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Résumé Abstract

Extrêmes des processus branchants spatiaux
Ce manuscrit est un document de synthèse et de présentation d’une sélection de mes

travaux de recherches réalisés avant le 1er juillet 2022, dont on trouvera la liste complète
ci-dessous. Les publications [M1-8] sont issues de ma thèse (juillet 2015), ou ont été en
partie réalisées pendant celle-ci. Afin de présenter un manuscrit avec une unité thématique
claire, les publications [M13, M14, M17, M20, M26, M28, M31, M34, M35] ne seront pas
traitées ici dans ce document, avec toutes mes excuses vis-à-vis de mes co-auteurs.

Ce document a pour but de faire un état des lieux de la littérature consacrée à l’étude
des valeurs extrêmes des processus branchants spatiaux, en particulier la convergence en
loi du processus extrémal. Il consiste en un aperçu complet des techniques et résultats
nécessaires pour démontrer la convergence en loi du processus extrémal d’une marche
aléatoire branchante, suivi d’un bref chapitre d’application aux processus de branchement-
sélection.

Mes contributions à ce domaine seront également présentées. Les résultats provenant de
sources externes sont numérotés, tandis que ceux auxquels j’ai contribué sont énumérés par
des lettres. Je tiens à m’excuser auprès des lecteurices non-anglophones, mais ce manuscrit
étant probablement le dernier que je produis qui sera lu par plus de trois personnes, la
plus grande partie de ce document sera rédigée en anglais pour en faciliter l’accessibilité.

Mots-clefs

Processus de branchement ; Marche aléatoire ; Marche aléatoire branchante ; Valeurs
extrêmes ; Mouvement brownien ; Mouvement brownien branchant ; Processus de Lévy
branchant ; Processus ponctuel.

Extrema of spatial branching processes
The present manuscript is a synthesis of a selection of my research up to July 1st

2022, of which a complete list is given below. Publications [M1-8] were produced during
my Ph.D (before Jul. 2015). In order to keep thematic uniqueness in the manuscript,
publications [M13, M14, M17, M20, M26, M28, M31, M34, M35] will not be treated in
the present document, with my excuses to the co-authors of the concerned articles.

The objective of this manuscript is to give a self-contained introduction to the study
of extreme values of spatial branching processes, in particular the convergence in law
of the extremal process. It consists in a complete overview of the necessary techniques
and results used to prove the convergence in distribution of the extremal process of a
branching random walk, followed by a short application chapter to branching-selection
particle systems.
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In this text, my contributions to this domain will also be presented. Results coming
from external sources are numbered, while the ones I collaborated to are enumerated
by letters. I apologize to any non-French speaking reader, but this is probably the last
mathematical document I’ll be able to force my family to read, so its introduction will be
written in French.

Keywords

Branching process; Random walk; Branching random walk; Extremal values; Brownian
motion; Branching Brownian motion; Branching Lévy process; Point process.

Liste de mes publications et prépublications par ordre chronologique de pré-
publication. Ces publications sont disponibles sur ma page web, sur arXiv et sur Hal,
identiques à des modifications mineures près aux versions publiées.
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Introduction

Les processus de branchement sont des modèles mathématiques décrivant l’évolution
stochastique d’une population au cours du temps. On peut retracer l’origine de ces pro-
cessus aux travaux de Bienaymé 1 [41] ainsi que Galton et Watson [178]. À ce sujet, on
pourra consulter l’article de Kendall [118] retraçant l’histoire de l’introduction des proces-
sus de branchement. Cet article inclut notamment une reproduction de l’article [41]. De
façon générique, la théorie des processus de branchement permet d’étudier des objets qui
se multiplient et créent des descendants, génération après génération, avec une influence
importante du hasard sur les règles de cette évolution.

Au cours de leur histoire, les processus de branchement ont été utilisés pour étu-
dier différents phénomènes et répondre à des questions reflétant les interrogations des
mathématiciens de l’époque, ainsi que leurs a-priori et biais. Ainsi, les premiers articles
introduisant les processus de branchement [41, 178] ont tous deux pour objet l’étude de
la descendance mâle d’une famille, pour déterminer la probabilité de survie des noms de
familles des “hommes de génie” et des aristocrates. L’histoire de la théorie des processus
de branchement est liée aux mouvements malthusiens et eugénistes de la fin du 19e et
du début du 20e siècle (on mentionnera ainsi Ronald A. Fisher, éditeur des Annals of
Eugenics et titulaire de la chaire Galton d’Eugénisme de l’University College London).
Cette origine infamante ne doit pas être effacée. Insistons toutefois sur le point suivant :
on citera ici des articles en se référant aux modèles introduits et outils utilisés dans les
dits articles, et non pour nous référer aux conclusions établies sur la base de ces résultats
par les auteurs des dits articles 2 3.

Les applications contemporaines de ces processus sont bien plus variées, et montrent
la diversité des possibilités de modélisation offertes par les modèles de branchement (ainsi
probablement que les biais existants dans la recherche contemporaine). On pourra par
exemple mentionner les applications suivantes, sans volonté d’exhaustivité : la dynamique
de propagation d’une épidémie [58], la répartition des neutrons dans un réacteur nucléaire
[80, 104], les clients d’une file d’attente [117], la diffusion d’une rumeur [124], les états
intermédiaires d’un jeu à somme nulle [144], les cascades de particules en physique des
hautes énergie [151], la fixation d’un gène mutant dans une population [168], etc. De très

1. On se réfèrera à l’article de Heyde et Senteta [103] résumant les contributions de Bienaymé à la
théorie des probabilités.

2. La carte n’est pas le territoire : le lien entre des résultats obtenus sur des modèles simplifiés avec un
phénomène réel étudié doit toujours être fait avec prudence, et peut être réévaluée au cours du temps.

3. Guillotine de Hume : aucune conclusion obtenue sur l’évolution d’un modèle ne peut être utilisé pour
induire un jugement moral ou politique sur le phénomène qu’il entend modéliser.
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nombreux sujets de physique, de biologie, d’informatique ou d’économie peuvent être reliés
à, ou modélisés par, des processus de branchement, et leur utilisation contemporaine reste
importante dans ces domaines.

(a) Arbre de Galton-Watson (b) Mouvement Brownien branchant

(c) Marche branchante dans
le plan

(d) Marche branchante avec
sélection

•
1

•
2

•
3
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7

•
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•
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•
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•
6

•
71 2 3 4 5 6 7

(e) Graphe d’Erős-Rényi dirigé

Figure 1 – Quelques membres de la grande (et grandissante) famille des processus bran-
chants spatiaux et processus associés.

Il est courant, lorsqu’on étudie des processus de branchement, d’inclure une structure,
qui associe à chaque individu du processus des traits (âge, taille, position, fitness, ...), qui
pourront influencer la production de descendance directement (en augmentant/diminuant
la vitesse de reproduction) ou indirectement (en transmettant à sa descendance des traits
facilitant ou handicapant leur futur développement et reproduction). On pourra étudier
l’effet de la variation de ces traits sur la dynamique de la population, ou l’effet de la
dynamique de la population sur la fréquence des traits rencontrés.

On notera que la théorie des processus de branchement peut usuellement se séparer
en trois catégories, selon que le branchement est critique, sous-critique ou surcritique,
c’est à dire si un particule typique donne naissance en moyenne à 1, moins de 1 ou plus
de 1 enfant. Dans les deux premiers cas, on montre de façon générique que la population
s’éteindra naturellement en temps fini la plupart du temps, bien que le temps nécessaire à
l’extinction tende à être bien plus long dans le cas critique. Au contraire, si le branchement
est surcritique, la population a une probabilité positive de survivre et dans ce cas sa taille
croît à un rythme exponentiel.

Bien entendu, il est rare qu’un objet naturel soit représentable par un processus de
branchement purement critique, sous-critique ou sur-critique. La plupart du temps, il
passe par ces différentes phases. Par exemple, une nouvelle maladie va initialement se
répandre à un rythme exponentiel, comme dans un processus de branchement surcritique,
jusqu’à contaminer une proportion suffisamment grande de la population (heard immunity,
ou immunité de groupe). Par la suite, elle évoluera comme un processus critique ou sous-
critique, jusqu’à l’extinction ou devenir endémique. On s’intéressera ici avant tout à l’étude
des processus de branchement surcritiques, qui modélisent des populations dont la taille
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croît à vitesse exponentielle avec probabilité positive. Ces processus sont naturellement
utilisés pour modéliser des populations invasives, des flambées épidémiques, des réactions
autocatalytiques ou explosives, etc.

Plus précisément, l’objectif de ce manuscrit est de présenter l’état de l’art de la théorie
des processus branchants spatiaux surcritiques, ainsi que quelques-uns de ses développe-
ments récents. Un processus de branchement spatial est un système de particules qui se
déplacent sur la droite réelle et se reproduisent indépendamment les unes des autres. On
associe à chaque particule dans le processus de branchement une position, qui est trans-
mise à sa descendance, à une modification aléatoire près. La descendance d’une particule se
distribue autour de la position de cette particule. Les questions d’intérêt associées à cette
famille de modèles sont typiquement reliées aux positions et trajectoires des particules
extrémales du système, qui réalisent le plus grand déplacement observé dans le processus.
La non-linéarité de ces problèmes rend leur analyse complexe, et révèlent souvent une
contribution non-triviale jointe des effets de branchement et de déplacement.

Parmi les processsus branchants spatiaux les plus simples on trouve d’une part la
marche aléatoire branchante, et d’autre part son analogue en temps continu le mouve-
ment brownien branchant. Dans une marche aléatoire branchante, chaque individu donne
naissance à chaque génération à un processus ponctuel d’enfants autour de sa position, in-
dépendamment des autres individus. Ce processus ponctuel représente une façon de tirer
au hasard, de façon éventuellement corrélée, le nombre d’enfants et leur position. Dans le
mouvement brownien branchant, chaque individu se déplace de façon indépendante selon
un mouvement brownien. Les individus meurent en donnant naissance à des enfants au
bout de temps exponentiels indépendants de leur déplacement.

Les processus branchants spatiaux sont utilisés dans de nombreux domaines spécifiques
pour décrire l’évolution de populations soumis à un branchement et un déplacement aléa-
toire. Dans les applications possibles en mathématique, on notera en particulier les cartes
aléatoires [38, 6], la gravité de Liouville [16, 142], la description des fronts de populations
invasives [51, 129], les propriétés des équations de réaction-diffusion [145], la taille des
composantes connexes d’un graphe aléatoire [88], parmi bien d’autres.

1 Organisation du manuscrit

Ce manuscrit est divisé en 5 chapitres. Les trois premiers sont conçus pour introduire les
outils et notions nécessaires à la description du comportement asymptotique des particules
réalisant un grand déplacement dans ces processus. Le quatrième chapitre donne cette
description, notamment la convergence des processus extrémaux dans un grand nombre de
processus branchants spatiaux, depuis les premiers résultats d’Aïdékon, Berestycki, Brunet
et Shi [5] et d’Arguin, Bovier et Kistler [20] pour le mouvement Brownien branchant et de
Madaule [136] pour la marche aléatoire branchante, jusqu’à des applications plus récentes
de Bovier et Hartung [55, 56] aux processus inhomogènes en temps. Le cinquième chapitre
est dédié à l’étude de quelques résultats reliés aux processus de branchement-sélection.

Définition des processus branchants spatiaux. Le premier chapitre est dédié à l’in-
troduction des principaux objets et notations, particulièrement l’espace d’état sur lequel
les processus branchants spatiaux sont construits. On donnera deux définitions différentes
d’un processus de branchement spatial, d’abord comme un processus de Markov à va-
leurs dans l’espace des mesures ponctuelles satisfaisant la propriété de branchement, puis
comme un arbre aléatoire décoré. Si la première définition permet de connaître l’ensemble
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des positions occupées par des particules à tout temps, la seconde est plus riche puis-
qu’elle contient également les informations généalogiques du processus. Cette deuxième
définition permet alors de parler de façon non-ambiguë des relations généalogiques entre
deux individus, et permet donc un contrôle plus détaillé du comportement des particules.

Dans le chapitre 1, on introduira tout d’abord la marche aléatoire branchante, analogue
spatial du processus de Galton-Watson. Dans ce processus, à chaque génération, toutes
les particules donnent naissance de façon indépendante à un processus ponctuel d’enfants,
centré sur la position du parent. On montrera également les premières propriétés de ce
processus, notamment qu’une population se reproduisant comme une marche aléatoire
branchante envahit son environnement à un rythme linéaire.

On introduira ensuite la classe des processus de Lévy branchants, définis comme des
systèmes de particules continus à droite (Zt, t ≥ 0) tels que pour tout h > 0, (Zhn, n ∈ N)
est une marche aléatoire branchante. Cette famille de processus, qui est l’analogue pour
les processus de branchement des processus de Lévy pour les marches aléatoires, a été
introduite par Bertoin et Mallein [M16], qui en ont fourni une classification sous une
hypothèse de moments finis.

Enfin, on considérera un processus de Lévy branchant ayant des trajectoires continues :
le mouvement brownien branchant. Ce processus fait partie des processus branchants spa-
tiaux les plus étudiés, en partie à cause de sa connexion, par formule de Feynman-Kac,
aux solutions des équations de réaction-diffusion de type Fisher–Kolmogorov–Petrovskii–
Piskunov (abréviée en équations F-KPP). Cette connexion permet de relier des estimées
probabilistes du mouvement brownien branchant à des quantités analytiques associées aux
solutions d’une équation aux dérivées partielles. En utilisant un mélange de techniques pro-
babilistes et analytiques, il devient souvent possible de simplifier des arguments, voire de
montrer des résultats plus fins que pour les marches aléatoires branchantes.

Martingales additives et décomposition épinale. Comme pour de nombreux mo-
dèles étudiés en théorie des probabilités, l’étude des martingales associées aux processus
de branchement permet d’obtenir de nombreuses informations sur leurs comportements
asymptotiques. On introduira dans le chapitre 2 une famille à un paramètre de martin-
gales positives (Wt(θ), t ≥ 0)θ∈I , appelées martingales exponentielles (ou parfois martin-
gales de Biggins) de la marche aléatoire branchante. Ces martingales donnent une esti-
mation du nombre de particules se déplaçant à une vitesse donnée [43]. Lyons [133] a
obtenu une preuve simple des conditions nécessaires et suffisantes de l’uniforme intégra-
bilité de la marche aléatoire branchante basée sur une méthode de décomposition épinale.
Cette méthode consiste à décrire explicitement la loi du processus biaisé par la martin-
gale (Wn(θ), n ≥ 0), puis à utiliser la propriété de branchement pour montrer l’absolue
continuité de la loi biaisée par rapport à la loi originale.

L’ensemble des valeurs de θ telles que (Wt(θ)) est uniformément intégrable est de
façon typique un intervalle ouvert. Pour étudier plus en détails le nombre de particules
se déplaçant à la vitesse la plus grande dans le processus, il est nécessaire d’introduire et
d’étudier une nouvelle martingale. Cette martingale, appelée martingale dérivée, est une
martingale signée non-uniformément intégrable, qui converge presque sûrement vers une
valeur limite positive Z∞.

La martingale dérivée joue un rôle crucial dans l’étude du comportement des par-
ticules extrêmes de la marche aléatoire branchante, et a par conséquent été l’objet de
nombreuses recherches, pour étudier les conditions d’intégrabilité optimales garantissant
sa convergence, sa vitesse de convergence, la queue-distribution de Z∞, etc. Nous parle-
rons de quelques avancées notables dans l’étude de la vitesse de convergence de la mar-
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tingale dérivée de la marche aléatoire branchante obtenue par Buraczewski, Iksanov et
Mallein [M29], ainsi qu’une famille remarquable de martingales dérivées paramétrique du
mouvement Brownien branchant multidimensionnel, obtenu par Stasiński, Berestycki et
Mallein [M30].

Les points fixes de la transformée de smoothing. La transformée de smoothing
est généralement décrite comme une identité en loi pour des variables aléatoires. Étant
donné une suite aléatoire (Tj , j ≥ 1) positive et décroissant vers 0, on souhaite déterminer,
si elles existent, les solutions de l’équation

X
(d)=

∞∑
j=1

TjX(j), (1)

où les (X(j), j ≥ 1) sont des copies i.i.d. de X. En d’autre termes, X est égale en loi
à la “moyenne pondérée” par la famille de poids (Tj , j ≥ 1) de copies indépendantes
et identiquement distribuées de X (on notera toutefois qu’on n’impose pas en général la
condition∑Tj = 1). La transformée de smoothing peut être vue comme une généralisation
de la notion de stabilité des variables aléatoires. En effet, on remarquera qu’une variable
Y est α-stable si et seulement si

Y
(d)=

∞∑
j=1

tjY (j)

pour toute suite (tj , j ≥ 1) telle que ∑ tα
j = 1. Une variable aléatoire est un point fixe

de la transformée de smoothing si cette équation est vraie pour un choix randomisé de la
suite (tj , j ≥ 1).

La caractérisation des points fixes de la transformée de smoothing est liée aux marches
aléatoires branchantes, et en particulier à leurs martingales additives associées. En effet,
on peut appliquer récursivement l’équation (1) aux variables X(1), X(2), etc. On observe
ainsi que la variable X est égale en loi à la “moyenne pondérée” d’une famille de poids
qu’on peut représenter comme l’exponentielle des positions à la génération 2 d’une marche
aléatoire branchante. Grâce à cette connexion, on obtient une représentation explicite des
solutions de l’équation de smoothing, sous la forme d’un produit d’une variable de loi stable
par une fonction de la limite d’une martingale additive de la marche aléatoire branchante
associée. Ce résultat a été obtenu par Alsmeyer, Biggins et Meiners [11] sous des conditions
optimales d’intégrabilité.

On décrira dans le chapitre 3 les principales étapes menant à la caractérisation des
points fixes de l’équation de smoothing. On notera que cette caractérisation passe en
particulier par la caractérisation des fonctions harmoniques bornées des marches aléa-
toires [75]. On donnera ensuite une généralisation de ce résultat au cadre des martingales
dérivées obtenue par Alsmeyer et Mallein [M27]. Enfin, on utilisera la caractérisation des
points fixes de l’équation de smoothing pour déterminer les mesures ponctuelles invariantes
pour les marches aléatoires branchantes, obtenue dans [M37]. Ces mesures jouent un rôle
particulier dans l’étude des propriétés asymptotiques des marches aléatoires branchantes,
notamment la positions des particules ayant réalisé un grand déplacement.

Plus grand déplacement et processus extrémal. L’un des sujets les plus étudiés
des processus branchants spatiaux concernent les particules extrémales, c’est-à-dire les
particules ayant réalisé les plus grands déplacements du processus. Ces questions sont
centrales en particulier pour le mouvement Brownien branchant à cause de sa relation avec
l’équation F-KPP, obtenue par McKean [145]. En particulier, le plus grand déplacement
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du mouvement Brownien branchant est lié à convergence vers la solution travelling-wave
la plus lente de l’équation F-KPP partant d’une condition initiale simple. Afin de traduire
ce résultat analytique vers le modèle probabiliste, il devient nécessaire de comprendre
le comportement fin des trajectoires des particules réalisant un grand déplacement. On
remarque ainsi [18, 19] que les particules réalisant un grand déplacement font soit partie
de la même famille, soient proviennent de familles complètement différentes issues de
l’origine du processus. Cela implique une description de la limite du processus extrémal
comme un processus de Poisson ponctuel translaté et décoré : les leaders de chaque famille
contribuant au processus extrémal se répartissent selon un processus de Poisson ponctuel
d’intensité exponentielle, et le reste de la famille se répartit autour du leader selon un
processus ponctuel indépendant.

L’étude du comportement asymptotique des particules extrêmes des marches aléatoires
branchantes a nécessité l’introduction d’un grand nombre de techniques maintenant consi-
dérées comme classique dans l’étude de ces processus. On mentionnera ainsi les méthodes
de concentration, basées sur des calculs de moments d’ordre 1 et 2 du nombre de particules
satisfaisant une propriété particulière, les décompositions épinales pour un contrôle plus
efficace de la trajectoire des particules extrémales, les méthodes de censure et de barrières
absorbantes pour diminuer la variance des quantités considérées, etc.

On présentera dans le chapitre 4 les résultats classiques obtenus notamment par Bram-
son [57] et Lalley and Sellke [127] sur la convergence en loi du plus grand déplacement
du mouvement brownien branchant. On décrira également les principales étapes menant
à l’obtention par Aïdékon [4] de la convergence en loi du plus grand déplacement de la
marche aléatoire branchante sous des hypothèses d’intégrabilité optimales. On mention-
nera quelques-unes des nombreuses généralisation de ce résultat à des familles modifiées
de processus de branchement, comme le plus grand déplacement d’un mouvement brow-
nien branchant en dimension d [M40], ou d’un mouvement brownien branchant multitype
réductible [M33]. On s’intéressera notamment aux effets des variations de l’environne-
ment sur le comportement des particules extrémales, qu’elles soient brutales [M1], lentes à
l’échelle de reproduction des individus [M2], ou bien aléatoire représentant des fluctuations
aléatoires appliquées à l’ensemble de la population [M8].

On s’intéressera ensuite plus en détails à l’étude du processus extrémal des marches
aléatoires branchantes. La caractérisation des mesures ponctuelles stables pour la propriété
de branchement obtenue dans [M37] permet de simplifier certains arguments montrant
cette convergence vers un processus de Poisson ponctuel décoré. Dans le cas du mouvement
brownien branchant, il existe plusieurs définitions de la loi de la décoration apparaissant
dans le processus extrémal [5, 20], tandis que celle-ci est essentiellement implicite dans le
cas de la marche aléatoire branchante [M12]. Pour étudier cette convergence plus en détails,
on pourra s’intéresser à la convergence de processus extrémaux enrichis d’information
généalogiques [M12], trajectorielles [M6] ou directionnelles [M40] dans le cas d’un processus
multidimensionnel.

Enfin, on s’intéressera à la convergence des processus extrémaux de processus bran-
chant spatiaux généralisés, et du lien entre la loi de la limite de ce processus avec les
trajectoires suivies par les particules y contribuant. On mentionnera en particulier le cas
du mouvement brownien branchant inhomogène obtenue par Bovier and Hartung [56]
et celui du mouvement brownien branchant multitype réductible étudié par Belloum et
Mallein [M33].

Processus de branchement-sélection. Les processus de branchement-sélection sont
une généralisation naturelle des processus de branchement. Dans un tel modèle, les par-
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ticules se reproduisent de façon indépendante comme dans un processus de branchement
spatial, mais un mécanisme de sélection limite leur capacité à se reproduire en fonction
des propriétés des autres particules. Un tel modèle ne satisfait plus la propriété de bran-
chement, ce qui rend son étude plus difficile. Toutefois, grâce à des méthodes de couplages,
ces modèles peuvent être analysés de façon poussée.

Les processus de branchement-sélection permettent d’une part de modéliser des po-
pulations “réalistes” telles que le nombre d’individus ne croît pas exponentiellement, tout
en évitant leur extinction presque sûre. D’autre part, c’est une modélisation naturelle des
phénomènes de compétition entre individus, de limitation des ressources disponible et de
sélection naturelle. Toutefois, les domaines d’application ne se limitent pas à la biolo-
gie, puisque les processus de branchement-sélection permettent notamment d’analyser la
performance d’algorithmes de Monte-Carlo [84] ou de parallélisation [153].

Brunet et Derrida [59] ont introduit le modèle de la N -marche aléatoire branchante,
dans lequel à chaque génération on sélectionne les N individus les plus à droite pour se
reproduire, en supprimant tous les autres. Ils ont prédit que dans ce modèle, le nuage de
particules dérive à une vitesse vN satisfaisant v∞ − vN ∼ χ

(log N)2 lorsque N → ∞. Ce
comportement, qu’on appellera le comportement de Brunet-Derrida, a été démontré par
Bérard et Gouéré [64], et étendu à de nombreux autres systèmes de branchement-sélection,
comme le mouvement brownien branchant avec absorption [30], le L-mouvement Brownien
branchant [154], ou des processus de branchement-sélection avec un taux de branchement
[164] ou une loi de déplacement [177] inhomogène. On mentionnera également des modèles
de marches branchantes avec sélection d’un nombre non-constant d’individus [M3], ou
sortant de la classe d’universalité de Brunet-Derrida [M4], ou des marches branchantes
avec déplacement à queue lourde [28, 158].

Une des questions cruciales de l’étude des processus de branchement-sélection est
l’étude de la structure généalogique des individus. En effet, celle-ci peut être utilisée pour
tester sur des populations réelles les traces d’épisodes de sélection importants et leur effet
sur la vitesse d’adaptation des particules. Cette structure généalogique a également un ef-
fet important dans la performance d’algorithmes de Monte-Carlo basée sur des méthodes
de branchement-sélection [84]. Berestycki, Berestycki et Schweinsberg [31] ont montré que
la généalogie du mouvement Brownien branchant avec absorption quasi-critique converge
vers le coalescent de Bolthausen-Sznitman [50], confirmant une conjecture de Brunet, Der-
rida, Mueller et Munier [61]. Cette conjecture a été obtenue grâce à l’introduction d’une
famille exactement résoluble de processus de branchement-sélection. Cortines et Mallein
ont étudiés des variations de cette famille exactement résoluble, choisissant les parents de
la nouvelle génération de façon aléatoire [M10] ou introduisant une force de rappel dimi-
nuant l’avantage sélection d’une innovation [M21]. Dans le second cas, l’arbre généalogique
de la population converge vers un processus Beta coalescent. La construction de modèles
simples exhibant cette structure généalogique reste ouverte, malgré les progrès récents de
Tourniaire [177].

