H(S).

Finally, we subtract our two last expressions,

max
S∈I(T ):ø∈S

H(S)− max
S∈I∗(T )

H(S) = ωø −
Nø∑
i=1

X(Ti).

2

Corollary 5.8 Assume that T has distribution GWT(P̂ ) and that (ωi)i∈Nf are iid with law Q.
Let t ≥ 1 be an integer,

X((T )t)
d
= At(Q).

Proof. The subtrees of the offsprings of the root ø, (Ti)i≥1 are iid GWT(P̂ ). Thus we have

X((T )t) =
(
ω −

∑Nø

i=1X((Ti)t−1)
)+

. Now by construction, X((T )0)
d
= Q. By recursion, we

deduce that X(Tt)
d
= At(Q). 2

Step three: Independent set with boundary conditions. In order to deal with max-
imal independent sets of graphs that are not necessarily trees but ”locally tree-like”, we shall
generalize the above argument to trees with arbitrary ”boundary conditions”. More precisely,
for a rooted graph G and t ≥ 1 integer, we define ∂(G)t = (G)t\(G)t−1 as the set of vertices at
distance exactly t from the root. If B ∈ I(G) ∩ ∂(G)t we define

Xt(G,B) = max
S∈I(G):S∩∂(G)t=B

H(S)− max
S∈I∗(G):S∩∂(G)t=B

H(S).

If t = 0, then B is either the root or the empty set, and we set X0(G,B) = H(B). As in the
Step II, we consider a rooted tree T on V ⊂ Nf with root ø as the connected component of ø.
The analog of proposition 5.7 to boundary conditions is the following :

Proposition 5.9 Let t ≥ 1 be an integer, T be as above and B ∈ I(T ) ∩ ∂(T )t, then

Xt(T,B) =

(
ωø −

Nø∑
i=1

Xt−1(Ti, Bi)

)+

,

where T1, · · · , TNø are the rooted subtrees rooted at 1, · · · , Nø and Bi = B∩Ti ∈ I(Ti)∩∂(Ti)t−1.

Proof. The proof of proposition 5.7 obviously applies here also. 2
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Corollary 5.10 Let B ∈ I(T )∩∂(T )t. If t is even then Xt(T, ∅) ≤ Xt(T,B) ≤ X((T )t). If t is
odd then Xt(T, ∅) ≥ Xt(T,B) ≥ X((T )t). In particular, for any t ≥ 1 and B ∈ I(T ) ∩ ∂(T )2t,

X((T )2t−1) ≤ X2t(T,B) ≤ X((T )2t).

Proof. We note that X0(T, ∅) = 0 ≤ X0(T,B) ≤ X((T )0) = ωø. For general integer t, we

write Xt(T,B) =
(
ωø −

∑Nø

i=1Xt−1(Ti, Bi)
)+

, and the first two statements follow by recursion

on t. For the last statement, we notice that Xt(T, ∅) = X((T )t−1) . 2

Step four : End of proof of theorem 5.1. Let (Xi)i≥1 be iid with law L, independent of
(ω,N) with law Q⊗ P , and

γ = Eω1ω>
∑N
i=1 Xi

.

We may define S∗n as the uniformly sampled maximal weight independent set of Gn, i.e. S∗n
is uniformly sampled on the set of independent sets S ∈ I(Gn) such that H(S) = I(Gn). If ø
denotes a uniformly chosen root on [n], we have

EI(Gn) = nEωø1ωø∈S∗n .

Fix ε > 0, by proposition 5.6, there exists an integer t such that for all integers s ≥ 2t− 1

|Eω1ω>
∑N
i=1Xi

− γ| < ε, (5.4)

where (Xi)i≥1 iid with law As(Q), independent of (ω,N∗) with law Q⊗P∗, (uniform integrability
in s comes from ω1ω>

∑N
i=1Xi

≤ ω).

Since (Gn, ø) converges to GWN∗(P,Q),

lim
n

P((Gn, ø)2t−1 is a tree) = 1.

Thus, writing for ease of notation Gn instead of (Gn, ø), by uniform integrability,

lim
n
|Eωø1ωø∈S∗n − Eωø1ωø∈S∗n1(Gn)2t+1 is a tree| = 0. (5.5)

Now, if the event {(Gn)2t+1 is a tree} holds, we may write

1ωø∈S∗n =
∑

B∈I(Gn)∩∂(Gn)2t

1ωø∈S∗n1S∗n∩∂(Gn)2t=B

=
∑

B∈I(Gn)∩∂(Gn)2t

1X2t(Gn,B)>01S∗n∩∂(Gn)2t=B

∈ [1X((Gn)2t−1)>0,1X((Gn)2t)>0],
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where we have applied corollary 5.10. On the event {(Gn)2t+1 is a tree}, we denote by Nø the
degree of the root and by

((Gn,1)2t, · · · , (Gn,Nø)2t)

the rooted subtrees of depth 2t rooted at the adjacent vertices of the root, and similarly for
depth 2t− 1. From proposition 5.7, on the event {(Gn)2t+1 is a tree},

ωø1ωø>
∑Nø
i=1X((Gn,i)2t)

≤ ωø1ωø∈S∗n ≤ ωø1ωø>
∑Nø
i=1X((Gn,i)2t−1)

.

Now, we use again the assumption that (Gn, ø) converges to GWN∗(P,Q). It implies that
(ωø, Nø) has limit law Q ⊗ P and, conditioned on Nø, the vector ((Gn,1)2t, · · · , (Gn,Nø)2t) con-

verges to independent GWN(P̂ , Q).

Note also that, since the law Q of ωø has a density, if Y is independent of ωø, then
P(ωø = Y ) = 0. Hence, from Portemanteau theorem 3.2(v) and corollary 5.8, ωø1(ωø >∑Nø

i=1X((Gn,i)2t)) converges weakly to ωø1(ωø >
∑Nø

i=1Xi) where (Xi) are iid with law A2t(Q),

independent of (ωø, Nø) with law Q ⊗ P . And similarly, ωø1(ωø >
∑Nø

i=1X((Gn,i)2t−1)) con-

verges weakly to ωø1(ωø >
∑Nø

i=1X
′
i) where (X ′i) iid with law A2t−1(Q). Finally, by uniform

integrability,

Eωø1ωø>
∑Nø
i=1Xi

≤ lim inf
n

Eωø1ωø∈S∗n ≤ lim sup
n

Eωø1ωø∈S∗n ≤ Eωø1ωø>
∑Nø
i=1X

′
i
,

By (5.4) and (5.5), we get
lim sup

n
|γ − Eωø1ωø∈S∗n | ≤ ε.

The theorem follows. 2
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