On terminera ce chapitre par la présentation d’une application de l’étude des processus
de branchement-sélection à l’étude de la longueur du plus long chemin croissant dans
un graphe d’Erdős-Rényi. On déterminera ainsi les propriétés asymptotiques la fonction
p 7→ C(p) obtenue par Newman [153] décrivant la proportion de sommets d’un graphe
appartenant à ce plus long chemin croissant. L’analycité sur (0, 1] de cette fonction a été
démontrée dans [M19], tandis que le comportement au voisinage de 0 est analysé dans
[M15] grâce à un couplage avec une marche aléatoire branchante avec sélection en temps
continu. La construction d’une méthode de Monte-Carlo non-biaisée pour la simulation
de C est obtenue dans [M39], tandis qu’on calcule dans [M41] la longueur du plus court
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chemin croissant entre 1 et n dans un graphe d’Erdős-Rényi peu dense.

2 Perspectives et futurs travaux
Malgré de très nombreux travaux récents, l’étude des valeurs extrêmes des processus

branchants spatiaux et questions associées reste un domaine en plein expansion, avec une
littérature féconde et grandissante. De nouveaux phénomènes, issus de la physique, la
biologie, l’informatique... appellent à la création de processus modélisant ces phénomènes.
Des avancées récentes sur sur différents modèles spécifiques appellent à la création d’une
théorie unifiée, permettant de déterminer les propriétés universelles de ces familles de
processus et d’en identifier les caractéristiques.

Une liste exhaustive des possibles perspectives de recherche dans ce domaine étant
impossible, on se contentera d’indiquer ici quelques grandes lignes et problématiques spé-
cifiques.

Connexions avec les équations de réaction-diffusion. Les liens entre le mouvement
Brownien branchant et les équations de réaction-diffusion de type F-KPP ont d’abord
été utilisés par McKean et Bramson. Toutefois, les récents développements d’Etheridge
et Penington [89] ouvrent la possibilité de lier le mouvement Brownien branchant à des
équations de réaction-diffusion ne faisant pas partie de la classe d’universalité F-KPP.
Cela permettrait d’étudier des effets de type Allee, et la dualité entre les ondes pushed
et pulled. Cette modélisation réclame toutefois la construction de résultats forts sur des
modèles de propagation de votes sur des arbres aléatoires, qui nécessite de nombreux
nouveaux développements.

Bouin et Calvez [51] ont introduit une équation F-KPP à diffusion variable pour mo-
déliser l’invasion d’une population de crapauds-buffles en Australie. Un modèle associé
proposé par Berestycki, Mouhot et Raoul [35] de mouvement Brownien branchant dont la
variance dépend du temps présente des propriétés assez différentes du modèle de Bouin
et Calvez. La construction d’un processus de branchement associé à cette équation reste
donc un problème ouvert. De même, les résultats récent de Calvez et ses co-auteurs [66, 67]
sur le comportement asymptotique des populations autopropulsées suggèrent de s’intéres-
ser à des processus de populations dans lesquels les particules conservent une vitesse v
(aléatoire) pour une durée aléatoire, avant de réévaluer leur direction de propagation (une
dynamique run-and-tumble). La théorie des grandes déviations des marches aléatoires
persistantes [90] permet de prédire des phénomènes exotiques pour le comportement des
processus extrémaux, analogues à ceux rencontrés dans les marches aléatoires branchantes
à déplacements à queue lourde par Bhattacharya et al. [40].

Processus de branchement multitypes. Les propriétés asymptotiques fines des pro-
cessus de branchement multitypes réductibles révèlent une grande variété de phénomènes,
dépendant des relations entre les différents types [M33]. D’autres modèles, comme le mou-
vement brownien branchant multitype peuvent être pensés comme des processus de bran-
chement multitypes, tels que le type est donné par la norme de la position de la particule.
Dans ce modèle, le “type” de la particule n’influence pas son déplacement, et change de
plus en plus lentement à mesure que les particules s’éloignent de l’origine. On observe alors
une “stabilisation” du type dans le processus extrémal [M40], et une famille de martingales
dérivées dépendant du type [M30] apparaît.

Il est donc intéressant de tester les limites de ces familles de modèles. On pourra ainsi
s’intéresser à un mouvement brownien branchant multitype dont le type n’influence pas
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le comportement de la particule, et ralentit au cours du temps. Si ce ralentissement est
suffisamment lent, on s’attend à un phénomène de moyennisation dans le processus ex-
trémal, et une martingale dérivée unique pour le processus, alors qu’on aurait une famille
de martingales dérivées indexées par le type dans le cas contraire. Le comportement des
mouvements browniens branchants irréductibles, bien que probablement plus proche de
celui du mouvement brownien branchant à un seul type, n’est pas encore caractérisé égale-
ment, malgré des travaux récents de Ren et Yang [161] sur l’existence d’une travelling wave
critique de l’équation associée et [49, 48] sur le mouvement Brownien branchant “on/off”.

D’autres familles de processus de branchement peuvent être considérées comme des
processus branchants spatiaux multitypes. C’est par exemple le cas du mouvement brow-
nien branchant à valeurs dans R× I, où I est un intervalle de R, avec conditions réfléchis-
santes ou absorbantes au bord. Berestycki et Graham [29] ont ainsi montré l’existence de
solutions de types travelling-waves pour le mouvement brownien branchant dans R×R+,
avec condition absorbante sur la seconde coordonnée. Ce problème est lié à l’existence
d’une famille de martingales dérivées (dépendant de l’ordonnée initiale du processus) pour
le mouvement brownien branchant dans R2 avec absorption en R × {0}. Une étude plus
détaillée du comportement asymptotique de ce processus permettrait d’étudier l’effet de
la barrière absorbante sur la vitesse de propagation en fonction de la distance à cette
barrière.

Processus de branchement-sélection. De très nombreuses questions restent ouvertes
dans l’étude des processus de branchement sélection. Un problème naturel serait de pro-
poser une méthode unifiée permettant de montrer la convergence vers le coalescent de
Bolthausen-Sznitman des processus favorisant la reproduction des particules les plus à
droite, qu’il s’agisse de la N -marche aléatoire branchante, de la L-marche aléatoire bran-
chante ou de processus de branchements tels que la vitesse de reproduction dépend du
rang. De plus, le comportement asymptotique fin de la vitesse du nuage de particules
reste difficilement accessible, et le deuxième terme du développement asymptotique, qui
devrait être universel d’après les prédictions de Brunet, Derrida, Mueller et Munier [60]
reste inconnu.

Berestycki et Zhao [34] ont étudié un processus de branchement-sélection multidi-
mensionnel dans lequel à chaque génération les N particules les plus loin de l’origine se
reproduisent. Ils montrent que pendant un temps, les particules se répartissent sur un
grand cercle centré en 0, mais qu’au fil des générations ce cercle se brise en segments,
jusqu’à ce qu’il ne reste qu’un seul nuage de particules s’éloignant de l’origine dans une
direction aléatoire. Ce résultat montre qu’il est en général difficile de conserver une po-
pulation diverse dans les simulations de Monte-Carlo de processus branchant. Il serait
intéressant de calculer le rythme minimal de croissance de la suite (Nn) pour qu’un pro-
cessus de branchement-sélection multidimensionnel conserve des particules présentes dans
plusieurs/toutes les directions. Grâce aux résultats de [M3], il semble que log Nn ≈ n1/3

devrait être un rythme de croissance suffisant pour le nombre de particules à conser-
ver. On pourra également étudier des procédures de branchement-sélection permettant de
conserver des populations de particules survivant dans plusieurs directions sans diminuer
la vitesse d’augmentation de la norme des particules.

Un autre modèle de branchement-sélection d’intérêt est la N -marche aléatoire bran-
chante à vitesse d’amélioration prescrite. Étant donné a > 0 et N ∈ N, dans ce système on
garde à chaque étape les N particules les plus proches de la position an. Ce modèle devrait
avoir un comportement similaire à celui des abeilles browniennes [33]. Le comportement
asymptotique de l’arbre généalogique de ce processus est également un objet d’intérêt.
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Processus de fragmentation et de croissance-fragmentation. Les processus de
croissance-fragmentation ont pour objectif de décrire la dynamique d’une population de
particules possédant une masse, dans laquelle à chaque événement de reproduction, la
masse est distribuée entre les enfants. On peut de façon générale décrire ces processus
comme l’exponentielle d’un processus de branchement, la masse étant une quantité positive
et se distribuant généralement de façon multiplicative à chaque événement de branchement.
Bertoin [37] a étendu cette classe de processus aux processus de croissance-fragmentation
markoviens, dans lequel la taille d’une particule entre deux événements de reproduction
peut évoluer selon n’importe quel processus markovien, toutefois la classe la plus naturelle
de processus à étudier reste les processus autosimilaires.

Ces processus peuvent être construits comme un changement de temps de l’horloge
locale de chaque particule dans un processus de Lévy branchant. Cette construction est
analogue à la construction de Lamperti pour les processus autosimilaires comme un chan-
gement de temps de l’exponentielle d’un processus de Lévy. Il est alors naturel de s’in-
téresser à d’autres changements de temps naturels pour les processus de Lévy, comme la
transformée de Lamperti pour les processus de branchement à états continus (CSBP). Ce
type de processus pourrait être liés aux processus coalescents emboîtés de Foutel-Rodier
et al. [97].

D’autres changements de temps plus exotiques pourraient également présenter un in-
térêt. On pourrait ainsi étudier le comportement asymptotique de l’enveloppe convexe de
la trajectoire d’un mouvement brownien réfléchi à l’intérieur d’un disque grâce à un pro-
cessus de fragmentation pur inhomogène en temps tel que la fragmentation d’un élément
de taille x se produise à taux e1/x. Ce processus permettrait ainsi de retrouver les résultats
de De Bruyne et al. [62] prédisant un comportement en espérance de la longueur de cette
enveloppe convexe se comportant en 2π − e−µt1/2(1+o(1)) pour un certain µ > 0.



CHAPTER 1

Construction of spatial branching
processes

“Un voyage de mille lieues commence toujours par
un premier pas”

Lao-Tseu – Tao Te King.

Summary.
In this chapter, we introduce the three main spatial branching processes of
interest in this manuscript: the branching random walk, the branching Lévy
process and the branching Brownian motion. We begin by introducing the
space of point measure P(R), as well as the space of probability distributions
on P(R) that we write P(R). We introduce some notation such as the Laplace
transform of a random point measure, that characterizes its distribution. We
also introduce some probability distributions of interest, such as the randomly
shifted decorated Poisson point processes, introduced by Subag and Zeitouni
[176]. These distributions are used in Chapter 4 to describe the limiting dis-
tributions of the extremal processes of spatial branching processes.
Next, we introduce the branching random walk as a Markov chain on P(R)
satisfying the branching property and invariance in distribution by translation:
the point measure at time n + 1 is obtained by replacing each atom at time n
with an independent copy of the same point measure, shifted by the position
of the atom. We then define the branching Lévy processes as càdlàg Markov
processes on P(R) such that its discrete-time skeletons are Markov chains.
The class of branching Lévy processes was characterized in [M16]. We also
introduced branching-stable point measures, that were studied in [M22].
In a third section, we introduce a richer definition of branching random walks,
such that not only the positions, but also the genealogical relationship of par-
ticles are measurable in the model. We extend this definition to branching
Lévy processes and branching Brownian motions (which are branching Lévy
processes with a.s. continuous trajectories). We end this section with the com-
putation of the first two orders in the asymptotic expansion of the maximal
displacement Mn of the branching random walk, and the convergence in distri-
bution obtained by Bramson [57] for the maximum of the branching Brownian
motion due to its connection with reaction diffusion equations.
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A spatial branching process is a particle system evolving on a state space (usually the
real line or Rd) in which particles move and reproduce independently of one another. At
each birth event, the newborn particles are positioned around their parent and added to
the system. Then, they start evolving independently of one another and of the rest of the
process. This fact, that particles evolve independently of one another after their birth,
is the fundamental property of branching processes, which we refer to as the branching
property.

A spatial branching process can be used to model a large variety of phenomena. It
is for example a natural model for an invading species in a new environment without
competition. For these populations, competition between individuals can be neglected
as long as the local population remains small enough. For similar reasons, this model
can also be used for the development of parasitic infection [25], the spread of epidemics
[24], particles cascades in nuclear [104] and high energy [151] physics, and so on. A spatial
branching process can also be used to model an environment exhibiting a random recursive
branching structure, such as the lung or vascular system of a mammal [148], or a random
graph [88]. It can also be adapted to the description of the value of a two-players game in
min-max settings, with a given particle representing a state of the game, and its position
the value of that position to the player [144].

Spatial branching processes are also used as toy-models in statistical physics for the
study of complex phenomena, such as turbulence [159], spin glasses [53] or random polymer
in large dimensions [76]. They are also used as a testing ground for the study of log-
correlated random fields such as the Gaussian free field [182], and help the understanding
of Liouville quantum gravity [142]. Log-correlated fields appear in a variety of other
domains, such as the description of eigenvalues of some random matrices models [23] or
the fluctuations of Riemann’s zeta function on the critical line [17].

To describe a spatial branching process, one has to give at all times the location of
particles. A natural way to encode this information is with the use of a point measure,
in which each particle is represented by a Dirac mass at the position of that particle.
Therefore a spatial branching process can be represented as a Markov process on the
space of point measures, which is the angle we choose in Section 1.2. The notation and
properties associated to random point measures are given in Section 1.1.

However, this representation does not give the necessary informations to recover the
genealogical structure of the associated branching process. In other words, it does not
allow to follow the trajectory of a particle, or to evaluate the age of the most recent
common ancestor of two particles. In order to encode these more precise informations, a
spatial branching process can be defined as a random function on a tree, encoded using
the Ulam–Harris notation. We explicit this construction in Section 1.3.

1.1 Notation for point measures

A point measure on R is a Radon measure µ on (R,B(R)) satisfying

∀A ∈ B(R), µ(A) ∈ Z+ ∪ {∞}.

We consider the space of Radon point measures with a largest atom, defined as

P(R) := {µ ∈M(R) : ∀x ∈ R, µ([x,∞)) ∈ Z+} . (1.1)



1.1. Notation for point measures 27

The space P(R) can be canonically identified with the space of non-increasing sequences
in [−∞,∞)N that converge to −∞ via the following bijection

µ =
∞∑

n=0
1{xn ̸=−∞}δxn ←→ x = (inf{z > 0 : µ([z,∞)) ≥ n}) . (1.2)

For example, with this identification, the empty point measure is identified with the se-
quence (−∞,−∞, · · · ), and the point measure 2δa with the sequence (a, a,−∞,−∞, · · · ).
More generally, a point measure is identified with its sequence of atoms ranked in the
non-increasing order, eventually completed with points at −∞ if the measure is finite. We
use here the point {−∞} as a cemetery state via the identification δ−∞ = 0.

For µ ∈ P(R) and φ a measurable non-negative function, we define

⟨µ, φ⟩ :=
∫
R

φdµ =
∑
n∈N

1{xn>−∞}φ(xn),

writing x for the ranked sequence of atoms of µ.
We also define the translation operation on P(R) as follows. Given a point measure

µ ∈ P(R) identified with x and a ∈ [−∞,∞), we define

τaµ = τax = (xn + a, n ∈ N).

In other words, τaµ the image measure of µ by the function x 7→ x + a. We note in
particular that τ−∞µ is the empty measure for all µ ∈ P(R).

We equip the space P(R) with the topology of vague convergence, i.e. µn → µ if and
only if ⟨µn, φ⟩ → ⟨µ, φ⟩ as n → ∞ for all continuous compactly-supported function φ.
This topology turns P(R) into a separable completely metrizable space with a countable
dense subset, which makes the definition of random variables on that space convenient.

1.1.1 Random point measures

A random point measure (or point process) is a random element of P(R). The space
of probability distributions on P(R) is denoted P(R). As a rule, in order to simplify the
statements of the results, we will use the following typographic convention:

— the law of a random point measure in P(R) is written as a cursive capital letter
(D, E , · · · ),

— a random point measure with the associated distribution is written as a straight
capital letter (D, E, · · · ),

— the (random) sequence of atoms of that random point measure is written in lowercase
(d = (dj , j ∈ N), e = (ej , j ∈ N), · · · ).

A particular class of point measures playing an important role in the rest of this
presentation are the Poisson point processes, defined as follows.

Definition 1.1 (Poisson point process). Given ϱ a Radon measure on (R,B(R)) such
that ϱ([0,∞)) < ∞, a Poisson point process with intensity ϱ is a random measure P on
R satisfying the following properties:

1. for all A ∈ B(R) with ϱ(A) < ∞, we have P(P (A) = k) = e−ϱ(A) ϱ(A)k

k! (i.e. P (A) is
distributed as a Poisson random variable with parameter A);

2. if A, B ∈ B(R) with A ∩B = ∅, then P (A) and P (B) are independent.
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The law D of a random point measure D is characterized by its (functional) Laplace
transform, defined as

FD : φ ∈ T 7→
∫

P(R)
exp (−⟨D, φ⟩)D(dD) = E (exp (−⟨D, φ⟩)) , (1.3)

where T is the space of non-negative measurable functions on R. By approximations, it
is a standard procedure to show that D can be characterized the restriction of its Laplace
transform to the set T ∗ of positive Lipschitz non-decreasing bounded functions φ such
that there exists x ∈ R satisfying φ(x) = 0.

Proposition 1.2 (Campbell’s formulas). If P is a Poisson point process with intensity ϱ,
then

— for all f ∈ L1(ϱ), E (⟨P, f⟩) =
∫
R fdϱ;

— for all f ∈ L1(ϱ) ∩ L2(ϱ), Var (⟨P, f⟩) =
∫
R f2dϱ;

— for all f ∈ T , FP(f) = E (exp (−⟨P, f⟩)) = exp
(
−
∫
R

(
1− e−f

)
dϱ

)
Observe that if P is a Poisson point process, its intensity measure can be recovered

via the first Cambell’s formula. More generally, given D a random point measure, if there
exists a Radon measure ϱ such that

E (⟨D, φ⟩) =
∫
R

φdϱ

for all continuous compactly supported functions φ, we call ϱ the intensity measure of (the
law of) D.

1.1.2 The branching convolution operator

We introduce the branching convolution operation ⊛ on P(R), with is an analogue, in
the space of random point measures, of the convolution equation for random variables.

Definition 1.3 (Branching convolution operation). Given D and E two probability dis-
tributions on P(R), their convolution D ⊛ E is defined as the law of

∞∑
j=1

τdj
E(j),

where d is the ranked sequence of atoms of a point measure of law D and (E(j), j ≥ 1)
are i.i.d. point measures with law E .

We observe that D⊛E is the point measure obtained by replacing each atom of a point
measure of law D by a point measure of law E , shifted by the position of the atom, see
Figure 1.1. In terms of branching processes, if D is the position of particles at a given
time, and that each particle gives birth to a point process of descendants that spread
according to the law E around the position of their parent, then D ⊛ E is the position of
all the newborn particles after the branching event.

The branching convolution operation is an extension of the usual convolution. Indeed,
considering two independent random variables X and Y with law µ and ν respectively,
and writing D and E the laws of δX and δY , we easily check that D⊛E is the law of δX+Y ,
a point measure with a single atom whose law is given by µ ∗ ν. However, contrary to the
usual convolution, the branching convolution is usually non-commutative.
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0

E
••••••

D

• •• •• •• •• •• •
D ~ E

•

Figure 1.1 – Construction of the branching convolution equation, by making a step of a
branching random walk with law D followed by a step of a branching random walk with
law E .

Remark 1.4. It is worth noting that D ⊛ E is not necessarily an element of P(R). If we
denote, for λ > 0, by Pλ the law of a Poisson point process with intensity e−λxdx, it is
then a simple exercise to verify that

— if λ < µ, Pλ ⊛ Pµ is a Poisson point process with (random) intensity Ze−µx, where
Z a positive stable random variable with index λ

µ ,
— if λ ≥ µ, then Pλ ⊛ Pµ does not produce an element of P, as a variable F with law
Pλ ⊛ Pµ would satisfy F ((a, b)) =∞ a.s. for all a < b.

In order to guarantee for the branching convolution to be well-defined, it is sufficient
to ask the point measures to satisfy an exponential integrability condition.

Property 1.5. Let D, E ∈ P(R), if there exists θ ≥ 0 such that

E (⟨D, eθ⟩) <∞ and E (⟨E, eθ⟩) <∞,

where eθ : z 7→ eθz, then D ⊛ E ∈ P(R), and moreover∫
P(R)
⟨F, eθ⟩D ⊛ E(dF ) = E (⟨D, eθ⟩)E (⟨E, eθ⟩) .

The function θ 7→ E (⟨D, eθ⟩) is the Laplace transform of the intensity measure of the
random point measure D. This property implies that if the laws D and E have intensity
measures, then the intensity measure of D⊛E is the convolution of the intensity measures
of D and E .

However, note that the intensity measure does not characterize the law of a random
point measure, contrary to its functional Laplace transform. To simplify computations
associated with the branching convolution equation, it will be sometimes more convenient
to work with the log-Laplace functional of random point measures.

Definition 1.6 (Log-Laplace functional). Let E be a probability distribution on P(R).
The log-Laplace functional of E is the functional defined, for all measurable non-negative
function φ, by

ΨE [φ] : z ∈ R 7→ − logE
(
e−⟨τzE,φ⟩

)
.

The distribution E is characterized by its log-Laplace functional ΨE .

The following equation justifies the introduction of this functional for the study of
spatial branching processes.

Property 1.7. Let D and E be two probability distributions on P(R) such that D ⊛ E is
well-defined, we have ΨD⊛E = ΨD ◦ΨE .
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Proof. For all measurable non-negative function φ and z ∈ R, by definition of the branch-
ing convolution operation, we have

ΨD⊛E [φ](z) = − logE

exp

− ∞∑
j=1
⟨τdj+zE(j), φ⟩


= − logE

exp

− ∞∑
j=1

ΨE [φ](dj + z)


= − logE (exp (−⟨τzD, ΨE [φ]⟩)) = ΨD [ΨE [φ]] (z),

computing the expectation conditionally on D on a first step, and using the independence
of the point processes (E(j), j ≥ 1).

1.1.3 Shifted decorated Poisson point processes

A class of point measures introduced by [176] plays a particular role in the study
of extreme values of spatial branching processes: the shifted decorated Poisson point
processes with exponential intensity. This class can be characterized in several different
ways, we record in the present section some of its characteristics.

Definition 1.8. Let λ > 0, S a positive random variable and D a probability law on
P(R). A shifted decorated Poisson point process with intensity Se−λxdx and decoration
law D (shortened to SDPPP(Se−λxdx,D)) is a random point measure X with law

S ⊛ Pλ ⊛D,

where S is the law of δλ−1 log S and Pλ the law of a Poisson point process with intensity
e−λxdx. In other words, writing (pj , j ≥ 1) the ranked sequence of atoms of a Poisson
point process of law Pλ, we can write

X =
∞∑

j=1
τλ−1 log S+pj

D(j),

where D(j) are i.i.d. copies of D, as illustrated in Figure 1.2.

•×××××××× •×××××××× •×××× •×××× •××

Figure 1.2 – Construction of shifted decorated Poisson point process via the superposition
of i.i.d. random point measures, shifted by the positions of the atoms of a Poisson point
process with exponential intensity.

The law of an SDPPP(Se−λxdx,D) is well-defined as long as E
(
eλd1

)
< ∞, with d1

the largest atom of a random point measure of law D. We remark that without loss of
generality, we can assume the law of the decoration is supported by

P∗(R) := {D ∈ P(R) : d1 = 0} .

Indeed, given X an SDPPP(Se−λxdx,D), we define the point measure distribution D∗ by

∫
P(R)

F (D)D∗(dD) =
E
(
eλd1F (τ−d1D)

)
E (eλd1) ,



1.1. Notation for point measures 31

and set c = E
(
eλd1

)
. Then, X can be defined as an SDPPP(cSe−λxdx,D∗). As a result,

without loss of generality we always assume that the decoration distribution is supported
by P∗(R).
Remark 1.9. Even with the condition that D is supported by P∗(R), the description of an
SDPPP by a triplet (S, λ,D) is not necessarily unique. With the notation of Remark 1.4,
we remark that for λ < µ, a random point measure with law Pλ ⊛ Pµ can be written as

— an SDPPP(cλ,µe−λxdx,P∗
µ), i.e. with S = cλ,µ a constant and P∗

µ a Poisson point
process with intensity e−µxdx on (−∞, 0] conditioned on having an atom at 0;

— an SDPPP(Ze−µxdx, δδ0), i.e. a decoration consisting of a single atom at 0 and Z a
positive stable variable with index λ/µ.

More generally, it can be described as an SDPPP(Zϱe−ϱxdx,P∗
µ) for all ϱ ∈ [λ, µ), with

Zϱ a positive stable variable with index λ/ϱ.
By Property 1.7, the log-Laplace transform of the law E of an SDPPP(Se−λxdx,D)

can be straightforwardly computed for all non-negative function φ as

ΨE [φ] : z ∈ R 7→ − logE
(

exp
(
−Seλz

∫
R

(
1− e−ΨD[φ](y)

)
e−λydy

))
.

Subag and Zeitouni [176, Corollary 3] showed that this property is in fact characteristic
of SDPPPs.
Theorem 1.10 (Characterization of SDPPP). Let λ > 0, and E a point measure distri-
bution. The two following statements are equivalent:

1. There exists a random variable Z such that for all continuous non-negative compactly
supported function φ, there exists cφ ∈ R such that

∀z ∈ R,E (exp (−⟨τzE, φ⟩)) = E
(
exp

(
−Ze−λ(z−cφ)

))
;

2. There exists a positive random variable S and a decoration measure D such that E
is an SDPPP(Se−λxdx,D).

Although the law of an SDPPP is not uniquely characterized by a triplet (S, λ,D), it
is worth mentioning that if the value of λ is fixed, the laws of S and D such that E is an
SDPPP(Se−λxdx,D) can be described using the law of E .
Proposition 1.11. If E is an SDPPP(Se−λxdx,D) with D supported by P∗(R), then

∀z ∈ R,P(e1 ≤ z) = E
(
e−Se−λz

)
,

and for all φ ∈ T ∗,

E
(
e−⟨D,φ⟩

)
= lim

z→∞E
(
e−⟨τ−e1 E,φ⟩

∣∣∣e1 ≥ z
)

,

where we recall that e1 is the position of the largest atom of E.
Shifted decorated Poisson point processes play an important role in the study of ex-

tremal values of Poisson point processes, they are in fact the limiting distribution of the
extremal processes of a large class of spatial branching processes, see Chapter 4. More-
over, they can be shown to be the unique class of solutions to the so-called branching
convolution equation (see the results of [M37] and [74], that we discuss in more details in
Chapter 3). In short, for a large class of random point measures E , all fixed points of the
branching convolution equation, i.e. solutions of

Z = Z ⊛ E or Z = E ⊛ Z, (1.4)

are SDPPP with either prescribed random shift of prescribed decoration.
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1.2 Branching processes as point-measure valued Markov
processes

In this section, we present some branching processes constructed as point-measure
valued Markov processes. We introduce the branching random walks in Section 1.2.1 as
discrete-time Markov process on P(R) that satisfy the branching property and have shift-
invariant increments. Its continuous-time analogue, satisfying the branching property and
having stationary and independent increments is naturally called the branching Lévy pro-
cess. This class is introduced in Section 1.2.2, presenting in particular the results of [M16]
that characterize this class and give a representation of its law in terms of a characteristic
triplet analogue to the Lévy-Khintchine triplet of Lévy processes. The continous-time
branching Lévy process with continuous trajectories is the branching Brownian motion.

1.2.1 The branching random walk

A branching random walk is a particle system on the real line in which at every discrete
time step, every particle creates an independent copy of a point process of offspring,
shifted around its position. It can be thought off as a population model in which in
every generation, each individual creates independently of any other individuals a random
number of children, who then migrate away from the position of their parent. Using a
point measure to describe the number and position of children of an individual allow us to
consider a process in which the number of children and their displacement are correlated.

Definition 1.12. Let Z be a probability distribution on P(R) such that there exists θ > 0
verifying ∫

P(R)
⟨Z, eθ⟩Z(dZ) = E

 ∞∑
j=1

eθzj

 <∞, (1.5)

where (zj) is the ranked sequence of atoms of a point measure Z of law Z.
A branching random walk with reproduction law Z is the Markov process (Zn, n ≥ 0)

on P(R) constructed recursively as follows

Z0 = δ0 and Zn+1 =
∞∑

k=1
τzn,k

Yn+1,k, (1.6)

where (zn,k, k ≥ 1) is the sequence of atoms of Zn ranked in the decreasing order, and
(Yn,k, (n, k) ∈ N2) are i.i.d. random point measures with law Z, see Figure 1.3.

A condition for the well-definition of the branching random walk without assumption
(1.5) was obtained by [15] for a branching random walk in which the number of children of
an individual is independent of their displacement, which is a.s. non-positive. A general
condition guaranteeing the well-definition of a branching random walk with reproduction
law Z is however not known.

Equation (1.5) is reminiscent of the recursive equation defining Bienaymé–Galton–
Watson processes. We recall that a BGW process with reproduction law ν is a Markov
process (Yn, n ≥ 0) on Z+ defined by

Y0 = 1 and Yn+1 =
Yn∑

j=1
ξn+1,j , (1.7)

where (ξn,j , n ∈ N, j ∈ N) are i.i.d. random variables with law ν. If (Zn, n ≥ 0) is a
branching random walk such that ⟨Z1, 1⟩ ∈ Z+ a.s, then writing ν the law of ⟨Z1, 1⟩, the
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(a) Construction of the first five generations
of a branching random walk.
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(b) The same branching random walk, as en-
coded by random point measures.

Figure 1.3 – A branching random walk, with and without the genealogical informations
between the generations of particles. The picture on the right side illustrate the informa-
tion encoded in the branching random walk constructed as a Markov process in P(R).

process (⟨Zn, 1⟩, n ≥ 0) is a BGW process with reproduction law ν. In other words, the
number of particles in a branching random walk is a discrete branching Markov process.

Using this observation, we can study the survival-extinction properties of branching
random walks. A branching random walk is say to go extinct if at some finite time n ∈ N
we have Zn = 0, i.e. no particle remain on the real line. If the branching random walk
never goes extinct, we say that it survives. We set

S := {∀n ∈ N, ⟨Zn, 1⟩ > 1}

the survival event of the branching random walk. By comparison with Galton-Watson
processes (see [21] for a textbook introduction), the following result can be shown to hold.

Proposition 1.13. Let (Zn, n ≥ 0) be a branching random walk with reproduction law Z.
We define

f : s ∈ [0, 1] 7→ E
(
s⟨Zn,1⟩

)
with the convention s∞ = 1{s=1}.

Then 1− P(S) is the smallest root on [0, 1] of the equation f(s) = s. In particular
— if E(⟨Z1, 1⟩) ≤ 1, then P(S) = 0;
— if E(⟨Z1, 1⟩) ≥ 1 then P(S) > 0.

In the rest of this manuscript, we will only consider branching random walks such
that E (⟨Z1, 1⟩) > 1, which are called supercritical branching random walks. We aim at
describing the asymptotic properties of these processes on the survival event.

Let (Zn, n ≥ 0) be a branching random walk with reproduction law Z. With the
notation of Section 1.1, writing Zn the law of Zn, the sequence (Zn, n ≥ 0) is defined by
the following recursion equation:

Z0 = δδ0 and Zn+1 = Z ⊛ Zn = Zn ⊛ Z. (1.8)

We denote by Z⊛n the law Zn of Zn, as it is the law of the nth iteration of the branching
convolution operation. More generally, we observe that Zn+m = Zn ⊛Zm, i.e. in terms of
the branching random walk

Zn+m
(d)=

∞∑
k=1

τzn,k
Z(k)

m , (1.9)
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with (zn,k, k ≥ 1) the ranked sequence of atoms in Zn, and (Z(k)
m , k ≥ 1) i.i.d. copies

of Zm.
We refer to (1.9) as the branching property: the process at time n + m is obtained by

superposing the values at time m of independent copies of the same process starting from
the position of each atom in the process at time n. We note that branching random walks
are P(R)-valued Markov processes satisfying the branching property with shift-invariant
distribution, i.e. such that the law of the process started from z is the same as the law of
the process stated from 0 shifted by z.
Remark 1.14. The integrability condition (1.5) in Definition 1.12 is not necessary in theory.
Indeed, it is enough to assume that the reproduction law Z of the branching random walk
is such that Z⊛n ∈ P(R) for all n ∈ N. However, this assumptions is usually made, as
in addition of guaranteeing the well-definition of the branching random walk, it allows for
the use of the celebrated Many-to-one lemma (c.f. Lemma 1.15).

For all θ ≥ 0, we denote by

Pθ(R) =
{
D ∈ P(R) :

∫
⟨D, eθ⟩D(dD) <∞

}
(1.10)

the set of point measure distributions such that x 7→ eθx is integrable with respect to their
intensity measure.

Given (Zn, n ≥ 0) a branching random walk, we denote by κ(θ) the log-Laplace trans-
form of (the intensity measure of) its reproduction law, defined as

∀θ ∈ R, κ(θ) := logE (⟨Z1, eθ⟩) ∈ (−∞,∞].

The condition for the branching random walk to be supercritical can be expressed as
κ(0) > 0 (without barring the possibility that κ(0) = ∞, or even that ⟨Z1, 1⟩ = ∞ a.s.).
With this definition and Property 1.5, it is a straightforward observation that for all θ ∈ R
such that κ(θ) <∞ and all n ≥ 0, we have

E (⟨Zn, eθ⟩) = enκ(θ). (1.11)

In particular, for all n ∈ N, Zn ∈ Pθ.
The Many-to-one lemma is an ubiquitous tool of the study of spatial branching pro-

cesses, as it links the mean of ⟨Zn, f⟩ to a random walk estimate. Its first appearance
can be tracked back to the early work of Kahane and Peyrière [159, 116] on multiplicative
cascades. A simple proof by recursion can be found in the lecture notes of Zhan Shi [172,
Theorem 1.1].

Lemma 1.15. Let (Zn, n ≥ 0) be a branching random walk, and θ ∈ R such that κ(θ) <∞.
Let (Sn, n ≥ 0) be a random walk with step distribution satisfying

∀x ∈ R, P(S1 ≤ x) = E
(
⟨Z1, eθ1(−∞,x]⟩

)
e−κ(θ).

For all measurable positive function f and n ∈ N, we have

E (⟨Zn, f⟩) = E
(
e−θSn+nκ(θ)f(Sn)

)
.

Using this result, Biggins [42], building on earlier work from Hammersley [100] and
Kingman [121] that considered branching random walks supported on R+, proved that
the maximal position of a branching random walk has a well-defined speed as long as the
intensity measure of the first generation decays exponentially at ∞.
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Theorem 1.16 (Speed of the branching random walk, Biggins 1976). Let θ > 0, we denote
by Z a point measure distribution in Pθ(R) and by (Zn, n ≥ 0) a branching random walk
with reproduction law Z. For all n ∈ N, we set

Mn := max
|u|=n

X(u) and v := inf
φ>0

κ(φ)
φ

.

We have limn→∞ Mn/n = v a.s. on S.
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Figure 1.4 – First 30 generations of a branching random walk with symmetric exponential
distribution. The linear speed of the particle system can be observed from its triangular
shape.

In other words, the particle system represented by the branching random walk invades
its environment at positive speed, as illustrated in Figure 1.4. However, martingales argu-
ment show that in typical settings, Mn − nv converges to −∞ almost surely. To describe
more precisely the rate of growth of nv−Mn, it is crucial to consider the trajectory followed
by particles, which will be made possible by the encoding introduced in Section 1.3.

1.2.2 The class of branching Lévy processes

Branching Lévy processes are the continuous-time counterparts of branching random
walks, in the same way that Lévy processes are the continuous-time counterparts of random
walks. Indeed, we recall that a Lévy process (ξt, t ≥ 0) can be described as a càdlàg
(right continous with left limits at each point) Markov process such that for all h > 0,
(ξnh, n ≥ 0) is a random walk. By analogy, we define a branching Lévy process (Zt, t ≥ 0)
as a càdlàg Markov process on P(R) such that for each h > 0, (Znh, n ≥ 0) is a branching
random walk. We characterize in this section the branching Lévy processes satisfying
an exponential integrability condition of the form (1.5), as well as their law at time 1
that we call infinitely ramified point measures, by analogy with infinitely divisible random
variables.

The fine structure of Lévy processes and infinitely divisible distributions has been
studied over the years, starting with the classical works of de Finetti, Itô, Khintchine,
Kolmogorov and Lévy [81, 113, 119, 130, 131]. Over the years, their works uncovered a
one-to-one correspondence between:



36 Chapter 1. Construction of spatial branching processes

Infinitely divisible distributions: probability measures µ on R such that for all n ∈ N,
there exists a probability measure ν on R satisfying ν∗n = µ;

Lévy processes: càdlàg Markov processes with stationary and independent increments;
Lévy-Khintchine triplets: Triplets (σ2, a, π) with σ2 ≥ 0, a ∈ R and π a measure on

R\{0} such that
∫

(1 ∧ x2)π(dx) <∞.
More precisely, the following result holds.

Theorem 1.17 (Lévy, Khintchine). The three following statement hold.
1. For each infinitely divisible distribution µ, there exists a unique Lévy process X such

that X1 has law µ.
2. For any Lévy process X, there exists a unique Lévy-Khintchine triplet (σ2, a, π) such

that for all t ≥ 0,

∀ξ ∈ R, E
(
eiξXt

)
= e

t

(
− ξ2σ2

2 +ia+
∫
R(eiξz−1+iξz1{|z|<1})π(dz)

)
.

3. For any Lévy-Khintchine triplet (σ2, a, π) there exists a unique infinitely divisible
distribution µ such that

∀ξ ∈ R,

∫
R

eiξxµ(dx) = e− ξ2σ2
2 +iaξ+

∫
R(eiξz−1+iξz1{|z|<1})π(dz).

We refer to the Lévy-Khintchine triplet associated to a Lévy process or an infinitely
divisible distribution as its characteristic triplet. In addition to this result, there exists an
explicit construction of Lévy processes with a given Lévy-Khintchine exponent, called the
Lévy-Itô formula.

Theorem 1.18 (Lévy, Itô). Let (σ2, a, π) be a Lévy-Khintchine triplet. Let B be a standard
Brownian motion and N an independent Poisson point process with intensity dt⊗ π(dx),
the process defined for t ≥ 0 by

Xt = σBt + at +
∫

[0,t]×R\(−1,1)
xN(dtdx) +

∫
[0,t]×(−1,1)

xN c(dtdx)

is a Lévy process with characteristic triplet (σ2, a, π). Here, the integral with respect to N c

represents the compensated Poisson integral.

An analogue of these characterization results of Lévy processes have been obtained
by Bertoin and Mallein [M18] in the context of spatial branching processes. We can find
correspondences between branching Lévy processes, infinitely ramified point measures and
characteristic triplets, with a Lévy-Itô type construction of a branching Lévy process from
its associated triplet. We first give a formal definition of those three classes of objects.

Definition 1.19 (Infinitely ramified point measure). A law Z ∈ P(R) is called an in-
finitely ramified point measure if for all n ∈ N, there exists D ∈ P(R) such that Z = D⊛n.

An infinitely ramified point measure can then be described as a probability distribution
on P(R) that can be represented for all n ∈ N as the law of the value at time n of a
branching random walk. They are the analogue of infinitely divisible distributions, that
can be described for all n ∈ N as the law of the value at time n of a random walk.



1.2. Branching processes as point-measure valued Markov processes 37

Definition 1.20 (Branching Lévy process). A branching Lévy process is a càdlàg Markov
process (Zt, t ≥ 0) on P(R) such that there exists θ ≥ 0 satisfying Zt ∈ Pθ(R) for all t ≥ 0,
and that for all s < t

Zt+s = Zt ⊛ Zs, i.e. Zt+s
(d)=

∞∑
k=1

τzt,k
Z(k)

s , (1.12)

where (zt,k, k ∈ N) is the ranked sequence of atoms of Zt, and (Z(k)
s , k ∈ N) are i.i.d. copies

of Zs.

We refer to (1.12) as the branching property for a spatial branching process. It ex-
presses that a process at time t+s can be described as the superposition, for each particle
alive at time t at position z of a copy of the process at time s shifted by z. In other
words, a branching Lévy processes is a spatial branching process, satisfying the branching
property and such that the law of the process is invariant by translation. In other words,
the process started from z ∈ R has same law as the shift by z of the law of a process
started from 0.

We denote κ : θ ∈ R 7→ logE (⟨Z1, eθ⟩) ∈ (−∞,∞], by analogy with the branching
random walk. It is a straightforward consequence of the branching property that for all
t ≥ 0, E (⟨Zt, eθ⟩) = etκ(θ). Similarly to the Fourier transform of an infinitely divisible
distribution, the log-Laplace transform of a branching Lévy process can be described by
a characteristic triplet encoding the law of the process.

Definition 1.21 (Characteristic triplet). A characteristic triplet of a branching Lévy
process is a triplet (σ2, a, Λ) with σ2 ≥ 0, a ∈ R and Λ a σ-finite measure on P(R)\{δ0}
such that there exists θ ≥ 0 verifying∫

P(R)
(1 ∧ x2

1)Λ(dx) +
∫

P(R)

(
eθx1 − 1 + θx11{|x1|<1}

)
Λ(dx)

+
∫

P(R)

 ∞∑
j=2

1{xj>−∞}eθxj

Λ(dx) <∞. (1.13)

The condition Λ(δ0) = 0 imposed on the branching Lévy measure Λ allows it to be
uniquely defined, similar to the constraint π({0}) = 0 imposed on the jump measure of a
Lévy process. We underline that the condition (1.13) entails that Λ({0}) <∞.

The following result, obtained in [M16], gives a correspondence between branching
Lévy processes, infinitely ramified point measures and characteristic triplets.

Theorem 1.A (Bertoin and Mallein (2019)). Let θ ≥ 0, the three following statements
hold.

1. For each infinitely ramified point measure Z ∈ Pθ(R), there exists a branching Lévy
process Z such that Z1 has law Z.

2. There exists a unique characteristic triplet (σ2, a, Λ) associated to each branching
Lévy process Z such that for all t ≥ 0 and z ∈ C with κ(Re(z)) <∞, we have

E (⟨Zt, ez⟩) = e
t

(
zσ2

2 +az+
∫

P(R)(
∑∞

k=1 ezxk −1−zx11{|x1|<1}Λ(dx))
)

. (1.14)

3. For any characteristic triplet (σ2, a, Λ) there exists a unique branching Lévy process
Z such that (1.14) holds.
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In other words, there exists a one-to-one correspondence between branching Lévy pro-
cesses and characteristic triplets. Additionally, each infinitely ramified point measure can
be constructed as the law at time 1 of a branching Lévy process, and has therefore at least
one associated characteristic triplets. However, we were not able to prove the following
conjecture.

Conjecture 1.22. For each infinitely ramified point measure Z ∈ Pθ(R), there exists a
unique branching Lévy process Z such that Z1 has law Z.

A simple way to prove the above conjecture would be to show that (σ2, a, Λ) 7→ Z1
is an injective map. In [M16], Bertoin and Mallein additionally proved a Lévy-Itô type
construction of the branching Lévy process with a prescribed characteristic triplet. Infor-
mally, a branching Lévy process with triplet (σ2, a, Λ) is a particle system in which each
particle moves according to an independent Lévy process with parameters (σ2, a, π) with
π the image measure of Λ by the map D 7→ d1. With intensity Λ(dx) a particles makes a
jump of size x1 while giving birth to newborn offspring at distance x2, x3, · · · of its pre-
jump position. The trajectory of a branching Lévy process such that Λ(x2 > −∞) < ∞
(i.e. such that only finitely many births occur per unit of time) is given in Figure 1.5, but
in general the set of branching times of the process forms an a.s. everywhere dense set.

0

time

space

×

×

××
×

×××××

×

Figure 1.5 – Sample path of a branching Lévy process with finite birth intensity.

A branching Lévy process is a spatial branching process in which the times at which
a birth event occurs can be an almost surely everywhere dense set. However, due to the
integrability condition (1.13), most births occur at low enough level that the number of
particles above a given position does not explode in finite time. As this construction is
made easier with a genealogical structure for the branching Lévy process, we introduce it
in details in Section 1.3.

Branching-stable point measures

Real-valued random variables are said to have a stable distribution if and only if for
each n ≥ 2, there exists a(n) such that

X
(d)= X1 + · · ·+ Xn

a(n) , (1.15)

where (X1, . . . , Xn) are i.i.d. copies of X. Note that (barred the degenerate case X = 0
a.s.) we have for all n and m, a(nm) = a(n)a(m), hence there exists an index α, called
the index of stability of the distribution such that a(n) = n1/α. Observe that any stable
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distribution is infinitely-divisible, hence can be represented as the value at time 1 of a
Lévy process (Xt, t ≥ 0). The stability property implies that for the Lévy process

(Xt, t ≥ 0)(d)=(λ−1/αXλt, t ≥ 0)

for all λ > 0. This process is called a stable Lévy process.
Stable variables and stable Lévy processes often appear as scaling limit of a sequence

of processes. In [M22], Bertoin, Cortines and Mallein characterized stable branching Lévy
processes, satisfying a similar property to (1.15). A point measure distribution Z is said
to be branching-stable if, writing (Zn, n ≥ 0) a branching random walk with reproduction
law Z, for any n ≥ 2 there exists a(n) such that

Z
(d)=ha(n)(Zn), (1.16)

where ha is the dilation operator on P(R) that transforms the sequence of atoms (zk, k ≥ 1)
into (azk, k ≥ 1). In other words, ha(Z) is the image measure of Z by the dilation x 7→ ax.
Remark 1.23. The branching-stable point measure we defined here is a different notion
from the one defined by Zanella and Zuyev in [181]. In that article, the branching operation
is replaced by the superposition of point measures, and the dilation by the splitting of
atoms (without motion) as Galton-Watson processes. This definition yields a different
class of stable point measures.

The main result of [M22] is a characterization of branching-stable point measures.

Theorem 1.B (Bertoin, Cortines and Mallein (2019)). The law of the random point
measure Z is branching-stable with index α if and only if

— α > 2 and either Z = δ0 a.s. or Z = 0 a.s.;
— α ∈ (0, 2] and Z = δX , with X a stable random variable of index α;
— α < 0 and Z = Z1, with (Zt, t ≥ 0) a branching Lévy process with parameters

(0, 0, Λ), where Λ is defined by∫
P(R)

F (Z)Λ(dZ) =
∫ ∞

0
yα−1

∫
P(R)

F (hy(Z))λ(dZ)dy, (1.17)

with λ a finite point measure on P(R) satisfying

λ(x1 ̸= 0) = λ(x2 ̸= 1) = 0 and
∫

P(R)

∞∑
k=2

x−α
k λ(dx).

This results allows us similarly to characterize stable branching Lévy processes. Bar-
ring the case of the degenerate Lévy process consisting of a single particle staying at 0
forever, α-stable branching Lévy processes can be split into two categories:

— if α ∈ (0, 2], then Z consists of a single particle moving as an α-stable Lévy process,
without giving birth to offspring,

— if α < 0, then Z is a particle system in which particles do not move, but a particle
at position z creates at rate yα−1λ(R)dy newborn particles at position z + yx2, z +
yx3, · · · , with (xn, n ≥ 1) the ranked sequence of atoms sampled according to the
law λ/λ(R).
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In other words, in stable branching processes, either particles move without branching if
α > 0, or they branch without moving if α < 0. In the later case, the branching rate and
position of offspring are chosen in a consistent fashion with the scaling property. In [39],
stable branching Lévy processes are shown to be the scaling limits of branching random
walks, with some well-chosen space-time scaling.

One particular stable branching Lévy process of interest is the Cauchy-Yule, process,
which has index −1. In this process, a particle at position x creates at rate dtdy a particle
at position x + y at time t. It can be thought of as a branching random walk on [0,∞)2

in which a particle at position (t, x) creates a Poisson point process of offspring with unit
intensity in the quadrant (t,∞)× (x,∞). The first coordinate of the process gives it the
time at which the particle is born in the branching Lévy process, and the second coordinate
its position.

Branching Brownian motion

A branching Brownian motion is a branching Lévy process with a.s. continuous trajec-
tories. As a result, its associated characteristic triplet is (σ2, a, Λ) with Λ having support
in {nδ0, n ∈ Z+\{1}}. In other words, in this process each particle move according to
an independent Brownian motion, at each particle splits at rate Λ({kδ0}) into k daughter
particles, that start from the position of their mother independent copies of the branching
Brownian motion. We refer in more details to this process in Section 1.3.4.

1.3 Genealogical structure for branching processes

To give a more precise description of the properties of particles in spatial branching
processes, such as the trajectory followed by particles, or the genealogical relationship
between two particles, we have to encode not only the positions of particles at all times,
but also the genealogical structure of the process. This encoding will allow us to give
an alternative description of the branching random walk and the branching Lévy process,
and to describe the Lévy-Itô construction for a branching Lévy process with prescribed
characteristic triplet. We will also introduce in more details the branching Brownian
motions as well as their connections with reaction-diffusion equations.

1.3.1 The Ulam–Harris–Neveu notation for trees

The Ulam–Harris–Neveu notation for trees is a structure used to encode plane rooted
trees, such as genealogical structures. Each node of the plane tree is associated with a
unique label in the set of finite sequences of integers

U :=
⋃

n≥0
Nn, (1.18)

with the usual convention N0 = {∅}, i.e. ∅ is the sequence of length 0. The labelling
is made as follows: the root vertex has label ∅, and its k neighbours are given labels
1, 2, · · · , k according to their ordering from left to right in the place. Recursively, the
jth leftmost child of a vertex labelled u = (u(1), . . . , u(n)) is labelled (u(1), . . . , u(n), j).
In other words, the label u = (u(1), . . . , u(n)) is associated to the u(n)th child of the
u(n− 1)th child of the ... of the u(1)th child of the root.

We introduce some notation for the manipulation of these labels. For all u ∈ U, we
denote by
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— |u| the length of u, i.e. the integer n such that u ∈ Nn;
— for k ≤ u, u(k) is the kth element of the sequence u, i.e. u = (u(1), . . . u(|u|)) as

long as u ̸= ∅;
— for k ≤ u, uk = (u(1), . . . , u(k)) is the sequence consisting of the first k values of u;
— for v ∈ U, u.v = (u(1), . . . , u(|u|), v(1), . . . , v(|v|)) is the concatenation of u and v.

Let U∗ = U\{∅} be the set of non-empty finite sequences. For all u = (u(1), . . . , u(n)) ∈
U∗, we denote by πu = (u(1), . . . , u(n− 1)) = u|u|−1 the sequence obtained by erasing its
last value.

In terms of a genealogical tree, |u| corresponds to the generation to which u belongs
(in other words its distance from the root), πu is the parent of u, uk is the ancestor of u
that was alive at generation k, and for j ∈ N u.j is the jth child of u. The set U∗ can be
seen as the set of possibles labels for non-root vertices of a plane tree, or sometimes be
used to represent the genealogy of a population starting from more than one ancestor, i.e.
a plane rooted forest.

With this notation, a plane rooted tree can be defined as a subset of U satisfying some
properties.

Definition 1.24 (Plane rooted tree). A plane rooted tree is a subset T of U satisfying
the three following properties
Root: ∅ ∈ T ;
Parent: for all u ∈ T with u ̸= ∅, we have πu ∈ T ;
Children enumeration: for all u ∈ T and j ≥ 2, if u.j ∈ T then u.(j − 1) ∈ T .

∅

1 2
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211 212 213

22
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31

311

3111 3112
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3121 u
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π(211)

Figure 1.6 – Illustration of the Ulam-Harris notation for a plane rooted tree of height 4.

A Bienaymé-Galton-Watson tree is the genalogical tree of a population in which indi-
viduals create offspring independently of one another, according to a common reproduction
law ν on Z+. It can be explicitely constructed from the Ulam–Harris–Neveu notation in
the following fashion.

Definition 1.25 (Bienaymé-Galton-Watson tree). Let ν be a probability distribution on
Z+, a Bienaymé-Galton-Watson tree with reproduction law ν is a random plane rooted
tree defined as

T := {u ∈ U : ∀0 ≤ k < |u|, u(k + 1) ≤ ξuk
} ,

where (ξu, u ∈ U) is a family of i.i.d. random variables of law ν.
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In the above definition, it can be observed that the random variable ξu represents
the number of children of the particle labelled u, if this particle belongs to the tree. In
particular, the process (#{u ∈ T : |u| = n}, n ≥ 0) is a BGW process. In fact, the tree T
gives the detailed genealogical structure of this branching process as for any individual u,
the label of its parent, its number of siblings or its offspring are measurable functions of
the tree T .

Using Proposition 1.13, we observe that a BGW process may survive with positive
probability, provided that E(ξ∅) > 1. More precisely, we denote by S := {#T = ∞} the
survival event for the process.

1.3.2 Genealogical structure of the branching random walk

We introduce here an alternative definition of branching random walks as random
maps U → R ∪ {−∞}. Similarly to BGW trees versus BGW associated processes, this
definition allows a more precise description of the genealogy of particles in the branching
random walk.
Definition 1.26 (Branching random walk). Let Z be a probability distribution on P(R).
A branching random walk with reproduction law Z is a random map X : U→ R∪ {−∞}
defined for all u ∈ U by

X(∅) := 0 and X(u) := X(πu) + zπu
u(|u|) =

|u|−1∑
j=0

z
(uj)
u(j+1),

where (Z(u), u ∈ U) are i.i.d. random point measures with law Z, and (z(u)
k , k ≥ 1) is the

ranked sequence of atoms of Z(u).
With this construction, the quantity X(u) represents the position of the particle la-

belled u in the system. Observe that the point process of the positions at time n can be ob-
tained as Zn = ∑

|u|=n δX(u), when this quantity is well-defined. Here and in the rest of this
manuscript, a sum over the set {|u| = n} represents a sum over {u ∈ Nn : X(u) ̸= −∞}.
Remark 1.27. This definition of the branching random walk removes the requirement for
Z to belong in ∪θ>0Pθ(R), i.e. to satisfy an exponential integrability condition. Indeed,
this definition does not require that at all times, the set of positions of particles is locally
finite or admits a largest element.

Similarly to the definition of the BGW tree above, the point measure Z(u) give the
number and the relative position of the children of the particle u with respect to the
position of their parent X(u), provided that X(u) ̸= −∞. The description of a branch-
ing random walk as a random map U → R ∪ {−∞} gives additional information of the
genealogical relationship, and the trajectories followed by a particle and the positions of
its descendants in the branching random walk. More precisely, for all u ∈ U , we call the
trajectory followed by the particle u the function k ∈ J0, |u|K 7→ X(uk), i.e. the sequence
of positions of the ancestors of particle u.

Given a branching random walk X, we may define T := {u ∈ U : X(u) > −∞} the set
of particles in the branching random walk. We note that T is a BGW tree, and we define
S the survival set of the branching random walk as

S := {#T =∞} = {∀n ∈ N, ∃|u| = n : X(u) > −∞} a.s.

The many-to-one lemma can be extended to consider functions of the trajectory of
particles in a branching random walk, provided that it verifies an integrability condition.
We refer again to [172, Theorem 1.1] for a proof of this result.
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Lemma 1.28 (Trajectorial many-to-one lemma). Let X be a branching random walk and
θ ∈ R such that κ(θ) = logE

(∑
|u|=1 eθX(u)

)
< ∞. We denote by (Sn, n ≥ 0) a random

walk with step distribution given by

P(S1 ≤ x) = E

∑
|u|=1

eθX(u)−κ(θ)1{X(u)≤x}

 .

For all n ≥ 1 and measurable non-negative function f , we have

E

 ∑
|u|=n

f(X(uj), 0 ≤ j ≤ n)

 = E
(
e−θSn+nκ(θ)f(Sj , 0 ≤ j ≤ n)

)
.

This version of the many-to-one lemma an be used to control the trajectory of extremal
particles in the branching random walk. This control can be used to obtain the second
order in the asymptotic behaviour of the maximal displacement Mn = max|u|=n X(u).
More precisely, we recall that κ : θ 7→ logE

(∑
|u|=1 eθX(u)

)
is a C∞ and convex function

over the interior of its domain of definition. Assuming that φ 7→ κ(φ)
φ attains its minimum

at point θ∗, and that κ is well-defined in a neighbourhood of θ∗, we will have

θ∗κ′(θ∗) = κ(θ∗), hence v = κ′(θ∗). (1.19)

Under these assumptions, Addario-Berry and Reed [3] proved that Mn − nv + 3
2θ∗ log n

is tight. Hu and Shi [105] proved that while Mn−nv
log n converges to −3

2θ∗ in probability, this
quantity exhibits almost sure fluctuations with lim supn→∞

Mn−nv
log n = −1

2θ∗ a.s.
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Figure 1.7 – Logarithmic correction for the speed of the branching random walk. Observe
that the trajectory yielding to the rightmost occupied position (in green) looks like an
excursion below the curve k 7→ kv + c for some c > 0. This observation yields the simple
proof for the convergence of the logarithmic correction in [8], and is formalized in [73].

As a first step towards this result, using the many-to-one lemma we remark that for



44 Chapter 1. Construction of spatial branching processes

all y ≥ 0,

P (∃u ∈ U : X(u) ≥ nv + y) ≤ E

∑
u∈U

1{X(u)≥nv+y,X(uj)<jv+y,j<n}


≤

∞∑
n=1

E
(
e−θ∗Sn+nκ(θ∗)1{Sn≥nv+y,Sj≤jv+y,j<n}

)
.

Therefore, as ∑∞
n=1 P (Sn ≥ nv + y, Sj ≤ jv + y, j < n) = 1, we have

P (∃u ∈ U : X(u) ≥ nv + y) ≤ e−θ∗y, (1.20)

or in other words, supu∈U X(u)−|u|v <∞ a.s. This observation has been used by Aïdékon
and Shi in [8] to obtain a simple proof for the computation of the logarithmic second order
in the asymptotic behaviour of the maximal displacement of the branching random walk.

Theorem 1.29 (Addario–Berry and Reed, Hu and Shi, 2009). Let X be a branching
random walk such that (1.19) hold and that

E

∑
|u|=1

X(u)2eθ∗X(u)

+ E


∑

|u|=1
eθ∗X(u)

2
 <∞.

We have limn→∞ Mn−nv
log n = −3

2 in probability.

1.3.3 Trajectorial construction of branching Lévy processes

Similarly to the branching random walk, the branching Lévy process can be constructed
as a process together with its genealogy. However, in this process, the set of branching
times typically is an everywhere dense set, so there is no natural way to define the first,
second... child of an individual, thus to associate an Ulam-Harris index to each individual.
Therefore, to describe the genealogy of branching Lévy processes, we have to change our
point of view from the one we had for branching random walks. Instead of seeing particles
as dying at each generation being replaced by its offspring, we identify the parent particle
with its rightmost child, seeing the process as a system of persisting particles, that move
while giving birth to offspring at integer times.

For branching Lévy processes, we can describe the particle system in the following
fashion: an initial particle moves according to a certain Lévy process until an independent
exponential time at which it dies. During its lifetime, this particle creates offspring at
a Poisson rate, which can correlate with the jump measure of its displacement. Each
newborn particle immediately starts an independent copy of the branching Lévy process
with its birth time and position. We will now turn to a more precise description of
this process in terms of the characteristic triplet (σ2, a, Λ) of the branching Lévy process
satisfying (1.13).

Let (Bt, t ≥ 0) be a Brownian motion and N an independent Poisson point process on
R+×P(R) with intensity dtΛ(dX). We define the trajectory followed by the root particle
∅ for all t ≥ 0 by

Xt(∅) := σBt + at +
∫

[0,t]×P(R)
x11{|x1|≥1}N(dsdx) +

∫
[0,t]×P(R)

x11{|x1|<1}N c(dsdx),

where N c represents the compensated Poisson integral. The trajectory followed by ∅ is
a Lévy process with characteristic triplet (σ2, a, π) with π the image measure of Λ by
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x 7→ x1. The trajectory of this process will jump −∞ at rate π({−∞}) = Λ({0}), which
is interpreted as the death of that root particle.

Additionally, the particle ∅ give birth to offspring in the following fashion. For each
atom (s, x) of N , it creates newborn children in positions Xt−(∅) + x2, Xt−(∅) + x3, · · ·
at time s. Hence the point measure N encodes both the jumps of the measure ∅ and the
offspring production. The set of children of the root can be labelled by N, by enumeration.
Several enumerations have been proposed in the literature, although an adaptation of
the scheme proposed by Shi and Watson in [171, Section 4] is particularly efficient as
it associates to each newborn particle a label in an adapted fashion to the natural time
filtration.

In this scheme, for all k ∈ N, the atoms (s, x) of N such that |x2| ∈ [k, k + 1) are
ranked in an increasing order of their first coordinate. This ranking is possible as

Λ({x ∈ P(R) : |x2| ≤ z}) <∞ for all z ≥ 0,

hence the number of atoms of N with |x2| ∈ [k, k + 1) and s ≤ t is a.s. finite. Then,
an integer triplet (k, p, j) is associated to each child particle of the original ancestor ∅ as
follows. For the pth smallest atom (s, x) of N with |x2| ∈ [k, k + 1), the particle born
at time s and position Xs−(∅) + xj is associated to (k, p, j). Then, fixing a bijection
α : N3 → N, the label of that particle is α((k, p, j)).

More generally, we denote by (B(u), N (u), u ∈ U) i.i.d. copies of the pair (B, N). For
each u ∈ U, we assume that the trajectory (Xt(u), t ≥ bu) followed by particle u is defined
from its birth time bu to its death time, using the Brownian motion B(u) and the point
process N (u) as

Xt(u) = Xbu(0) + σB
(u)
t−bu

+ a(t− bu) +
∫

[0,t−bu]×P(R)
x11{|x1|≥1}N (u)(dsdx)

+
∫

[0,t−bu]×P(R)
x11{|x1|<1}N (u),c(dsdx).

The offspring of the particle u is encoded in the point process N (u), and labelled by N
using the above scheme. Assuming that the jth children of particle u is associated to the
kth element of the atom (s, x) of N (u), then particle uj is born at time bu + s in position
Xbu+s = Xbu+s−(u) + xk.

We extend definition of the trajectory by setting Xs(u) = Xs(πu) if s < bu. In this
way, the càdlàg process (Xt(u), t ≥ 0) represents the trajectory followed by the ancestors
of particle u up to time bu, then its own displacement. We denote by D([0,∞)) the set of
càdlàg functions [0,∞)→ R ∪ {−∞}, corresponding to the trajectories of particles.

Definition 1.30 (Branching Lévy process). A branching Lévy process with characteristic
triplet (σ2, a, Λ) is constructed as the random map X : U→ D([0,∞)) defined above. For
all t ≥ 0, we denote by

Nt = {u ∈ U : bu ≤ t, Xt(u) > −∞}

the set of particles alive at time t in the process, and by

Zt =
∑

u∈Nt

δXt(u)

the point measure of the position of particles in this process.



46 Chapter 1. Construction of spatial branching processes

This trajectorial construction of branching Lévy processes is introduced in [M16] to
provide an explicit construction of the branching Lévy process with characteristic triplet
(σ2, a, Λ). The following result allows the identification of the two definitions of branching
Lévy processes defined above.

Theorem 1.C (Bertoin and Mallein (2019)). Let (σ2, a, Λ) be a characteristic triplet
satisfying (1.13) and X : U→ D([0,∞)) a branching Lévy process as defined in Definition
1.30. The process Z is a branching Lévy process with characteristic (σ2, a, Λ).

Remark that conversely, by Theorem 1.A, the law of a branching Lévy process Z
as defined in Definition 1.20 is unique associated to a characteristic triplet (σ2, a, Λ).
Therefore, given a branching Lévy process Z, there exists a unique law for the genealogical
structure of this process.

1.3.4 Branching Brownian motion and the F-KPP reaction-diffusion
equation

The branching Brownian motion is a branching Lévy process in which particles have
continuous trajectories almost surely. It can therefore be described informally as the fol-
lowing particle system. It starts from a single particle at position 0 at time 0. Particles
move in this system as independent Brownian motions with diffusion σ and drift a. Ad-
ditionally, after an independent exponential time of parameter β, the particles split into a
random number of children of law ν. Children then start from the position of their parent
independent copies of the branching Brownian motion.

Definition 1.31 (Branching Brownian motion). Let ν be a probability measure on N with
m = ∑

k∈N kν(k) < ∞, β > 0, σ2 ≥ 0 and a ∈ R. A branching Brownian motion with
diffusion coefficient σ2, drift a, branching rate β and reproduction law ν is a branching
Lévy process with characteristic triplet (σ2, a, Λ), setting Λ = ∑∞

k=0 βν(k)δkδ0 .

Figure 1.8 – Sample path of a binary branching Brownian motion. The colour of each
particle is inherited from parent to child, with a random mutation. We remark a triangular
shape similar to the one observed for branching random walks.

Up to choosing a correct time and space units, as well as a reference frame, one can
assume, without loss of generality that particles move as standard Brownian motions and
branch into children at unit rate, i.e. σ2 = 1, a = 0 and β = 1. Unless otherwise
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explicitly stated, the branching Brownian motions we consider will have this choice of
parameters. A particular branching Brownian motion of interest is the binary branching
Brownian motion, with reproduction law ν = δ2. In this process, every particle move as an
independent standard Brownian motion, and split at rate 1 into two children, that start
independent copies of the process. A realization of that process is drawn in Figure 1.8.

Similarly to branching Lévy processes, we denote by Nt the subset of U consisting of
the label of particles alive at time t, and for u ∈ Nt and s ≤ t, by Xs(u) the position at
time s of either particle u or its ancestor that was alive at time s.

The branching Brownian motion has been very well-studied over the years, in particular
due to its connection with the Fisher–Kolmogorov-Petrovskii-Piskunov reaction-diffusion
equation

∂tu = 1
2∆u + f(u) (1.21)

with f a positive concave continuous function [0, 1] → [0, 1] with f(0) = f(1) = 0. This
partial differential equation was independently introduced by Fisher [94] and Kolmogorov,
Petrovskii and Piskunov [123] as a model for the propagation of advantageous gene in a
spatial population.

The F-KPP equation is linked with the law of the branching Brownian motion by a
duality relationship (see [173, 107, 145]) for early appearances of this relationship): the
Laplace transform of the branching Brownian motion is the solution of the F-KPP equa-
tion with prescribed initial condition. More precisely, given φ a non-negative measurable
function, we set

uφ(t, x) = E

1− exp

− ∑
u∈Nt

φ(Xt(u) + x)

 = E
(
1− e−⟨τxZt,φ⟩

)
,

with Zt = ∑
u∈Nt

δXt(u) the point process associated to the branching Brownian motion.
Then, the function uφ is the unique solution of the equation{

∂tu = 1
2∆u + f(u)

u(0, x) = 1− e−φ(x),
(1.22)

where f(z) = 1− z −∑∞
k=0 ν(k)(1− z)k.

In particular, by straightforward approximation, the tail distribution function of the
maximal displacement Mt is a solution of the F-KPP equation with Heaviside initial condi-
tion. It was proved that this solution stabilises as a travelling-wave function, that invades
the real line at positive speed [123, 145]. This result was used to prove the convergence in
law of maximal displacement of the branching Brownian motion by Bramson [57].

Theorem 1.32 (Bramson, 1978). Let X be a branching Brownian motion with reproduc-
tion law ν such that

∑∞
k=0 k2ν(k) <∞. Then, writing m = ∑∞

k=0 kν(k)− 1, we have

lim
t→∞

Mt −
(√

2mt− 3
2
√

2m
log t

)
= G in law.

A simple probabilistic proof for the tightness of Mt −
√

2mt + 3
2
√

2m
log t is given by

Roberts [162]. The law of the random variable G obtained above was described by Lalley
and Sellke [127] using an additive martingale of the branching Brownian motion that we
describe in the next section.
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1.4 Extended family of spatial branching models

Spatial branching processes form an ever-expanding family of models beyond the
branching random walk, branching Lévy process and branching Brownian motion that
we introduced. Over the years, a number of generalizations of the branching random walk
models have been introduced, to explore the tools used to study them and their limits,
or to model specific situations. In the rest of the section, we aim at presenting a small
sample of the variety of models which can be proposed over the years.

Branching Markov process A branching Markov process is a generalized class of
spatial branching processes, in which particles satisfy the branching property, but not the
invariance by translation of the law of the process. In these systems, the reproduction
law of particles depend on their position. A general study of the properties of branching
Markov processes has been undertaken by Ikeda, Nagasawa and Watanabe [106, 107,
108]. The branching Markov process class covers a large variety of models, among which
branching diffusions [160], catalytic branching processes [95, 10], branching processes with
absorption [30], branching processes in random environment [128], growth-fragmentation
processes [37] among many others.

Multitype branching processes Multitype branching processes represent a natural
generalization of branching processes. Each particle in that system carries a type, which
influences its reproduction law or its displacement. It allows us to model the effect of
mutations on the evolution of a population [M33], or the evolution of particles whose
development go through different phases [104, 48]. If spatial branching processes with
recurrent type structure appear to share many properties with single-type systems [161],
a larger variety of behaviour can be observed in models with transient type structure [27],
or in multidimensional branching processes [M40], that can be though off as multitype
branching processes with type evolution influenced by the position of particles.

Branching random walk in time-inhomogeneous environment Branching pro-
cesses in time-inhomogeneous environment are used to observe the impact of modifying the
environment on the evolution of the process. Among these models we can identify branch-
ing Brownian motions with inhomogeneous branching rate [32, 164], branching Brownian
motions with time-inhomogeneous environment [92, 93, 143] and branching random walks
in random environment [M8]. The asymptotic behaviour of these processes often appear
non-standard, and remain an active field of study.

Branching-selection particle systems A branching-selection particle system is a pro-
cess evolving under the repeated application of the two following steps:
branching step each particle creates newborn offspring around its position as in a spatial

branching process;
selection step among the children, some are chosen to reproduce in the next generation,

with a procedure depending on the position of particles.
The selection procedure usually depend on the position of the children, often interpreted
as an expression of the genotypic makeup of that particle. From the phenotype generated
by this genotype one associate a fitness level to each particle, and particles with highest
fitness are selected to reproduce in the next generation. As such, this process models simple
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examples of natural selection. Some branching-selection particle systems are studied in
Chapter 5.

Many selection procedures have been introduced over the years. When particles further
to the right are assumed to have a higher fitness, one can consider the selection of the
(fixed) N rightmost individuals at each step [59], all particles within distance L from the
rightmost particle [154] or the absorption of particles by a boundary [30]. On the contrary,
if particles have higher fitness close to a certain point, one can consider a branching process
with selection of the N closest particles at each step [33], defining the Brownian bees model.
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CHAPTER 2

Additive martingales and the
spine decomposition

“La distance n’y fait rien; il n’y a que le premier
pas qui coûte.”

Marie Anne de Vichy-Chamrond, marquise du
Deffand – Letter to d’Alembert, July 7, 1763.

Summary.
We introduce in this chapter the additive martingales of the branching random
walk. This family of martingales, indexed by a parameter θ ∈ R+ presents a
phase transition at some critical parameter θ∗. A more detailed study of this
phase transition reveals the important role played by the so-called derivative
martingale, which, while non-uniformly integrable, converges almost surely to
a non-negative limit. We show that the additive and the derivative martin-
gales allow of the exact computation of the asymptotic growth rate of particles
moving at a given speed, and show an example of application of this result to
the measure of occupancy in a nested Bernoulli sieve [M38]. After introducing
the spine decomposition, we give necessary and sufficient conditions, in terms
of its characteristic triplet, for the non-degeneracy of the limit of additive mar-
tingales in branching Lévy processes, as obtained in [M18] and [M24]. These
articles are adaptations of the results proved by Lyons [133] and Alsmeyer and
Iksanov [13] for branching random walks.
We then take a closer look at the derivative martingale, recalling the necessary
and sufficient conditions due to Aïdékon and Chen [4, 72] for its convergence
to a non-degenerate limit, as well as its rate of convergence obtained in [M29].
We then take interest to the derivative martingale of the branching Lévy pro-
cess. Using tight estimates on the finiteness of perpetuities for Lévy processes
conditioned to stay positive, we obtain a necessary and sufficient condition
for the non-degeneracy of the limit similar to the one obtained for branching
random walks [M36]. Finally, we present a multidimensional extension of the
convergence of the derivative martingale obtained in [M30], showing that the
derivative martingale of a d-dimensional branching Brownian motion converges
simultaneously in almost all directions almost surely.
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As a general rule, martingales are a powerful tool for the study of stochastic processes.
In branching random walks settings, a family of martingales of interests are the exponential
martingales, defined as

Wn(θ) =
∑

|u|=n

eθX(u)−nκ(θ).

These martingales can be seen as partition functions for spin glasses or polymer in ran-
dom environment, in which to a configuration u is associated the energy X(u), so that
the configuration u is occupied with probability proportional to eθX(u), with θ the in-
verse temperature. A freezing phase transition occurs in the branching random walk: at
high temperature θ < θ∗, Wn(θ) converges to a positive limit while Wn(θ) → 0 at low
temperature θ ≥ θ∗.

These positive martingales can also be used to construct change of measures, linking
the large deviations of a process with the almost sure behaviour of an other one. In the
case of spatial branching processes, a spine decomposition property then hold : the law
of a branching process biased by an additive martingale can be described as the law of
an immortal particle (the spine), which gives birth to other particles that evolve as in
the original branching process. Spine decomposition methods are a natural generalization
of the Many-to-one lemma, which can be used to compute the asymptotic behaviour of
moments of the spatial branching process.

2.1 Additive martingales of the branching random walk

The additive martingales of the branching random walk are a family of martingales
which can be used to study this process. Precisely, given X a branching random walk
and θ ∈ R such that κ(θ) = logE

(∑
|u|=1 eθX(u)

)
< ∞, the additive martingale with

parameter θ is the stochastic process defined for n ∈ N by

Wn(θ) =
∑

|u|=n

eθX(u)−nκ(θ). (2.1)

Using the branching property, simple computations show that (Wn(θ), n ≥ 0) is a non-
negative martingale. In particular, Wn(θ) converges almost surely, as n → ∞ to a non-
negative limit W∞(θ).

Using the branching property of the branching random walk at time 1, we remark
immediately that the law of W∞(θ) is a solution of the following equation in distribution

W∞(θ)(d)=
∑

|u|=1
eθX(u)−κ(θ)W (u), (2.2)

where W (u) are i.i.d. copies of W∞(θ). In particular, writing qθ = P(W∞(θ) = 0), the
above equation yields

qθ = E

 ∏
|u|=1

qθ

 =: f(qθ),

with f : s ∈ [0, 1] 7→ E
(

s
∑

|u|=1 1{X(u)>−∞}
)

, using the convention s∞ = 1{s=1}. We
remark that f , as the generating function of the Galton-Watson process of the number of
particles in the branching random walk, is a strictly convex and increasing function with
f(1) = 1. Therefore there are at most 2 solution to the equation f(x) = x, which are 1
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and the extinction probability of the branching random walk. As a consequence, for all
θ ∈ R with κ(θ) <∞, the following dichotomy holds

W∞(θ) = 0 a.s. or W∞(θ) > 0 a.s. on S,

with S = {#{u ∈ U : X(u) > −∞} =∞} the survival event.
Among others, Biggins [43, 44] took interest in the characterization of the asymptotic

behaviour of these additive martingales. In particular, he obtained the following integral
criterion for the uniform integrability of (Wn(θ)), guaranteeing that W∞(θ) > 0 a.s. on
S. For all θ > 0 such that κ(θ) <∞, assuming that

E

∑
|u|=1

|X(u)|eθX(u)

 <∞,

we denote by

κ′(θ) := E

∑
|u|=1

X(u)eθX(u)−κ(θ)

 = −i
d
dξ

κ(θ + iξ)
∣∣∣∣
ξ=0

. (2.3)

We remark that this definition does not require for κ to be finite in any point but point θ,
however if there exists δ > 0 such that κ(θ− δ) + κ(θ + δ) <∞, then κ is C∞ and convex
on [θ − δ, θ + δ], and κ′(θ) corresponds to the derivative of κ at point θ.

Theorem 2.1 (Biggins 1977). Let θ ∈ R such that E
(∑

|u|=1 |X(u)|eθX(u)
)

<∞, then

P(W∞(θ) > 0) > 0 ⇐⇒ E(W∞(θ)) = 1 ⇐⇒
{

θκ′(θ) < κ(θ) <∞
E
(
W1(θ) log+(W1(θ))

)
<∞,

where log+(x) = log(max(x, 1)).

θ

W40(θ)

θ∗

Figure 2.1 – Value at generation 40 of the additive martingale of a branching random
walk. The limit is degenerate outside of an interval, defined as {θ : θκ′(θ)− κ(θ) < 0} in
which it converges to a positive limit.

A simple proof for Theorem 2.1 was obtained by Lyons [133]. This proof is based on
the application of spinal decomposition methods pioneered in [134] for the study of the
convergence of the martingale in a Bienaymé-Galton-Watson process, that we describe in
Section 2.2. Using perpetuity estimates, Alsmeyer and Iksanov [13] obtained a necessary
and sufficient condition for the uniform integrability of (Wn(θ)) which does not require the
integrability condition E

(∑
|u|=1 |X(u)|eθX(u)

)
< ∞. This result is stated further down

as Theorem 2.8.
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The rate of convergence of the additive martingale towards its limit was studied by
Iksanov, Kolesko and Meiners [111, 112]. This rate of convergence is exponential in the
domain of non-degeneracy of the additive martingale, but gets significantly smaller as
θ → θ∗, as can be seen in Figure 2.1.

The additive martingale is a very useful tool in the study of the asymptotic properties
of branching random walks. In the same way that the martingale of a Galton-Watson
process encodes the speed at which the population size grow in the process, the additive
martingale allows us to estimate the growth of the number of particles that are at time n
in a neighbourhood of position nκ′(θ). This result was proved by Biggins in [44].

Theorem 2.2 (Biggins 1992). Let 0 < θ∗ < θ∗ such that κ(θ∗) + κ(θ∗) <∞. We assume
there exists γ > 1 such that

∀θ ∈ (θ∗, θ∗), E (W1(θ)γ) <∞ and θ∗κ′(θ∗)− κ(θ∗) ≤ 0.

For θ ∈ (θ∗, θ∗), we write κ′′(θ) = E
(∑

|u|=1(X(u)− κ′(θ))2eθX(u)−κ(θ)
)
. Let f be a

measurable function R→ R.
— For all δ > 0, limn→∞ supθ∈[θ∗+δ,θ∗−δ] |Wn(θ)−W∞(θ)| = 0 a.s.
— If f is direct Riemann-integrable then

lim
n→∞ n1/2 ∑

|u|=n

eθX(u)−nκ(θ)f(X(u)− nκ′(θ)) = W∞(θ)√
2πκ′′(θ)

∫
R

f(x)dx a.s.

— If f is continuous and bounded, then

lim
n→∞

∑
|u|=n

eθX(u)−nκ(θ)f
(

X(u)−nκ′(θ)
n1/2

)
= W∞(θ)E(f(N)) a.s.

with N a Gaussian variable with variance κ′′(θ).

Loosely speaking, the above theorem expresses that for any reasonable definition of
≈, if the number of particles u at generation n satisfying X(u) ≈ nκ′(θ) is growing
exponentially, we have

lim
n→∞

#{X(u) ≈ nκ′(θ)}
E (#{X(u) ≈ nκ′(θ)}) = W∞(θ) a.s.

It gives a uniform control on the number of particles around any point in the bulk of the
branching random walk, i.e. in each area where there is an exponential growth of the
number of particles as n grows. Pain [155] provided a trajectorial version of the theorem
of Biggins, proving that under the appropriate integrability conditions, for all continuous
bounded function f , we have

lim
n→∞

∑
|u|=n

eθX(u)−nκ(θ)f

(
X(u⌊nt⌋)−ntκ′(θ)

n1/2 , t ∈ [0, 1]
)

= W∞(θ)E (f (σθBt, t ∈ [0, 1])) a.s. (2.4)

where σ2
θ = κ′′(θ).

The last two points of Theorem 2.2 are proved in this form in [M38, Section 3] as
straightforward consequences of the results of Biggins [44]. In that article, they are used
to study the asymptotic behaviour of a random urn scheme constructed on the branching
random walk.
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Nested occupancy scheme in random environment

The convergence of additive martingales can be used to study the asymptotic behaviour
of the nested occupancy scheme in random environment, that we now describe. Let
(X(u), u ∈ U) be a branching random walk satisfying∑

|u|=1
eX(u) = 1 a.s. and E (#{|u| = 1}) > 1. (2.5)

Observe that under these conditions, the branching random walk is supercritical, does
not get extinct a.s. and for all u ∈ U, X(u) ≤ 0. We additionally impose a non-lattice
assumption, i.e. that for all a > 0 and b ∈ R, we have

P (∃|u| = 1 : X(u) ̸∈ aZ + b) > 0.

The nested occupancy scheme is a process of urns and bins defined on the the branching
random walk as follows. We define a Markov chain (Rn, n ≥ 0) constructed as R0 = ∅ and

∀u ∈ U, j ∈ N, P(Rn+1 = uj|Rn = u) = eX(uj)∑∞
i=1 eX(ui) = eX(uj)−X(u).

The process (Rn, n ≥ 0) can be thought of as a ball falling down the tree U in such a way
for each vertex u in which it goes through, the ball will go to its jth child with probability
proportional to eX(uj). Another way to visualize this model is to split the interval [0, 1]
into bins labelled 1, 2, . . ., the bin labelled j having width proportional to eX(j). Then,
each bin labelled u is recursively subdivided into smaller bins labelled uj which all have
width proportional to eX(uj). Then the process (Rn, n ≥ 0) corresponds to the sequence
of labels of bins at each generation of a uniformly randomly chosen point on [0, 1].
Remark 2.3. The nested occupancy scheme can be constructed for an arbitrary super-
critical branching random walk Y satisfying E(∑|u|=1 eY (u)) <∞ and that almost surely
does not get extinct. The process (Rn) is defined such that P(Rn+1 = uj|Rn = u) is
proportional to eY (uj). However, in this situation, the definition of the process is identical
with the branching random walk defined by

X(u) = Y (u)−
∑

k<|u|
log

∞∑
j=1

eY (ukj),

and the branching random walk X will satisfy (2.5).
The nested occupancy scheme in random environment consists in the consideration of

an infinite series (R(j), j ∈ N) of i.i.d. copies of R. For all n, N ∈ N, we take interest in

K
(n)
N (k) =

∑
|u|=n

1{#{j≤N :R(j)
n =u}=k}.

In other words, K
(n)
N (k) is the number of vertices of the nth generation of U through which

k of the first N balls fell. In [M38], Iksanov and Mallein studied the asymptotic behaviour
of K

(n)
N (1) as n and N grow to∞ with log N/n→ a, expanding on earlier work by Bertoin

[36].
Before stating the main result, we introduce a few notation. We write θ = inf{θ ∈ R :

κ(θ) < ∞}, the function κ is decreasing and convex on (θ,∞). We assume there exists



56 Chapter 2. Additive martingales and the spine decomposition

θ∗ > 0 such that θ∗κ′(θ∗)− κ(θ∗) = 0, which the the minimizer of the function θ 7→ κ(θ)
θ .

We set

a∗ :=
{
−κ(2)/2 if θ∗ > 2,

−κ(θ∗)/θ∗ = v otherwise,
ac = −κ′(1) and a = − lim

θ→max(θ,0)
κ′(θ).

Under the conditions (2.5), for all θ ∈ (θ, θ∗) the martingale (Wn(θ), n ≥ 0) is uniformly
integrable, and we denote by W (θ) its almost sure limit.

1 2 30 1

12

Figure 2.2 – First few levels of a nested occupancy scheme in random environment con-
structed over the interval [0, 1]. Each interval is recursively subdivided at random accord-
ing to a scaled point measure. The first ball in this occupancy scheme falls into boxes 3,
31 and 312, the second one into boxes 1, 11 and 113.

Theorem 2.A (Iksanov and Mallein (2022)). Let a ∈ (0, a) and b ∈ N, we let n, N →∞
in such a way that log N = an + bn1/2(1 + o(1)). We fix θ > 0 such that a = −κ(θ). The
following result then holds.

1. If a < a∗, then K
(n)
N (1) = n a.s. for n large enough.

2. If a⋆ < a < ac, then
(a) if a < −κ′(2) then K

(n)
N (1) = n− W (2)

2 N2eκ(2)n(1 + o(1)) a.s. as n→∞,

(b) if a > κ′(2), then K
(n)
N (1) = n− W (θ)Γ(2−θ)

θ(θ−1)(2πκ′′(θ)n)1/2 e−b2/2κ′′(θ)N2eκ(2)n(1 + o(1))
a.s. as n→∞.

3. If ac < a < a, then K
(n)
N (1) = Γ(1−θ)

θ(2πκ′′(θ)n)1/2 e−b2/2κ′′(θ)W (θ)N θeκ(θ)n(1 + o(1))

The explicit asymptotic behaviour of K
(n)
n (1) at the critical points ac and −κ′(2) (when

θ∗ > 2) is also obtained. The nested occupancy scheme in random environment can be
used to describe the way polluting elements can accumulate in a lung. In a current joint
project, we are working on an application of the nested occupancy scheme to the modelling
of induce fibrosis on mice lungs.

2.2 The spine decomposition: a change of measure
In [133], Lyons introduced the spine decomposition for the branching random walk as

an alternative description of the law of the branching random walk biased by its additive
martingale. This construction can be used to give a simple proof of the uniform integra-
bility, or degeneracy, of the additive martingales. This method is an extension of the spine
decomposition obtained by Lyons, Pemantle and Peres [134] for Galton-Watson processes.

Let (X(u), u ∈ U) be a branching random walk and θ ≥ 0 such that κ(θ) < ∞. We
denote by P the law of X, and we introduce the size-biased law P̂ defined, for n ∈ N by

P̂
∣∣
Fn

= Wn(θ) · P
∣∣
Fn

, (2.6)
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where Fn = σ(X(u), |u| ≤ n) the natural filtration of the branching random walk.
The spine decomposition consists in an alternative description of the law P̂ constructed

as a branching random walk with spine, that we now define. Writing Z the reproduction
law of X, we introduce the law Z on P(R)× N defined by∫

P(R)×N
f(Z, k)Z(dZdk) =

∫
P(R)

∞∑
k=1

eθzk−κ(θ)f(Z, k)Z(dZ). (2.7)

In other words, to construct a pair (Z, ξ) of law Z, we first define a random point measure
Z with law given by ⟨Z, eθ⟩e−κ(θ)Z, then, conditionally on Z, we fix ξ = k with probability
proportional to eθzk .

Definition 2.4 (Branching random walk with spine). The branching random walk with
spine with reproduction law Z is the random pair (X, ξ), with X a map U→ R and ξ ∈ Nn

an infinite ray in U called the spine of the process, defined as follows. Let (Z(u), u ∈ U)
i.i.d. random point measures with law Z and (Zn, ξ(n + 1), n ≥ 0) i.i.d. vectors with law
Z. We denote by ξ = (ξ(1), ξ(2), . . .), and set

∀u ∈ U, Z
(u) =

{
Zn if u = ξn := (ξ(1), . . . , ξ(n)),
Z(u) otherwise.

Finally, the map X is defined by

∀u ∈ U, X(u) =
|u|−1∑
j=0

z
(uj)
u(j+1).

We write P the law of the branching random walk with spine.

•ξ0 = ∅

•

P

•

P

•

P

•ξ1

•

P

•

P

•ξ2

•

P

•

P

•ξ3

Figure 2.3 – Construction of a branching random walk with spine ξ. The spine particle
reproduces and chooses its child that will be part of the spine according to the law Z, all
other children then reproduce as in a (regular) branching random walk.

We can rephrase the above construction in the following fashion represented in Fig-
ure 2.3. A branching random walk with spine is a branching particle with a distinguished
particle at each generation (the spine). The process starts with a single particle ∅, which
is the spine particle ξ0. This particle simultaneously produces offspring and chooses one
of its children to be the spine particle at time 1 according to the law Z. Then, at each
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generation n, every particle reproduces independently. Non-spine particles create offspring
around their position according to random point measures of law Z, while the spine par-
ticle jointly creates offspring and choose one of its children to be the next spine particle
according to the law Z.

For all n ∈ N, we denote by Fn = σ((X(u), |u| ≤ n)) the filtration of the branching
random walk (without knowledge of the value of the spine) and by Fn = Fn ∨ σ(ξn) the
natural filtration of the branching random walk with spine. Another filtration of interest
is Gn = σ((Zj , ξ(j − 1)), j ≤ n) = σ (ξn, X(ξkj), k < n, j ∈ N), which is the filtration
associated to the spine and its offspring. Observe that conditionally on Gn the children of
the spine create independent copies of the branching random walk with law P shifted by
their position.

The spine decomposition theorem corresponds in the identification of the law of the
size-biased branching random walk and the law of the branching random walk with spine.
This result was proved by Lyons [133], with a prototype version of this process for the
branching Brownian motion appearing in [71].

Theorem 2.5 (Lyons, 1997). Let X be a branching random walk, we denote by P̂ the
size-biased law of X and P the law of the branching random walk with spine (X, ξ). For
all n ∈ N, we have

P̂
∣∣
Fn

= P
∣∣
Fn

, (2.8)

and moreover, for all |u| = n, we have

P (ξn = u|Fn) = eθX(u)∑
|v|=n eX(v) a.s. (2.9)

This result generalizes the spine decomposition introduced by Lyons, Pemantle and
Peres [134] for the BGW process to study the convergence of the martingale of the Galton-
Watson process. The spine decomposition was also extended by Kurtz, Lyons Pemantle
and Peres [126] to multitype Galton-Watson processes with a finite number of types, and by
Biggins and Kyprianou [46] to general branching Markov processes. Indeed, studying the
size-biased law of the process can be used to prove the uniform integrability of the biasing
martingale. More precisely, the following result, which can be found in [86, Theorem 4.3.5],
is used to prove the uniform integrability of additive martingales of branching processes.

Proposition 2.6 (Radon-Nikodým derivative theorem). Let (Wn, n ≥ 0) be a (Fn)-
positive martingale under the law P. We define the biased law P̂ by setting, for all n ∈ N
and A ∈ Fn, P̂(A) = E (Wn1A). Let W∞ = lim supn→∞ Wn, for any A ∈ F∞ we have

P̂(A) = E (W∞1A) + P̂(A ∩ {X =∞}).

Using that in branching random walk settings, P (W∞(θ) = 0) ∈ {P(Sc), 1}, we remark
that the additive martingale of the branching random walk is either uniformly integrable
or converges to 0 P-a.s. As a result, Proposition 2.6 implies the following dichotomy.

Corollary 2.7. Let X be a branching random walk with κ(θ) < ∞. One of the two
following alternatives holds:

lim sup
n→∞

Wn(θ) <∞ P̂-a.s. ⇐⇒ E (W∞(θ)) = 1;

P̂
(
lim inf
n→∞ Wn(θ) =∞

)
> 0 ⇐⇒ W∞(θ) = 0 P-a.s.
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Thanks to this dichotomy, Lyons provided a simple proof of Theorem 2.1, using the
following method. Denoting by

G := σ (ξ, X(ξnj), n ≥ 0, j ∈ N) = σ
(
Zn, ξ(n + 1), n ≥ 0

)
the filtration associated to the trajectory of the spine and the position of its offspring, we
remark that

Ê (Wn(θ)|G) =
n−1∑
k=0

∞∑
j=1

eθX(ξkj)−(k+1)κ(θ).

This sum can be represented as a perpetuity ∑n−1
k=0 Bk

∏k−1
j=0 Aj , by setting

Ak = eθ(X(ξk+1)−X(ξk))−κ(θ) and Bk =
∞∑

j=1
eθ(X(ξkj)−X(ξk))−κ(θ).

We refer to [63, 110] for an introduction to perpetuities. Using [110, Theorem 2.1.1],
barred degenerate cases such that Ak ∈ {0, 1} a.s. we have

∞∑
k=0

Bk

k−1∏
j=0

Aj <∞ a.s. ⇐⇒ sup
k∈N

Bk

k−1∏
j=0

Aj <∞ a.s.

and integral tests are available to determine whether the perpetuity is a.s. finite or infinite
with positive probability. This integral test leads to the following generalization of Biggins’
martingale convergence theorem, obtained by Alsmeyer and Iksanov [13].
Theorem 2.8 (Alsmeyer and Iksanov, 2009). Let θ > 0, the martingale (Wn(θ), n ≥ 0)
is uniformly integrable if and only if the following condition holds

lim
n→∞ θX(ξn)− nκ(θ) = −∞ P̂-a.s. and E

(
W1(θ)J(log+ W1(θ))

)
<∞, (2.10)

where J is defined for x ≥ 0 by J(x) = x
E(min(X(ξ1)−,x)) .

We remark that this theorem holds without the necessity for κ′(θ) to be finite. However,
assuming that κ′(θ) is well-defined and finite, (2.10) is equivalent to

θκ′(θ)− κ(θ) < 0 and E
(
W1(θ) log+(W1(θ))

)
<∞,

which are the conditions obtained by Biggins [43] and Lyons [133]. The result of Alsmeyer
and Iksanov additionally covers situations in which the spine of the branching random
walk moves as a non-integrable random walk such that θX(ξn)− nκ(θ) drifts to −∞.

2.2.1 Spine decomposition for branching Lévy processes

The spine decomposition technique can be extended to branching Lévy processes. This
result was first introduced in [171], where a genealogical construction of the branching
Lévy process is introduced. The spine decomposition for the branching Brownian motion
is stated in full generality and proved in [M18, Lemma 2.3]. We first introduce branching
Lévy processes with spine.

Let (σ2, a, Λ) be the characteristic triplet of a branching Lévy process X. Let θ > 0
such that∫

P(R)
(1 ∧ x2

1)Λ(dx) <∞ and

∫
P(R)

 ∞∑
j=1

1{xj>−∞}eθxj − 1− θx11{|x1|<1}

Λ(dx) <∞. (2.11)



60 Chapter 2. Additive martingales and the spine decomposition

The additive martingale of the branching Lévy process X is the process defined for t ≥ 0
by

Wt(θ) :=
∑

u∈Nt

eθXt(u)−tκ(θ). (2.12)

We denote by P the size-biased law of the branching Lévy process defined by

P
∣∣
Ft

= Wt(θ) · P
∣∣
Ft

,

where Ft := σ (Ns, s ≤ t, (Xs(u), s ≤ t), u ∈ Nt) is the natural time filtration of the branch-
ing Lévy process.

We introduce the tilted measure as a σ-finite measure on P(R)× N defined by∫
P(R)×N

f(x, k)Λ̂(dxdk) =
∫

P(R)

∞∑
k=1

eθxkf(x, k)Λ(dx)

for all measurable positive function f . Then, let N̂ be a Poisson point process on R+ ×
P(R) × N with intensity dtΛ̂(dx, dk) and B̂ an independent Brownian motion. We use
these processes to construct the spine trajectory

Ŝt := σB̂t + ât +
∫

[0,t]×P(R)×N
xk1{|xk|<1}dN̂ c(s, x, k)

+
∫

[0,t]×P(R)×N
xk1{|xk|≥1}dN̂ (s, x, k),

where we have set

â = a + θσ2 +
∫

P(R)

∑
k≥1

xkeθxk1{|xk|<1} − x11{|x1|<1}Λ(dx).

The branching Lévy process with spine is constructed in the following fashion. The
process starts with the spine particle ∅ at time 0 and position 0. The spine particle moves
according to the process Ŝ while giving birth to offspring according to the point measure
N̂ until time

T := inf{t > 0 : ∃(t, x, k) ∈ N̂ with k ≥ 2}.
At that time T , the spine becomes the particle labelled u born at position ŜT − + xk, with
(T, x, k) the corresponding atom of N̂ . This particle again moves and reproduce according
to the process Ŝ and the point measure N̂ until its jump to one of the children of u in
a similar fashion. Non-spine particles reproduce and displace as in the usual branching
Lévy process. The branching Lévy process with spine is then given as the pair (X̂, ξ),
with X̂ the random map U → D([0,∞)) giving the trajectories followed by each particle
and their ancestors, and ξ : [0,∞) → U the random process such that for all time t ≥ 0,
ξt is the label of the spine particle. In particular, we remark that the trajectory followed
by the spine particle is given, for all t ≥ 0 by Ŝt = X̂t(ξt).

The spine decomposition for the branching Lévy processes is an identification of the
law of the branching Lévy process with spine with the law of the size-biased branching
Lévy process. This result can be found in [M18], but earlier versions (assuming more
restrictive conditions on the support of Λ) were previously available, for example in [171].

Proposition 2.B (Bertoin and Mallein (2018)). Let X be a branching Lévy process with
characteristic triplet (σ2, a, Λ), we denote by P̂ the size-biased law of X and P̂ the law of
the branching Lévy process with spine (X, ξ). For all t ≥ 0, we have

P̂
∣∣
Ft

= P
∣∣
Ft

, (2.13)
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and moreover, for all u ∈ Nt, we have

P (ξt = u|Ft) = eθXt(u)∑
v∈Nt

eXt(v) a.s. (2.14)

Similarly to the branching random walk, the convergence of additive martingales of
branching Lévy process can be studied using the spine decomposition and Proposition 2.6.
A version of Biggins’ convergence theorem applied to the branching Lévy processes is
obtained by Bertoin and Mallein in [M18].
Theorem 2.C (Bertoin and Mallein (2018)). Let X be a branching Lévy process with
characteristics (σ2, a, Λ) and θ > 0 such that (2.11) holds. We recall that

κ(θ) = σ2θ2

2 + θa +
∫

P(R)

 ∞∑
j=1

eθxj − 1− θx11{|x1|<1}

Λ(dx),

and we assume that

κ′(θ) = σ2θ + a +
∫

P(R)

 ∞∑
j=1

xjeθxj − x11{|x1|<1}

Λ(dx)

is well-defined and finite. We have

P(W∞(θ) > 0) ⇐⇒ E(W∞(θ)) = 1 ⇐⇒
{

θκ′(θ)− κ(θ) < 0∫
P(R) ⟨Z, eθ⟩ log+(⟨Z, eθ⟩ − 1)Λ(dZ).

A general necessary and sufficient condition for the uniform integrability of the additive
martingale of branching Lévy processes has been obtained by Iksanov and Mallein in [M24].
The theorem can be stated as follows.
Theorem 2.D (Iksanov and Mallein (2019)). Let X be a branching Lévy process with
characteristics (σ2, a, Λ) and θ > 0 such that (2.11) holds. Let (X̂, ξ) the branching Lévy
with spine of same characteristics. The martingale (Wt(θ), t ≥ 0) is uniformly integrable
if and only if

lim
t→∞

θXt(ξt)− tκ(θ) = −∞ P̂-a.s. and
∫

P(R)

∑
k≥1

eθxkJ(log
∑
j ̸=k

eθxj )Λ(dx) <∞,

with J : y 7→ y
A(y)1{y≥1} and

A : y 7→ 1 +
∫

P(R)

∑
k≥1

eθxk((−xk) ∧ y − 1)+Λ(dx).

Moreover, for p ∈ (1, 2], the martingale Wt(θ) converges to W∞(θ) in Lp if and only if

κ(pθ) < pκ(θ) and
∫

P(R)

∞∑
k=1

∑
j ̸=k

eθxj

p−1

1{
∑

j ̸=k
eθxj >e}Λ(dx) <∞.

It is worth mentioning that although the process (Wnh(θ), n ≥ 0) can be seen as the
additive martingale of a branching random walk, Theorems 2.C and 2.D were not obtained
by using the associated results for branching random walks. Indeed, the necessary and
sufficient conditions for the uniform integrability of additive martingales of the branching
random walk can be expressed using the reproduction law Z of the process at time 1. How-
ever, there is no simple map linking the law of the branching Lévy process at time 1 with
its characteristic triplet. As a result, the analysis using spine decomposition techniques is
necessary to prove the convergence of the additive martingales.
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Convergence of the additive martingale for branching Brownian motion

As a special case, we consider necessary and sufficient conditions for the convergence
of the additive martingales in a branching Brownian motion. Let (Xt(u), u ∈ Nt)t≥0 be a
branching Brownian motion with reproduction law ν (setting, without loss of generality,
diffusion coefficient σ2 = 1, drift a = 0 and branching rate β = 1). We recall that for this
process, the log-Laplace transform is given, for all θ ∈ R, by

κ(θ) = logE

 ∑
u∈N1

eθXt(u)

 = log(m− 1) + θ2

2 ,

where m = ∑∞
k=0 kν(k) <∞ is the mean number of offspring at each branching time. The

additive martingale of the branching Brownian motion of parameter θ is then defined as
the following stochastic process

Wt(θ) :=
∑

u∈Nt

e
θXt(u)−t

(
θ2
2 +log(m−1)

)
.

Study of the convergence of additive martingales of the branching Brownian motion was
started by McKean [145]. Necessary and sufficient conditions for the uniform integrability
of these martingales can be obtained using the same spine decomposition methods as in
Lyons [133], or be seen as a consequence of Theorem 2.C.

Theorem 2.9. Given a branching Brownian motion with reproduction law ν of mean m,
the martingale (Wt(θ), t ≥ 0) is uniformly integrable if and only if θ <

√
2(m− 1) and∑∞

k=1 ν(k)k log k <∞.

The L log L integrability condition appearing to guarantee the non-degeneracy of the
additive martingales of the branching Brownian motion is reminiscent of the similar in-
tegrability condition for the non-degeneracy of the martingale associated to the BGW
process.

The uniformity of these additive martingales is deeply related to the existence of
travelling-wave solutions to the associated F-KPP reaction-diffusion equation. Indeed,
for all θ ∈ R, the function

u(θ)(t, x) = E

1− exp

− ∑
u∈Nt

eθ(Xt(u)+x)


is the unique solution to (1.22) with initial condition uθ(0, x) = 1−e−eθx . The convergence
of Wt(θ) to a non-degenerate limit is then equivalent to

lim
t→∞

u(θ)(t, x− vθt) = w(θ)(−x) = 1− E
(
e−eθxW∞(θ)

)
uniformly on compacts,

with vθ = θ
2 + m−1

θ and w(θ) is a so-called travelling-wave solution to the F-KPP equation,
satisfying

1
2w′′

θ − vθw′
θ + wθ(1− wθ) = 0, with lim

x→∞ wθ(x) = 0 and lim
x→−∞

wθ(x) = 1. (2.15)

Indeed, it can be straightforwardly observed that (t, x) 7→ w(θ)(x − vθt) is a solution to
the F-KPP equation 1.

1. Among others, this fact can be obtained using the equality in distribution (2.2) for the additive
martingales of the branching Brownian motion.
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McKean [145] proved that for all 0 < θ <
√

2(m− 1), there exists a unique (up to
translation) travelling wave solution to (2.15) with speed vθ, that can be represented as

w(θ)(x) = E
(
1− exp

(
−e−θxW∞(θ)

))
. (2.16)

Moreover, for any solution u of the F-KPP equation satisfying u(0, x) ∼x→∞ ce−θx for
some θ <

√
2(m− 1), there will exists φ ∈ R such that

lim
t→∞

u(t, x + vθt) = w(θ)(x + φ) uniformly on compact sets.

The question of the asymptotic behaviour of solutions to the F-KPP equations with an
initial condition with lighter right tails (for example bounded initial conditions) motivated
the introduction of the derivative martingale of branching random walks by Lalley and
Sellke [127], that we describe in the next section.

2.3 The derivative martingale

As noted in Theorem 2.2, the additive martingale limit W∞(θ) of the branching random
walk can be used to give an accurate estimate of the number of particles in a branching
random walk moving at speed κ′(θ). However, this estimate is precise as long as the
martingale (Wn(θ)) remains uniformly integrable, in particular if θκ′(θ) < κ(θ).

We recall that the maximal speed of particles in the branching random walk is given
by v = infθ>0

κ(θ)
θ . Assuming that this minimum is attained at a point θ∗ such that κ is

well-defined in a neighbourhood of θ∗, we observe immediately that

θ∗κ′(θ∗)− κ(θ∗) = 0. (2.17)

As a result, the martingale (Wn(θ∗)) is non-integrable, and cannot be use to estimate the
number of particles going at maximal speed in the process.

This observation underlines the necessity of exhibiting a different martingale to study
the asymptotic behaviour of extremal particles in the branching random walk. This mar-
tingale is the so-called derivative martingale, defined as follows.

Definition 2.10. Let X be a branching random walk with log-Laplace transform κ. We
assume that there exists θ∗ > 0 such that Equation (2.17) holds (with κ′(θ∗) defined by
(2.3)). The parameter θ∗ is called the critical parameter, and the derivative martingale of
the branching random walk is defined for n ≥ 0 by

Zn :=
∑

|u|=n

(nκ(θ∗)− θ∗X(u))eθ∗X(u)−nκ(θ∗). (2.18)

Using (2.17) and the many-to-one lemma, it is a straightforward application of the
branching property to observe that (Zn, n ≥ 0) is a (signed) martingale. The name
derivative martingale comes from the fact that Zn can be rewritten as −1

θ∗
dWn(θ)

dθ

∣∣∣
θ=θ∗

.
Our definition of the derivative martingale of the branching random walk does not

match the usual literature, in which the derivative martingale is usually defined by Zn/θ∗.
However, the current definition allows for a simpler description of the main results, in
particular due to the reduction of branching random walks to the boundary case, that we
now describe.
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Remark 2.11. Usually, when studying the asymptotic behaviour of quantities associated
to the derivative martingales, authors study the process Y : U→ R defined by

Y (u) = |u|κ(θ∗)− θ∗X(u).

We call Y a branching random walk in the boundary case, which is characterized by the
equations

E

∑
|u|=1

e−Y (u)

 = 1 and E

∑
|u|=1

Y (u)e−Y (u)

 = 0, (2.19)

with the second condition implicitly assuming that ∑|u|=1 Y (u)e−Y (u) is integrable. Note
that contrary to the branching random walks we consider so far, the branching random
walk Y puts finite mass on intervals of the form (−∞, a]. However, it is usually more
convenient to study this process rather than −Y as almost surely Y (u) > 0 for all |u| large
enough. With this notation, the derivative martingale can be rewritten

Zn =
∑

|u|=n

Y (u)e−Y (u), n ∈ N.

The convergence of the derivative martingale of the branching random walk was first
obtained by Biggins and Kyprianou [46]. Aïdékon [4] proved the almost sure convergence
of Zn to a non-degenerate limit under broad sufficient conditions, that Chen [72] proved
to be necessary.

Theorem 2.12 (Aïdékon 2013, Chen 2015). Let X be a branching random walk with
critical parameter θ∗. We assume that

σ2 := (θ∗)2κ′′(θ∗) = E

∑
|u|=1

(κ(θ∗)− θ∗X(u))2eθ∗X(u)−κ(θ∗)

 <∞. (2.20)

The martingale (Zn, n ≥ 0) converges a.s. to a non-degenerate non-negative limit Z∞ if
and only if

E
(
W1(θ∗) (log W1(θ∗))2

)
+ E

(
W̃1(θ∗) log+ W̃1(θ∗)

)
<∞, (2.21)

where W̃1(θ∗) = ∑
|u|=1(κ(θ∗)− θ∗X(u))+eθ∗X(u)−κ(θ∗).

The convergence of the derivative martingale to a non-degenerate limit plays an im-
portant role in the study of extremal particles in the branching random walk. Therefore,
we refer to the conditions of application of Theorem 2.12 as assumption A: there exists
θ∗ > 0 such that

θ∗κ′(θ∗)− κ(θ∗) = 0, σ2 = κ′′(θ∗) ∈ (0,∞) and

E
(
W1(θ∗) (log W1(θ∗))2

)
+ E

(
W̃1(θ∗) log+ W̃1(θ∗)

)
<∞.

(A)

Boutaud and Maillard [52] obtained convergence of an analogue of the derivative mar-
tingale for branching random walks that do not satisfy Assumption A. Specifically, they
considered branching random walks that do not satisfy (2.20), but such that the random
walk associated to the branching random walk is in the domain of attraction of an α-stable
random variable.
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The existence of the limit of the derivative martingale is deeply linked with the prop-
erties of the renewal function of the descending ladder heights of the random walk associ-
ated to the branching random walk with critical parameter θ∗. More precisely, let us set
(Sn, n ≥ 0) the random walk with step distribution satisfying

E(f(S1)) = E
(
f(κ(θ∗)− θ∗X(u))eθ∗X(u)−κ(θ∗)

)
.

We remark that the fact that θ∗ is the critical parameter implies that E(S1) = 0, so
the random walk S is centred. Additionally, condition (2.20) is equivalent to saying that
σ2 = Var(S1) <∞.

The renewal function of the descending ladder heights of the random walk S is then
defined as

U(x) := µ−1 ∑
k≥0

P(−Sτk
< x), with µ = −E(Sτ1),

with τk defined recursively by τ0 = 0 and τk+1 = inf{j > τk : Sj ≤ Sτk
} the (k + 1)st time

at which the random walk S attains its running minimum. By the duality lemma, it can
be observed that

∀x ∈ R, U(x) = x− Ex(Sτ ),

where τ = inf{n ∈ N : Sn ≤ 0} and Px satisfies Px(S0 = x) = 1.

It is well-known that under assumption (2.20), the function U satisfies U(x) ∼ x as
x→∞ and U(x) = E(U(x + S1)) for all x > 0. Note that U is the unique such function
satisfying U(x) = 0 for x < 0, i.e. U is the unique (up to a multiplicative constant)
harmonic function of the killed random walk with at most linear growth (see [M27] or the
forthcoming Proposition 3.B).

The existence of the limit of the derivative martingale is then associated with the
uniform integrability of the martingale

D(α)
n :=

∑
|u|=n

U(Y (u) + α)1{mink≤n Y (uk)+α≥0}e−Y (u),

with Y the branching random walk in the boundary case associated to X. The martingales
D(α) are often called the truncated derivative martingales, for self-explanatory reasons.

More precisely, it can be show that for any (and for all) α > 0, the martingale D(α) is
uniformly integrable if and only if condition (2.21) is satisfied. We then note that

− inf
u∈U

Y (u) = θ∗ sup
u∈U

(X(u)− v|u|) <∞ a.s.,

by (1.20). Therefore, almost surely there exists α > 0 so that no particle u goes above
v|u|+ α. As there exists c > 0 such that x ≤ U(x) ≤ x + c for all x ≥ 0, we conclude that
almost surely, for all α large enough and n ∈ N, we have

D(α)
n ≤ Zn ≤ D(α)

n + cWn.

Hence, letting n → ∞ we conclude that limα→∞ D
(α)
∞ = limn→∞ Zn a.s., proving the

existence and the non-degeneracy of the derivative martingale.
The limit of the derivative martingale, under assumptions (2.20) and (2.21) gives an

accurate estimation of the number of particles growing at speed v in the branching random
walks. For example, we can cite the following extension of Theorem 2.1 to the derivative
martingale, proved by Madaule [135].
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Theorem 2.13 (Madaule 2016). Under assumption A, for all continuous bounded func-
tion f , we have

lim
n→∞

∑
|u|=n

(nκ(θ∗)− θ∗X(u))eθ∗X(u)−nκ(θ)f

(
nκ(θ∗)− θ∗X(u)

σ
√

n

)
= Z∞E (f(M)) ,

with M a random variable with the Rayleigh distribution.

Madaule [135] also proved a trajectorial version of Theorem 2.13, in the same spirit
as (2.4), that for any continuous bounded function f , under appropriate integrability
conditions

lim
n→∞

∑
|u|=n

Y (u)e−Y (u)f

(
Y (u⌊nt⌋, t ∈ [0, 1])

σ
√

n

)
= Z∞E (f(Mt, t ∈ [0, 1])) , (2.22)

where Y is a branching random walk in the boundary case, (Mt, t ∈ [0, 1]) is a Brownian
meander and one can rewrite σ2 = E

(∑
|u|=1 Y (u)2e−Y (u)

)
. Pain [155] extended this result

to estimating the number of particles ending in the interval [vn− an, vn]. This number is
well-approached by a deterministic asymptotic rate, depending on an, multiplied by Z∞
as long as log n≪ an ≤ n1/2.

The relationship between the additives and the derivative martingales have been the
subject of a large literature. In particular, Madaule [135] proved, under some integrability
conditions that

lim
θ→θ∗

W∞(θ)
θ − θ∗ = −2Z∞. (2.23)

This result shows an absence of uniformity in the convergence of the family of martingales
(Wn(θ), θ ∈ [0, θ∗]), contrasting with the result of Theorem 2.1 which proves the uniform
convergence on compact subsets of (0, θ∗) of that family.

The derivative martingale can also be used as a measure of the decay rate of the
additive martingale (Wn(θ∗), n ≥ 0) with critical parameter. These results are known
in the literature as the Seneta-Heyde norming for the branching random walk, after the
pioneering work of Seneta [170] and Heyde [102] on the martingale of BGW processes.
Partial answers to this question were provided by Biggins and Kyprianou [46, 47] and Hu
and Shi [105]. A proof of this result under optimal integrability conditions were obtained
by Aïdékon and Shi [9].

Theorem 2.14 (Aïdékon and Shi 2014). Under assumption A, we have

lim
n→∞ n1/2Wn(θ∗) =

√
2

πσ2 Z∞ in probability.

Using the branching property of the branching random walk (and that Wn(θ∗) → 0
a.s. as n → ∞), it can be checked that, the limit Z∞ of the derivative martingale is a
non-degenerate solution of the equation in distribution

Z∞
(d)=

∑
|u|=1

eθ∗X(u)−κ(θ∗)Z(u)
∞ , (2.24)

with (Z(u)
∞ , |u| = 1) i.i.d. copies of Z∞. This equality in distribution extends (2.2) to

branching random walks in the boundary case.
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In [M29], Buraczewski, Iksanov and Mallein took interest in the rate of convergence of
Zn to Z∞, i.e. in the asymptotic behaviour of Z∞ − Zn. By (2.24), it can be noted that

Z∞ − Zn
(d)=

∑
|u|=n

eθ∗X(u)−nκ(θ∗)
(
Z(u)

∞ − (nκ(θ∗)− θ∗X(u))
)

,

so Z∞−Zn is a weighted sum of independent random variables. It should therefore be no
surprise that a stable distribution appears in the fluctuations of that process.

The rate of convergence of the derivative martingale were studied by Maillard and Pain
[141] for the branching Brownian motion under an L(log L)3-type integrability condition,
which is believed to be optimal. This study was motivated by the observations of Mueller
and Munier [150] on numerical simulations for this process. We refer to Section 2.3.2 for
more details on these results.

The first result of [M29] is a general estimate of the tail of the random variable Z∞.

Proposition 2.E (Buraczewski, Iksanov and Mallein (2021)). Under assumption A, the
derivative martingale of the branching random walk satisfies

E
(
Z∞1{Z∞≤x}

)
∼ log x, as x→∞. (2.25)

In particular, we note that Z∞ is in the domain of attraction of the spectrally positive
stable law of exponent 1.

A more precise estimate on the tail of Z∞, which is used to prove the convergence
in law of the rescaled fluctuations of Z∞ − Zn holds under some restrictive integrability
condition, that we now introduce. With Y the branching random walk in the boundary
case associated to X, define

W +
1 =

∑
|u|=1

e−Y (u)1{Y (u)≥0}, W −
1 =

∑
|u|=1

e−Y (u)1{Y (u)<0}, W̃1 =
∑

|u|=1
Y (u)+e−Y (u).

and Ymin = min|u|=1 Y (u). We introduce the integrability conditions

E
(

W +
1

(
log+ W +

1

)3
)

+ E
(

W̃1
(
log+ W̃1

)2
)

+ E

 ∑
|u|=n

(Y (u)−)3e−Y (u)

 <∞, (2.26)

and

∃C > 0 : E
(

W −
1

(
log W −

1

)3
1{
∑

|u|=1(1+Y (u)−Ymin)eYmin−Y (u)1{Y (u)<0}>C}

)
<∞. (2.27)

The following result then holds.

Theorem 2.F (Buraczewski, Iksanov and Mallein (2021)). Let X be a branching random
walk satisfying assumption A. We assume that X is non-lattice, i.e.

P(X(u) ∈ aZ + b) < 1 for all a > 0, b ∈ R.

There exists c > 0 such that

E
(
Z∞1{Z∞≤x}

)
= log x + c + o(1) as x→∞ (2.28)

if and only if (2.26) and (2.27) hold.
In particular, if (2.26) and (2.27) hold, then P(Z∞ > x) ∼ 1

x as x→∞.
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This result is mainly based on a tight estimate of the Laplace transform of Z∞ and the
recursive equation (2.24). Indeed, we observe that setting φ : λ ∈ [0,∞) 7→ E

(
e−λZ∞

)
,

the equation in distribution satisfied by Z∞ implies that

φ(λ) := E

 ∏
|u|=1

φ
(
λe−Y (u)

) .

Therefore, using Jensen inequality, we obtain that the function

D : x ∈ R 7→ ex (1− φ(e−x)
)

is a sub-harmonic function of the random walk (Sn) with step distribution satisfying
E(f(S1)) = E(f(Y (u))e−Y (u)), obtained by the many-to-one lemma.

In order to give estimates on the asymptotic behaviour of D(x) as x → ∞, which
will, by Tauberian theorem, translate in an estimate on the tail of Z∞, we characterize
the set of sub-harmonic functions of the killed random walk with at most linear growth.
More precisely, let g : (0,∞)→ [0,∞) be a càdlàg function and h : (−∞, 0]→ R a right-
continuous bounded function. We consider the right-continuous functions f satisfying

f(x) = E(f(x + S1))− g(x) if x > 0,
f(x) = h(x) if x < 0,
supx>0 f(x)/(1 + |x|) <∞.

(2.29)

We observe that if f is a solution of this equation, then E(f(x + S1)) ≥ f(x) for all
x ≥ 0, hence f is a sub-harmonic function for the random walk S. These functions can be
characterized in the following fashion.

Theorem 2.G (Buraczewski, Iksanov and Mallein (2021)). If there exists a function f
satisfying (2.29), then for all x > 0, we have

Ex

(
τ−1∑
k=0

g(Sk)
)

<∞, (2.30)

where τ = inf{k ≥ 1 : Sk < 0} and Px(S0 = x) = 1.
Conversely, if (2.30) holds and g is direct Riemann integrable on R+, then for any

solution f of (2.29), there exists c ∈ R such that

∀x > 0, f(x) = cU(x) + Ex (h(Sτ ))− Ex

(
τ−1∑
k=0

g(Sk)
)

, (2.31)

where U(x) = limy→∞ yPx(∃k < τ : Sk > y) is the renewal function associated with the
negative ladder heights of the random walk S.

This result is essentially obtained by using the optional stopping theorem at the random
time τ ∧ inf{n ≥ 0 : Sn > y} to the martingale (f(Sn) −∑n−1

k=0 g(Sk), n ≥ 0), and an
associated characterization of the harmonic functions of the killed random walk obtained
by Alsmeyer and Mallein [M27], that we will discuss in the next chapter.

Thanks to Theorem 2.G and the observation that D satisfies (2.29) for some functions
g and h, we obtain immediately its decomposition (2.31), from which we deduce that
D(x) ∼ x, with the constant c being identified using the branching property (2.24). This
immediately implies Proposition 2.E.
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Additionally, (2.31) allows us to obtain an integral test to verify if D(x) = x+c+o(1),
based on verifying that

lim
x→∞Ex

(
τ−1∑
k=0

g(Sk)
)

exists ⇐⇒
∫ ∞

0
yg(y)dy <∞.

It allows us to describe the necessary and sufficient conditions obtained in Theorem 2.F.
Finally, using the tight estimate on the tail of Z∞, it is a standard computation to deduce
the following central limit theorem for the convergence of Zn.
Theorem 2.H (Buraczewski, Iksanov and Mallein (2021)). Let X be a non-lattice branch-
ing random walk satisfying assumption A and equations (2.26) and (2.27). We have

lim
n→∞ n1/2(Z∞ − Zn + (2−1 log n)Wn(θ∗)) = Z∞L in law,

where L has a 1-stable distribution with the generating triple
(√

2(c+1−γ)
πσ2 ,

√
π

2σ2 , 1
)

and
is independent of Z∞, where γ is the Euler-Mascheroni constant and c the same constant
as in (2.28). In particular, the law of L is spectrally positive.

The derivative martingale of the branching random walk is an essential tool in the study
of the asymptotic behaviour of extremal particles in the process. Theorem 2.13 expresses
that this martingale gives an accurate estimate for the number of particles within distance
n1/2 from position nv at time n. We will show in Chapter 4 that Z∞ also influences the
number of particles reaching the highest positions in this process.

We mention below an extension of Theorem 2.12 to branching Lévy processes, i.e.
determining necessary and sufficient conditions for the non-degeneracy of the derivative
martingale of branching Lévy processes. We then give a quick overview of some results and
applications of the derivative martingale to branching Brownian motions, in particular a
multidimensional extension of this convergence.

2.3.1 The derivative martingale of the branching Lévy process

Similarly to the branching random walk, we take interest in the derivative martingale
for the branching Lévy process. We recall that if X is a branching Lévy process with
characteristics (σ2, a, Λ), for all θ > 0 we have

κ(θ) = logE

 ∑
u∈N1

eθXt(u)

 = σ2θ2

2 + aθ +
∫

P(R)

 n∑
j=1

eθxj − 1− θx11{|x1|<1}

Λ(dx).

We assume in this section the existence of a parameter θ∗ such that θ∗κ′(θ∗)− κ(θ∗) = 0.
In the same way as for the branching random walk, we can define a branching Lévy

process in the boundary case as a process satisfying the above equation with θ∗ = 1 and
κ(θ∗) = 0. In other words, κ(1) = κ′(1) = 0. These conditions can be explicitly restated
in terms of the characteristic triplet of the branching Lévy process.
Definition 2.15. A branching Lévy process in the boundary case is a process Y such that
−Y is a branching Lévy process with characteristics (σ2, a, Λ) satisfying

σ2 = 2
∫

P(R)

 ∞∑
j=1

1{xj>−∞}(1− xj)exj

− 1 Λ(dx) = 0,

a =
∫

P(R)

 ∞∑
j=1

1{xj>−∞}(2− xj)exj

− 2− x11{|x1|<1}Λ(dx) = 0.
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We call (σ2,−a, Λ) the characteristics of the branching Lévy process in the boundary case
Y , with Λ the image of Λ by the application x 7→ −x.

Remark that similarly to branching random walks, it is traditional to consider the
process Y (with a possible accumulation of positions of particles at ∞ at any finite time)
rather than the branching Lévy process −Y when working with branching Lévy processes
in the boundary case. Indeed, under these conditions particles in −Y will typically go to
−∞, so working with Y allows to work with particles with a typically positive position.
Up to a slight abuse of notation, we consider in this section that the set P(R) will be
the set of Radon point measures with a smallest atom, which is the support set of the
characteristic Λ of a branching Lévy process in the boundary case.

The study of the convergence of the derivative martingale of a branching Lévy process
in the boundary case, defined by

Zt :=
∑

u∈Nt

Yt(u)e−Yt(u)

was started by Shi and Watson [171], in which the predictable genealogy of particles and
the spine decomposition for branching Lévy processes are introduced. A necessary and
sufficient condition was obtained by Mallein and Shi [M36], which gives optimal condition
on the characteristic measure Λ under the assumption κ′′(1) < ∞. This result should be
thought of as an analogue, in branching Lévy processes settings, of Theorem 2.12.

Theorem 2.I (Mallein and Shi (2022)). Let Y be a branching random walk in the boundary
case with characteristics (σ2, a, Λ). We assume that∫

P(R)

∞∑
j=1

1{xj<∞}x2
je−xj Λ(dx) <∞. (2.32)

The martingale (Zt, t ≥ 0) converges a.s. to a non-degenerate non-negative limit Z∞ if
and only if ∫

P(R)
Y (x) log+(Y (x)− 1)2 + Ỹ (x) log+(Ỹ (x)− 1)2Λ(dx), (2.33)

where Y (x) = ∑∞
j=1 1{xj<∞}e−xj and Ỹ (x) = ∑∞

j=1 1{xj∈[0,∞)}xje−xj .

Similarly to Theorem 2.12, this result is based on the connection of the derivative
martingale with the following non-negative martingale

Dα
t :=

∑
u∈Nt

U(Yt(u) + α)1{infs≤t Ys(u)≥−α}e−Yt(u),

with U the renewal function associated to the (weakly) decreasing ladder heights of the
Lévy process ξ satisfying for all measurable bounded function f ,

∀t ≥ 0, E(f(ξt)) = E

∑
u∈Nt

f(Yt(u))e−Yt(u)

 .

Using that U is asymptotically linear under assumption (2.32), we deduce that Zt converges
a.s. to a non-degenerate limit if and only if Dα

t is uniformly integrable for some (and thus
all) α > 0.
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Using the spine decomposition to describe the law of the branching Lévy process biased
by the martingale Dα, Mallein and Shi proved that the uniform integrability of Dα is
equivalent to ∫ ∞

0
fΛ(ξs)ds <∞ P↑-a.s.

where P↑ is the law of the Doob’s h-transform of ξ by U , which can be thought off as the
law of ξ conditioned on never becoming negative, and fΛ is a numeric decreasing positive
function on R+, that depend on Λ. Theorem 2.I is then a consequence of the following
integral test for the finiteness of perpetuities of Lévy processes conditioned to stay positive.
Proposition 2.J (Mallein and Shi (2021)). Let ξ be a centred Lévy process with finite
variance, and denote by P↑ the law of this process conditioned to stay positive. For all
measurable bounded function f : [0,∞)→ [0,∞) eventually non-increasing, we have∫ ∞

0
f(ξs)ds <∞ P↑-a.s. ⇐⇒

∫ ∞

0
yf(y)dy <∞∫ ∞

0
f(ξs)ds =∞ P↑-a.s. ⇐⇒

∫ ∞

0
yf(y)dy =∞

This result is based on the work of Baguley, Döring and Kyprianou [22] providing a
general result for the 0-1 law of perpetuities of Markov processes. Using Proposition 2.J,
Theorem 2.I is then obtained by connecting the condition

∫
yf(y)dy with the integrability

condition (2.33).

2.3.2 The derivative martingale of the branching Brownian motion

The study of the derivative martingale in branching Brownian motion has a much
longer history than the one of branching random walks and branching Lévy processes,
due to the link between the branching Brownian motion and the F-KPP reaction diffusion
equation obtained by McKean [145]. In fact, in that article, McKean uses the limit of
additive martingales of the branching Brownian motion with critical parameter

√
2(m− 1)

to describe the travelling-wave solutions to the F-KPP equation with the formula (2.16).
He later observe that the martingale (Wt(

√
2(m− 1))) being non-uniformly integrable,

this formula could not hold for that parameter [146].
To overcome this problem, Lalley and Sellke [127] introduced and prove the almost

sure convergence of the derivative martingale of the branching Brownian motion, defined
as

Zt :=
∑

u∈Nt

(
√

2(m− 1)t−Xt(u))e
√

2(m−1)(Xt(u)−
√

2(m−1)t),

to a non-degenerate, non-negative limit Z∞. They use the limit Z∞ to describe the
travelling-wave equation of the F-KPP equation with minimal speed

w(x) := 1− E
(
exp

(
e−θxZ∞

))
.

The function u(t, x) = w(x −
√

2(m− 1)t) is a solution to F-KPP, and there is no non-
degenerate solution to this equation of the form (t, x) 7→ φ(x− vt) with v <

√
2(m− 1).

In particular, using the convergence obtained by Bramson [57] for the solution of the
F-KPP equation with Heavyside initial condition, the result of Lalley and Sellke readily
implies that for all y ∈ R,

lim
t→∞

P
(

Mt ≤
√

2(m− 1)t− 3
2
√

2(m− 1)
log t + y

)
= E

(
exp

(
−c⋆Z∞e−

√
2(m−1)y

))
.

(2.34)



72 Chapter 2. Additive martingales and the spine decomposition

In other words, Mt−mt converges in law to G+log Z∞, with G a Gumbel random variable
independent of the branching Brownian motion. This result is an other example of the
deep connections existing between the derivative martingale and the extremal values of
the branching Brownian motion.

The optimal integrability conditions on the reproduction law ν of the branching Brow-
nian motion, guaranteeing that the limit of the derivative martingale of the branching
Brownian motion is non-degenerate were obtained by Yang and Ren [180]. It can be seen
as an analogue of Theorem 2.12, or a particular case of Theorem 2.I.

Theorem 2.16 (Yang and Ren 2011). Let (Zt, t ≥ 0) be the derivative martingale as-
sociated to a (supercritical) branching Brownian motion with reproduction law ν. The
derivative martingale (Zt) converges a.s. to a non-degenerate limit Z∞ if and only if∑∞

k=1 ν(k)k(log k)2 <∞.

The speed of convergence of the derivative martingale towards its limit was studied by
Maillard and Pain [141], who proved the following functional central limit theorem for the
derivative martingale of the branching Brownian motion.

Theorem 2.17 (Maillard and Pain 2019). Let (Zt, t ≥ 0) be the derivative martingale of
a (supercritical) branching Brownian motion with a reproduction law ν satisfying

∞∑
k=1

ν(k)k(log k)3 <∞.

We have lim
t→∞

(√
t (Z∞ − Zat) + log t√

2πat
Z∞, a ≥ 1

)
=
(
SZ∞/

√
a, a ≥ 1

)
, in finite dimen-

sional distributions, where S is a spectrally positive 1-stable Lévy process.

In particular, the convergence of the 1-dimensional marginal with a = 1 is the analogue
of Theorem 2.H in the context of branching Brownian motion. As a result, it can be
deduced that the L log L3 integrability condition is optimal for Theorem 2.17 to hold.
This theorem is in particular

Maillard [139] obtained precise estimates on the tail of the derivative martingale of
the branching Brownian motion, which are analogue to Theorem 2.F. More precisely, the
following results hold.

Proposition 2.18 (Maillard 2012). Let Z∞ be the limit of the derivative martingale of a
branching Brownian motion with reproduction law ν. We have

P(Z∞ > x) ∼x→∞
1
x
⇐⇒

∞∑
k=1

k(log k)2ν(k) <∞ and

E(Z∞1{Z∞≤x}) = log x + c + o(1) as x→∞ ⇐⇒
∞∑

k=1
k(log k)3ν(k) <∞.

Multidimensional branching Brownian motion Before closing this chapter on ad-
ditive martingales of spatial branching processes, we mention the problems related to the
extension of the convergence of additive martingales of the branching Brownian motion to
multidimensional settings. In some sense, this question is already present when consider-
ing additive martingales with complex parameters which was studied by various authors,
see e.g. [44, 122, 112] in branching random walk settings, or [138, 101] for questions re-
lated to the convergence of martingales of the branching Brownian motion with complex
parameters.
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In particular, we remark that Biggins [44] obtained the convergence of additive mar-
tingales in multidimensional branching random walks uniformly in compact subsets of the
set of parameters for which the martingales are uniformly convergent. However, uniform
convergence in all directions of the derivative martingale cannot hold in general settings,
due to the existence of exceptional directions in which this martingale diverges to −∞,
due to the presence of anomalously high particles, that was obtained in [M5].

More precisely, let d ≥ 2, we consider a standard binary branching Brownian motion
(Xt(u), u ∈ Nt)t≥0 in dimension d. It is worth noting that for each φ ∈ Sd−1, the process
(Xt(u).φ, u ∈ Nt)t≥0 is a unidimensional branching Brownian motion. Therefore, for each
φ ∈ Sd−1, the martingale

Zt(φ) :=
∑

u∈Nt

(
√

2t−Xt(u).φ)e
√

2(Xt(u).φ−
√

2t)

converges almost surely to a non-degenerate limit written Z∞(φ). However, using results
of Mallein [M5], it can be straightforwardly proved that at least in dimension d ≥ 3,

lim inf
t→∞

inf
φ∈Sd−1

Zt(φ) = −∞ a.s.

so the convergence of Zt to Z∞ cannot hold uniformly in φ.
Recalling that the derivative martingale encodes information on the asymptotic be-

haviour of extremal particles, if one wishes to describe particles in the multidimensional
branching Brownian motions which went further from the origin, it becomes necessary
to obtain some simultaneous convergence result for the martingale (Zt(φ), φ ∈ Sd−1)t≥0.
Stasiński, Berestycki and Mallein in [M30] proved that almost surely, Zt(φ) converges to
Z∞(φ) as t→∞ in almost every direction.

Theorem 2.K (Stasiński, Berestycki and Mallein (2021)). There exists almost surely a
Borelian subset A of Sd−1 of full Lebesgue measure such that

∀φ ∈ A, lim
t→∞

Zt(φ) = Z∞(φ).

Moreover, for all continuous bounded function f , we have

lim
t→∞

∫
Sd−1

f(φ)Zt(φ)σ(dφ) =
∫

A
f(φ)Z∞(φ)σ(dφ) a.s.

In other words, this theorem proves the almost sure convergence of Zt(φ)σ(dφ) as
a random measure, and that the limiting distribution has density with respect to the
Lebesgue measure equal, up to a subset of null measure, to the limit of the derivative mar-
tingale in each fixed direction. Although this result was only proved for binary branching
Brownian motions, minor modifications of the argument would allow to prove it for any
branching Brownian motion whose reproduction law satisfies an L(log L)2 integrability
condition.

It remains currently an open problem to describe the regularity of the function Z∞ on
the sphere Sd−1. It is believed that this function should become more irregular in larger
dimensions. The question of characterizing the random variable Z∞ up to multiplications
by a constant by an analogue to the equality in law (2.24) remains open as well.
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CHAPTER 3

Fixed point of the smoothing
transform and branching

stable point measures
“On peut braver les lois humaines, mais non
résister aux lois naturelles.”

Jules Verne – Vingt Mille Lieues sous les mers
(1870).

Summary.
We take interest in this chapter in the identification and the expression of
the fixed points of the so-called smoothing transform. A function f is said to
be a fixed point of the smoothing transform associated to the decreasing null
sequence (Tn, n ≥ 1) if

∀t > 0, f(t) = E

( ∞∏
n=1

f(tTj)
)

.

We aim at describing the set of solutions to this equation, in particular its links
with additive martingales of the branching random walk. This identification
was obtained by Alsmeyer, Biggins and Meiners [11]. We present here a simple
proof for this result, also working in the boundary case, obtained by Alsmeyer
and Mallein [M27].
Using this characterization of the fixed points of the smoothing transform, we
are able to describe random point measures that are stable for the branching
convolution equation, i.e. satisfying (1.4) under some condition. This result,
obtained by Maillard and Mallein [M37] proves that if the extremal process of
the branching random walk converges, its limit has to be a shifted decorated
Poisson point process with prescribed intensity.



76 Chapter 3. Fixed points of the smoothing transform

The smoothing transform is a regularization transform defined as a mapping on the
space of non-negative measurable functions bounded by 1. More precisely, given a non-
increasing null sequence (Tj , j ≥ 1) of non-negative random variables, the associated
smoothing transform is defined by

FT : f 7→
t 7→ E

 ∞∏
j=1

f(tTj)

 .

A fixed point of the smoothing transform is then defined as a measurable function f
satisfying

∀t ≥ 0, f(t) = E

 ∞∏
j=1

f(tTj)

 . (3.1)

The problem of identifying fixed points of the smoothing transform belonging to a certain
class of functions, such as Laplace transforms of non-negative random variables or right-
continuous non-increasing functions have been the subject of a large literature, among
which can be mentioned [116, 85, 132, 109, 47] and the references therein. An overview
of the literature, and optimal results on the existence of fixed points of the smoothing
transform with f taking values in [0, 1] can be found in [11].

We note that if f is the Laplace transform of a non-negative random variable X and
a fixed point of the smoothing transform, the smoothing transform equation (3.1) can be
rewritten as

R
(d)=

∞∑
j=1

TjR(j), (3.2)

where (R(j), j ≥ 1) are i.i.d. copies of R that are further independent of (Tj , j ≥ 1).
This equation is sometimes called the stochastic fixed point equation. Similarly, if f is a
decreasing right-continuous function with f(0) = 1, there exists a non-negative random
variable Y such that for all x ≥ 0, P(Y ≥ x) = f(x). Then Y is a fixed point of the
equation

S
(d)= min

j∈N:Tj>0

S(j)

Tj
, (3.3)

with (S(j), j ≥ 1) i.i.d. copies of S that are further independent of (Tj , j ≥ 1).
Remark 3.1. Various generalization of the smoothing transforms have been considered:
real-valued random variables satisfying (3.2) in [14], complex-valued random variables in
[147], matrix-valued solutions of the smoothing transform [79]. However, in this chapter
we will only focus on non-negative solutions to (3.2).

The work of Kahane and Peyrière [116] on fixed points of the smoothing transform is
related to Mandelbrot’s cascades and the study of turbulence models. In view of (3.2),
Durrett and Liggett [85] took interest in these fixed points interpreted as analogue, in
branching random walk settings, of an invariant distribution for particle systems on the real
line. This observation is made rigorous by Maillard and Mallein [M37] (see forthcoming
Section 3.3) Moreover, equation (3.3) motivates the study of the smoothing transform
when considering the asymptotic behaviour of extremal particles in a branching random
walk, as the limit in distribution of the centred maximum has to satisfy an equation in
distribution similar to − log S.

Fixed points of the smoothing transforms were also introduced to study the asymptotic
of objects exhibiting a recursive structure, such as recursive algorithm. For example, Rösler
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[167, 165] characterized the limit X of the normalized number of comparison made by the
Quicksort algorithm as solution to the distributional equation

R
(d)=UR(1) + (1− U)R(2) + g(U),

where R(1), R(2) are two independent copies of R, U an independent uniform random
variable and g : t 7→ 1 + 2t log(t) + 2(1 − t) log(1 − t). Then, writing φ the characteristic
function of R, it is a straightforward computation to observe that

∀t ≥ 0, φ(t) = E
(
φ(Ut)φ((1− U)t)eitg(U)

)
.

Hence the law of R is related to a fixed point of the smoothing transform, we refer to
Alsmeyer and Dyszewski [12] for more details on this relationship.

The smoothing transform, and in particular its iterations, are deeply related with
branching random walks in the following way. We denote by X a branching random walk
with reproduction law given by

∞∑
j=1

1{Tj>0}δlog Tj .

For all suitable function f , we observe that

FT (f) : t 7→ E

 ∏
|u|=1

E
(
teX(u)

) ,

hence, by a trivial recursion, for any n ∈ N,

Fn
T (f) : t 7→ E

 ∏
|u|=n

f
(
teX(u)

) .

In particular, a fixed point of the smoothing transform will satisfy, for all n ∈ N

∀t > 0, f(t) = E

 ∏
|u|=n

f
(
teX(u)

) . (3.4)

Existence, uniqueness and representation of the fixed points of the smoothing transform
mostly under the following standard assumptions. First, it is assumed that

E(
∞∑

j=1
1{Tj>0}) > 1, (3.5)

which is equivalent to the supercriticality of the associated branching random walk. It is a
straightforward consequence of (3.4) that the only solution to (3.1) is the constant f ≡ 1
if (3.5) does not hold. Additionally, we remark that if f is a non-negative solution to the
fixed point equation, for all t ≥ 0,

f(t) = E

 ∏
|u|=n

f
(
teX(u)

) ≥ P(X gets extinct by time n),

using that ∏∅ = 1. Therefore, any non-negative solution to the fixed point equation is
bounded from below by the extinction probability of the branching random walk.
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It is then assumed that there exists α > 0 such that

E

 ∞∑
j=1

T α
j

 = 1 and E

 ∞∑
j=1

T α
j log Tj

 ≤ 0. (3.6)

This second condition implies that limn→∞ max|u|=n X(u) = −∞ in the associated branch-
ing random walk. Hence, by (3.4), the function f is characterized by its asymptotic be-
haviour as t→ 0. We mention that Liu [132] obtained under weaker conditions than (3.6)
the existence of non-negative solutions to (3.2), via a truncation argument.

Under condition (3.6), we remark that E
(∑∞

j=1 T α
j log Tj

)
= 0 is equivalent to saying

that κ(α) = κ′(α) = 0 for the associated branching random walk, therefore α is the critical
parameter. We call this case the boundary case of the smoothing transform, while we call
regular case the situation such that

E

 ∞∑
j=1

T α
j log Tj

 < 0.

Construction of fixed points of the smoothing transform in the regular case is done in the
next section. This construction is then extended to the boundary case in Section 3.2

3.1 Fixed points of the smoothing transform in the regular
case

We consider in this section a smoothing transform in the regular case, i.e. such that

E

 ∞∑
j=1

T α
j

 = 1 and E

 ∞∑
j=1

T α
j log Tj

 < 0. (3.7)

Under these conditions, by Theorem 2.1, the martingale

Wn = Wn(α) =
∑

|u|=n

eαX(u)

converges almost surely to a limit W∞, and this limit is non-degenerate if and only if

E(W1 log+ W1) = E

 ∞∑
j=1

T α
j

 log+

 ∞∑
j=1

T α
j

 <∞. (3.8)

We denote by r the geometric span of the random sequence (Tj , j ≥ 1), defined as the
largest number larger than 1 such that

P(Tj ∈ {rn : n ∈ Z} for all j ≥ 1) = 1, (3.9)

If no such real number exist, we set r = 1. We remark that (Tj , j ≥ 1) has geometric
span r > 1 if and only the branching random walk X takes value in (log r)Z. We then
introduce, for r > 1

Hr :=
{

h : [0,∞)→ (0,∞) : ∀t > 0, h(rt) = h(t) and
t 7→ h(t)tα is non-decreasing

}
the set of geometrically r-periodic functions such that t 7→ tαh(t) is non-decreasing. By
convention, H1 is taken as the set of constant functions. The following result was proved
by Alsmeyer, Biggins and Meiners [11].
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Theorem 3.2 (Alsmeyer, Biggins, Meiners 2012). Let (Tj , j ≥ 1) be a non-increasing null
sequence satisfying (3.5), we assume there exists α > 0 such that (3.7) holds. Then, if
(3.8) holds and r is the geometric span of (Tj , j ≥ 1) the non-increasing fixed points of the
smoothing transform (3.1) are the functions f satisfying

∀t ≥ 0, f(t) = E (exp (−h(t)tαW∞)) , (3.10)

with h a left-continuous function in Hr.

A simple proof of Theorem 3.2 was obtained by Alsmeyer and Mallein [M27] under the
additional condition

E

 ∞∑
j=1

T α
j log Tj

 > −∞. (3.11)

This proof scheme can be extended to work under the boundary case, and allows the
identification of the function h as an harmonic bounded function of the Markov chain
(eSn , n ≥ 1), with (Sn, n ≥ 1) the random walk defined by

E (g(S1)) = E

∑
|u|=1

eαX(u)g(X(u))

 . (3.12)

Remark 3.3. We note that if f is a function of the form given by (3.10), it is a fixed point of
the smoothing transform, at it can be immediately seen using the equality in distribution
(2.2) satisfied by W∞.

We give below the main steps of this proof. The first step is to obtain an a priori
estimate on the asymptotic behaviour of f(t) as t → 0 for any non-trivial solution to
(3.1). This property, called the tameness of f , is written as

lim sup
t→0

− log f(t)
tα

<∞. (3.13)

The proof that any non-trivial fixed point of the smoothing transform is tame follows a
straightforward proof by contradiction. Assuming that there exists a non-trivial non-tame
solution to (3.1), we extract two decreasing null sequences (tn) and (δn) such that

∀n ∈ N, inf
s∈[tnδn,tn]

− log f(s)
sα

≥ n.

Then, using recursively that f is a fixed point of the smoothing transform, we obtain that
for all n ∈ N and t > 0,

f(t) ≤ E

 ∏
u∈Ln

f(teX(u))

 ,

where we have set

Ln :=
{

u ∈ U : teX(u) ∈ [tnδn, tn] and teX(uk) > tn for all k < |u|
}

.

This defines a stopping line, which is a notion introduced by Jagers [114] (see also Chauvin
[70] for an analogous notion for branching Brownian motion), that generalizes the notion
of stopping time for spatial branching processes. Using the spatial branching property, we
obtain

f(t) ≤ E
(

e
−n
∑

u∈Ln
eαX(u)

)
.
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Using that (Ln) is a sequence of cutting lines as well as the results of Biggins and Kyprianou
[46], by (3.11) we have ∑u∈Ln

eαX(u) → W∞ a.s. as n → ∞. As a result, we obtain that
f(t) = P(W∞ = 0) for all t > 0, which contradicts that f is non-trivial.

The second step of the proof of Theorem 3.2 is based on harmonic analysis: using that
f is a fixed point of the smoothing transform, the process (∏|u|=n f(teX(u)), n ≥ 0) is a
bounded martingale, therefore converges a.s. and in L1 to

M(t) := lim
n→∞

∏
|u|=n

f(teX(u)).

This limit is sometimes called the disintegration of the fixed point f . Using the branching
property of the branching random walk, we remark that M satisfies the following functional
equation in distribution:

(M(t), t ≥ 0)(d)=

 ∏
|u|=1

Mu(teX(u)), t ≥ 0

 ,

with (Mu, |u| = 1) i.i.d. copies of M . Using the tameness of f and this equality in
distribution, we observe that the function

G : x ∈ R 7→ eαxE (− log M(ex))

is an harmonic bounded function of the random walk S defined in (3.12). By Choquet
and Deny’s theorem [75], we deduce that t 7→ G(log t) ∈ Hr.

Finally, the third step of the proof consists in the identification of the disintegration,
which allows the reconstruction of f . We have

log M(t) = lim
n→∞E (log M(t)|Fn)

= − lim
n→∞

∑
|u|=n

tαeαX(u)G(X(u) + log t) = W∞G(− log t),

hence using that f(t) = E(elog M(t))), the proof of (3.10) is complete.

3.2 Fixed points of the smoothing transform in the bound-
ary case

We now turn, in this section, to the study of the smoothing transform in the boundary
case, i.e. assuming that

E

 ∞∑
j=1

T α
j

 = 1 and E

 ∞∑
j=1

T α
j log(Tj)

 = 0. (3.14)

We add the finite variance hypothesis

E

 ∞∑
j=1

T α
j log(Tj)2

 <∞. (3.15)

Under these conditions, by Theorem 2.12, the martingale

Zn =
∑

|u|=n

X(u)eαX(u)
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converges almost surely to a limit Z∞, and this limit is non-degenerate if and only if

E


 ∞∑

j=1
T α

j

 log+

 ∞∑
j=1

T α
j

2
 <∞

and E

 ∞∑
j=1

T α
j log+(Tj)

 log+

 ∞∑
j=1

T α
j log+(Tj)

 <∞.

(3.16)

The following result, giving an analogue of Theorem 3.2 in the boundary case, has
been proved by Alsmeyer and Mallein in [M27].

Theorem 3.A (Alsmeyer and Mallein (2022)). Let (Tj , j ≥ 1) be a random non-increasing
null sequence satisfying (3.5), we assume there exists α > 0 such that (2.19) holds. Then,
under assumptions (3.15) and (3.16), writing r the geometric span of (Tj , j ≥ 1), the
non-increasing fixed points of the smoothing transform (3.1) are the functions f satisfying

∀t ≥ 0, f(t) = E (exp (−h(t)tαZ∞)) , (3.17)

with h a left-continuous function in Hr.

The proof of this result follows a similar three-step structure as for the characterization
of fixed points of the smoothing transform in the regular case. We first prove the tameness
of any non-increasing solution f satisfying (3.1), i.e. that they satisfy

lim sup
t→0

− log f(t)
tα log t

<∞. (3.18)

This tameness assumption allows us to define, for a > 1, the function

G
a : x ∈ R 7→ eαxE (− log Ma(ex)) ,

with Ma the stopped disintegration martingale of f defined by

Ma(t) = lim
n→∞

∏
|u|=n

(
1{maxk<n teX(uk)>a} + 1{maxk<n teX(uk)<a}f(teX(u))

)
.

By the branching property of the branching random walk, and the tameness assump-
tion, we observe that G is an harmonic function of the random walk S killed at level
log a and has at most linear growth at −∞. We mention that in the boundary case, with
assumption (3.15), the random walk S is centred with finite variance. To complete the
identification of the function h associated to the solution f of the smoothing transform,
we need an analogue of the Choquet and Deny’s theorem for harmonic functions of the
killed random walk with at most linear growth. We use the following result, proved in
[M27], which extends a similar result of Spitzer [175, Thm. E3, p. 332] proved for centred
random walks on the integer lattice.

Proposition 3.B (Alsmeyer and Mallein (2022)). Given S a non-trivial centred random
walk with finite variance and lattice span d ≥ 0, let G be a right-continuous function
satisfying

∀x > 0, G(x) = E(G(x + S1)), sup
x<0

G(x) <∞ and lim sup
x→∞

G(x)
x + 1 <∞. (3.19)
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There exists a function κ, d-periodic if d > 0 and constant if d = 0 such that

G(x) = κ(x)U(x) + Ex(G(Sτ )) for all x ∈ R,

where τ = inf{n ≥ 0 : Sn ≤ 0} and U(x) = x − Ex(Sτ ) is the renewal function of the
weakly descending ladder heights of the random walk S.

This proposition can be obtained using the optional stopping theorem as well as clas-
sical estimates on the overshoot distribution of the random walk S. For all y ∈ R, we set
Ty = inf{n ≥ 0 : Sn > y}, if G satisfies (3.19), then for all n ∈ N

G(x) = Ex

(
G(Sτ 1{τ<Ty∧n}

)
+ Ex

(
G(STy )1{Ty≤τ∧n}

)
+ Ex

(
G(Sn)1{nτ∧Ty}

)
.

Letting n→∞ and the monotone and the dominated convergence theorems, we obtain

G(x) = Ex

(
G(Sτ )1{τ<Ty}

)
+ Ex

(
G(STy )1{Ty<τ}

)
.

Then, using that limy→∞ yPx(STy > τ) = U(x), we conclude that for each x ∈ R, G(x) =
Ex

(
G(Sτ )1{τ<Ty}

)
+ κ(x)U(x). The function κ being an harmonic bounded function of

the random walk S, we then deduce by Choquet and Deny’s theorem that it is d-periodic.
Coming back to the fixed points of the smoothing transform and using Proposition 3.B,

we conclude that for all a > 1, h : t 7→ Ga(− log t)
U−(− log(at)) ∈ Hr, where U− is the renewal function

of the weakly descending ladder heights of −S. Then, using the identification of the limit
in the same way as in the regular case, we deduce that for all a > 1,

− log Ma(t) = h(t)Da
∞,

with Da
∞ the truncated derivative martingale of X truncated at level − log a. Finally,

letting a→∞ we have Ma(t)→M(t), from which we deduce

M(t) = exp (−h(t)Z∞) ,

which completes the proof of Theorem 3.A by uniform integrability of M .

3.3 Application to the identification of the fixed points of
the branching convolution equation

Using the identification of the fixed points of the smoothing transform, we are able
to identified the fixed points of the branching convolution equation defined in Chapter 1.
More precisely, two family of point measures distributions can be thought of as fixed point
of the branching convolution by Z, the invariant measures of the branching random walk,
satisfying

E = E ⊛ Z, (3.20)

and the extremal point measures of the branching random walk, which solve

E = Z ⊛ E . (3.21)

The systematic study of extremal measures was carried out in [M37] using the charac-
terization of fixed points of the smoothing transform. Maillard [140] previously studied
random point measures satisfying a general superposability property. Solutions to (3.20)
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were obtained by Kabluchko in [115]. The invariant measures of the branching Brownian
motion in the boundary case was obtained by Chen, Garban and Shekhar in [74].

Let X be a branching random walk with reproduction law Z and E i.i.d. point
measures with law E . In terms of random processes, if E is an invariant measure of
the branching random walk, then for all n ∈ N,

E
(d)=
∑
e∈E

∑
|u|=n

δe+Xe(u),

where (Xe, e ∈ E) are i.i.d. branching random walks independent of E. In other words, if
X is a branching random walk starting from the distribution E , then at all positive times
(X(u), |u| = n) has the same law as E (justifying its name invariant measure).

Similarly, if (Eu, u ∈ U) are i.i.d. point measure with law E independent of X, if E is
an extremal point measure of the branching random walk, then for all n ∈ N,

E
(d)=

∑
|u|=n

∑
e∈Eu

δX(u)+e. (3.22)

In other words, the point measure E can be factorized as independent copies of E shifted
by the position at time n of the branching random walk X.

Observe that if there exists a sub-linear sequence (an) such that the point measure
associated to X, shifted by an, converges in distribution, then using the branching property
it would holds that

lim
m→∞

∑
|u|=m

δX(u)−am
= lim

m→∞

∑
|u|=n

∑
|v|=m

δX(u.v)−X(u)−an+m
in distribution

Thus, the limit E of the extremal point measure of the branching random walk would
satisfy (3.21). This is why we refer to solution of (3.22) as extremal measure.

We recall from Section 1.1 that the law of a random point measure is characterized by
its log-Laplace functional (see Definition 1.6). We denote by Ψ the log-Laplace functional
of the point measure E . By Property 1.7, Equation 3.20 can be rewritten

Ψ[φ] = Ψ [ΨZ [φ]] ,

with ΨZ [φ] : z 7→ E
(
exp

(
−∑|u|=1 φ(z + X(u))

))
. Similarly (3.21) can be rewritten

Ψ[φ] = ΨZ [Ψ[φ]] = E

exp

− ∑
|u|=1

Ψ[φ](z + X(u))

 .

In other words, if E satisfies (3.21), for all non-negative function φ the function

fφ : z ∈ [0,∞) 7→ Ψ[φ](− log z)

is a fixed point of the smoothing transform with weight sequence (eX(u), |u| = 1).
With this observation, Maillard and Mallein [M37] characterized the extremal point

measures of the branching random walk in the regular, and in the boundary case. More
precisely, they prove the following result, under assumptions translating the conditions for
characterization of fixed points of the smoothing transform in Theorems 3.2 and 3.A. We
assume there exists α > 0 such that

E

∑
|u|=1

1{X(u)>−∞}

 > 1 and E

∑
|u|=1

eαX(u)

 = 1. (3.23)
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Then, we assume that the smoothing transform satisfied by fφ is either in the regular case

E

∑
|u|=1

X(u)eαX(u)

 ∈ (−∞, 0) and E(W1(α) log+(W1(α))) <∞, (3.24)

or in the boundary case and satisfy assumption A, i.e.

E

∑
|u|=1

X(u)eαX(u)

 = 0, E

∑
|u|=1

X(u)2eαX(u)


and E(W1(α) log+(W1(α))2) + E

(
W̃1 log+(W̃1)

)
<∞,

(3.25)

where W̃1 = ∑
|u|=1 X(u)+eαX(u). Finally, we assume the branching random walk to be

non-lattice, i.e.
∀a > 0, ∀b ∈ R, P (∀|u| = 1, X(u) ∈ aZ + b) < 1. (3.26)

Under these three conditions, extremal point measures of the branching random walk are
characterized as follows.

Theorem 3.C (Maillard and Mallein (2022)). Let X a branching random walk satisfying
(3.23), (3.24) (respectively (3.25)) and (3.26), a random point measure E satisfies (3.22)
if and only if there exits a probability distribution D on P(R) such that

E is a SDPPP(Se−αxdx,D),

where S = W∞ is the limit of the additive martingale (Wn(α)) (resp. S = Z∞ is the limit
of the derivative martingale Zn(α)).

We observe that under the assumption of Theorem 3.C, if φ is a positive non-decreasing
function, then fφ is a non-increasing fixed point of the smoothing transform, hence there
exists c > 0 such that

∀z > 0, fφ(z) = E (exp (−czαS))

by Theorem 3.2 or 3.A depending on whether we are in the regular or the boundary case.
As a result, we obtain that for a large class of functions φ, the log-Laplace transform of
any random point measure E satisfying (3.22) will verify

FE [φ](x) = E (exp(−ceαxS)) .

Then, using the characterization of shifted decorated Poisson point processes of Subag
and Zeitouni [176] (see Theorem 1.10), we conclude that E is an SDPPP with intensity
Seαxdx.

It is worth observing that in terms of point measure distribution, writing S the law of
the random point measure with a single atom δ− log S and Pα the law of a Poisson point
process with intensity eαxdx, then a point measure distribution E satisfies (3.22) if and
only if

E = S ⊛ Pα ⊛D,

with D a random point measure called the decoration of the SDPPP E
We observe that no information can be obtained on the law of the decoration from

the single equation (3.22). Indeed, if E satisfies this equation, then so does E ⊛F for any
random point measure F such that the branching convolution equation is well-defined.
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Invariant point measures of the branching random walk, satisfying (3.20), are less well-
known. In [115, Theorem 2.1], Kabluchko proved that under some restrictive integrability
conditions such invariant measures can be represented as SDPPP(Se−αxdx,Dα), with S
any non-negative random variable and Dα the random point measure obtained as

Dα := lim
n→∞Pα ⊛ Z⊛n,

i.e. as the limiting distribution of a branching random walk with initial distribution given
by a Poisson point process with intensity e−αxdx. It is worth noting that this limit exist
only if α satisfies

E

∑
|u|=1

X(u)eαX(u)

 > 0 and E
(
W1(α) log+(W1(α))

)
<∞. (3.27)

In [74], Chen, Garban and Shekhar characterized the invariant measures of the binary
branching Brownian motion with drift −

√
2, giving an example of invariant measure of a

branching process in the boundary case. Specifically, their main theorem can be stated as
as follows.

Theorem 3.4 (Chen, Garban and Shekhar [74]). Let X be a binary standard branching
Brownian motion with drift −

√
2. For all t ≥ 0, we denote by Bt the law of

∑
u∈Nt

δXt(u).
If E is a random point measure on P such that for all t ≥ 0, we have E⊛Bt = E, then there
exists a non-negative random variable S such that E is a SDPPP(Se−αxdx,D∗), where D∗

is defined by ∫
e−⟨D,φ⟩D∗(dD) = lim

t→∞
E
(

e
−
∑

u∈Nt
φ(Xt(u)−Mt)

∣∣∣∣Mt ≥ 0
)

. (3.28)

The existence of the measure D∗ defined by (3.28) was obtained (with a slightly mod-
ified expression) by Arguin, Bovier and Kiesler [20], when studying the convergence in
distribution of the extremal point measure of the branching Brownian motion. The
present expression was obtained for branching Brownian motions by Cortines, Hartung
and Louidor [77]. The law D∗ is often called the decoration law of the branching Brownian
motion, for reasons that will become clear in the next section.

We conjecture that, under suitable conditions, a version of Theorem 3.4 should hold
for most branching random walks.

Conjecture 3.5. Let X a branching random walk satisfying (3.23), (3.25) of (3.27), and
(3.26), a random point measure E satisfies (3.20) if and only if there exits a non-negative
random variable S such that

E is a SDPPP(Se−αxdx,D∗),

where D∗ is defined by∫
e−⟨D,φ⟩D∗(dD) = lim

t→∞
E
(

e
−
∑

|u|=n
φ(X(u)−Mn)

∣∣∣∣Mn ≥ 0
)

. (3.29)

The random point measures defined by (3.29) are called the decoration point measure
of the branching random walk if X satisfies (3.25). If the branching random walk verifies
(3.27), the condition {Mn ≥ 0} becomes a large deviation event with exponentially small
probability of occurrence. In this case, the well definition of the decoration defined by
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(3.29) is an open question, as well as the optimal integrability conditions for the existence
of this limit.

It is worth noting that fixed points of the branching convolution equation, on the left or
on the right, are SDPPPs. However, equation (3.20) gives information on the decoration
law D of E , while equation (3.21) gives information on its shift S. Combining Theorem 3.C
and Conjecture 3.5 would give rise to the following result.

Conjecture 3.6. Let Z1, Z2 be two random point measures that satisfy (3.23) and (3.26).
If Z1 verifies (3.24) or (3.25) and Z2 verifies (3.25) or (3.27), then the unique random
point measure E (up to shifts by a constant) satisfying

E = Z1 ⊛ E = E ⊛ Z2

is the SDPPP(Se−αxdx,D∗), with S the limit of the additive (or the derivative) martingale
associated to Z1 and D∗ the decoration point measure associated to Z2.

Using this conjecture, one can predict the asymptotic behaviour of extremal particles
in a large number of extremal processes, by applying the branching property at time 1,
to determine the random shift, and at time n − 1, to describe the extremal distribution.
However, there is not yet a general convergence result, that would allow to deduce the
convergence in distribution of extremal processes through a tightness argument.



CHAPTER 4

Extreme values of spatial
branching processes

“Et le chemin est long du projet à la chose.”

Molière – Le Tartuffe, 1664.

Summary.
We treat in this chapter the central focus of this manuscript: the convergence
of the extremes of spatial branching processes at large times. We present here
some of the contemporary literature dealing with the description of the law of
the maximal displacement at large time in this process, as well as the joint
distribution of all particle within distance 1 from the rightmost particle. The
form of the limiting object reveals important insight for the behaviour of the
branching process, in particular the strategy followed by particles reaching
these unusually large position.
We first focus on the convergence in distribution of the maximal displacement
of spatial branching processes. We recall that Bramson [57] and Lalley and
Sellke [127] obtained the convergence in distribution of the maximal displace-
ment centred around its mean through a mixture of probabilistic and analytic
methods. These analytic tools are no longer available when dealing with the
branching random walk. Aïdékon [4] proved the convergence in distribution
of the centred maximal displacement of a branching random walk satisfying
assumption A using tight estimates on the right tail of this process. We then
present some extension of this result, among which [M1, M2, M8, M9].
We then consider the convergence of extremal processes, showing that the re-
sults of Subag and Zeitouni [176] can be used to provide a simple proof for the
convergence in distribution of the extremal process of the branching Brown-
ian motion towards an SDPPP, obtained by Aïdékon and al. [5] and Arguin
et al. [20] with descriptions of the decoration distribution. The convergence
in distribution of the extremal process of the branching random walk was ob-
tained by Madaule [136]. We introduce some generalization of this results from
[M6], [M12] and [M40] in which convergence of enriched extremal processes
are obtained. We conclude with an extension to time-inhomogeneous branch-
ing Brownian motions, mentioning among others [M23], and to a multitype
reducible model obtained in [M33].
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The maximal displacement of the branching random walk X at time n is the random
variable defined as

Mn := max
|u|=n

X(u).

It represent the rightmost occupied position in the branching random walk at time n,
and is a good proxy for the speed of invasion of the particle system. We take interest in
the asymptotic behaviour of (Mn) as n→∞. In typical situations, this random sequence
converges in distribution, when centred around its mean, to a mixture of a Gumbel random
variable and log Z∞. This convergence can be thought off as a generalization of the
convergence of the maximum of independent random variables to log-correlated settings,
as the Gumbel law is a max-stable distribution. The additive contribution from log Z∞ is
a mark of the branching property of the process, and that a large population at a finite
time will produce a large population further down the line.

To describe the joint convergence in distribution of the particles realizing an anoma-
lously large displacement in the branching random walk, we also take interest in the
extremal process of the branching random walk, defined as the point measure

En :=
∑

|u|=n

δX(u)−an
,

for a suitable sequence (an) such that Mn − an converges in distribution. The limit in
distribution of En are usually SDPPPs with exponential intensities, shifted by log Z∞.

We focus in a first time on the convergence of the maximal displacement of spatial
branching processes, and in particular the branching random walk, studied over the years
by a large group of authors including Biggins [42], Bramson [57], Addario-Berry and
Reed [3], Hu and Shi [105], Aïdékon [4] among many others. We treat in a second time the
convergence of the extremal processes in similar settings, following the steps of Aïdékon,
Berestycki, Brunet and Shi [5], Arguin, Bovier and Kistler [20] and Madaule [136].

4.1 Convergence in law of the maximal displacement
We focus in this section on the convergence in distribution of the maximal displacement

of a spatial branching process centred by its median. We consider in a first time the case of
the branching Brownian motion, which can be obtained through analytic methods, thanks
to its connection with the F-KPP equation observed by McKean [145]. Using the interplay
between the stochastic model and the associated PDE equation, it becomes possible to
describe quite explicitly the asymptotic behaviour of large particles in that process.

In a second time, we extend these convergence results to the branching random walk.
Due to the lack of analyticity of the sequence (P(Mn ≤ x), x ≥ 0)n∈N, the methods used in
that context are more focus on the detailed study of the probabilistic model, and a precise
understanding of the behaviour of particles in this system. These methods are often robust
enough to be extended to models not satisfying exactly the branching property, such as
time-inhomogeneous branching processes [92] or the Gaussian free field [137].

4.1.1 Maximal displacement of the branching Brownian motion

We recall that the tail distribution function of the maximal displacement of the branch-
ing Brownian motion, defined by u(t, x) = P(Mt ≥ x) is a solution to the F-KPP equation

∂tu = 1
2∆u + u(1− u)
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started from the initial condition u(0, x) = 1{x≤0}. Kolmogorov, Petroviskii and Piskunov
[123] proved the existence of a function (mt, t ≥ 0) satisfying limt→∞ mt

t =
√

2 such that
x 7→ u(t, x + mt) converges uniformly on compact sets to a limit w, which is a travelling-
wave solution to F-KPP with speed

√
2.

In [57], Bramson proved that mt =
√

2t − 3
2
√

2 log t is one such function. In terms of
branching Brownian motions, it proves that

Mt −mt converges in distribution to a limit X,

with the law of X being defined by P(X ≥ x) = w(x). Then, Lalley and Sellke [127]
obtained a formula for the travelling-wave solution, namely that there exists c > 0 such
that

∀x ∈ R, w(x) = 1− E(e−ce
√

2xZ∞). (4.1)

This representation of the travelling-wave solutions of the F-KPP equation, together with
Bramson’s convergence in law yields the convergence in law of the maximal displacement,
as observed in (2.34). The following result, due to Lalley and Sellke [127] identifies the
limit of the derivative martingale in the Gumbel mixture.

Theorem 4.1 (Lalley and Sellke, 1987). Writing Mt for the maximal displacement of the
branching Brownian motion, we have

lim
t→∞

Mt −mt =
√

2
2 log Z∞ + G, in law,

with G a Gumbel random variable, independent of Z∞. More precisely, for all y > 0, there
exists c⋆ > 0 such that

lim
s→∞ lim

t→∞
P(Mt ≤ mt + y|Fs) = e−c⋆Z∞e−

√
2y

Although this result was initially proved for the binary branching Brownian motion,
a similar result holds as soon as the reproduction law satisfies an L(log L)2 integrability
condition (necessary for the well-definition of the limit of the derivative martingale). We
remark that

Mt+s = max
u∈Nt

max
v∈Nt+s:v descendant of u

Xt+s(v),

therefore

1− u(t + s, x) = E

 ∏
u∈Nt

(1− u(s, Xt(u) + x))

 .

Then, using Bramson’s result and letting s→∞, this equation yields

1− w(x) = E

 ∏
u∈Nt

(1− w(Xt(u)−
√

2t + x))

 .

In other words, 1−w is a fixed point of the smoothing transform (in the boundary case),
which in view of Theorem 3.A yields (4.1), hence Theorem 4.1.

Before discussing the analogous result in branching random walk settings, we mention
a multidimensional extension of Theorem 4.1.
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Multidimensional branching Brownian motion The branching Brownian motion
in dimension d is a spatial branching process in which particles move according to i.i.d.
Brownian motions in dimension d, while branching into two offspring at rate 1. In this
process, we denote by

Rt := max
u∈Nt

∥Xt(u)∥

the maximal displacement of this multidimensional branching Brownian motion. It is
worth observing that contrary to the dimension 1, the tail distribution function of Rt

is not the solution of an F-KPP-type partial differential equation. As a result, it is not
directly possible to use the method of Lalley and Sellke to study the asymptotic behaviour
of Rt as t→∞.

Using first and second moment methods to bound the tail distribution function of
Rt at large times, Mallein [M5] proved that (Rt − rt, t ≥ 0) is tight, where rt =

√
2t +

d−4
2
√

2 log t. In other words, with high probability the farthest particle away from the origin
in dimension d is d−1

2
√

2 log t farther than it would be in dimension 1. This larger logarithmic
correction can be heuristically explained noting that a sphere of radius ct can be covered
by O(t(d−1)/2) spherical caps of height 1, corresponding to O(t(d−1)/2) possible directions
for the multidimensional branching Brownian motion to realize its maximum.

Using a precise estimate for the right-tail asymptotic of P(Rt ≥ rt + y) uniform in
y ∈ [A, δ log t−A], Kim, Lubetzki and Zeitouni [120] proved the convergence in law of the
variable Rt − rt. This asymptotic is obtained using that far away from 0, the norm of the
Brownian motion behaves similarly to a one-dimensional Brownian motion, hence the tail
distribution of Rt can be compared to the tail distribution of Mt.

Theorem 4.2 (Kim, Lubetzki and Zeitouni, 2021). There exists a positive non-degenerate
random variable Z such that

lim
t→∞

P(Rt ≤ rt + y) = E
(
exp

(
−Ze−

√
2y
))

,

i.e. Rt − rt converges in law to a Gumble distribution shifted by
√

2
2 log Z.

This result is formally similar to the one obtained by Lalley and Sellke for the unidi-
mensional branching Brownian motion with the following caveat: contrarily to Z∞, which
is the limit of the derivative martingale of the branching Brownian motion, the random
variable Z is not measurable with respect to the branching Brownian motion, and is ob-
tained as a limit in distribution. This result was later strengthen in [M40], using the radial
derivative martingale of the branching Brownian motion identified in Theorem 2.K.

Theorem 4.A (Berestycki, Kim, Lubetzki, Mallein and Zeitouni (2022)). We denote by
Z =

∫
Sd−1 Z∞(φ)σ(dφ), there exists cd

⋆ > 0 such that

lim
s→∞ lim

t→∞
P(Rt ≤ rt + y|Fs) = e−cd

⋆Ze−
√

2y
.

The techniques used to prove this result rely on the observation that with high proba-
bility, particles that will make a large displacement in the process at time t move in a fixed
direction after some finite time. Thanks to this observation, it becomes possible to link
tail estimates of largest displacement in the multidimensional branching Brownian motion
with unidimensional moderate deviations estimates for the maximal displacement.
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4.1.2 Maximal displacement of the branching random walk

The convergence in law of the maximal displacement of the branching random walk was
obtained by Aïdékon [4], who proved a discrete-time analogue to Theorem 4.1. His proof
rely on a precise estimation of a moderately large deviation event for the branching random
walk. More precisely, writing Mn the minimal displacement at time n of a branching
random walk in the boundary case, Aïdékon proved that there exists c⋆ > 0 such that

lim
A→∞

lim sup
n→∞

sup
y∈[A,

3
2 log n−A]

∣∣∣P (Mn ≤ 3
2 log n− y

)
− c⋆ye−y

∣∣∣ = 0. (4.2)

This estimate is obtained using the precise first and second moment computations of the
number of particles in the branching random walk satisfying specific properties, which,
along with concentration inequalities, allows for the obtention of this uniform equivalent.

Using the tight estimate (4.2) on the probability for a branching random walk to make
a moderate deviation event and the branching property of the branching random walk, it
becomes possible to justify the following heuristic computation as n goes to ∞

P(Mn+k ≥ 3
2 log n− y) = E

 ∏
|u|=k

P(Mn ≥ 3
2 log n− (y + X(u))|Fk)


≈ E

 ∏
|u|=k

(
1− c⋆(y + X(u))e−y−X(u)

) ≈ E (exp (−c⋆(Wk + Zk))) ,

where Mn is an independent copy of Mn. As a result, using Theorems 2.2 and 2.12, the
following result then holds.

Theorem 4.3 (Aïdékon (2013)). Let X be a non-lattice branching random walk satisfying
assumption A. We set

v = inf
θ>0

κ(θ)
θ

= κ(θ∗)
θ∗ and mn = nv − 3

2θ∗ log n.

Then with Mn = max|u|=n X(u), the variable Mn − mn converges in law to a Gumbel
distribution shifted by 1

θ∗ log Z∞. More precisely,

lim
k→∞

lim
n→∞P (Mn ≤ mn + y|Fk) = exp

(
−c⋆e−θ∗yZ∞

)
.

This result, similarly to the one obtained by Bramson for branching Brownian motions,
give a precise estimation of the position of the rightmost particle at a large time. We
mention that [M11] gives a simple proof for the tightness of (Mn − mn, n ≥ 1), under
the same, optimal, integrability assumptions. This result is used by Addario-Berry and
Ford [1] to compute the asymptotic height of random recursive tree, and by Pain and
Sénizergues for the height of weighted recursive trees and other branching-type structures
[156, 157].

Theorem 4.3 can, in some sense, be compared to the analysis of the law of the largest
element in a set of i.i.d. random variables. We recall that writing Mn the maximum of
2n i.i.d. Gaussian random variables with variance n, it is well-known that

lim
n→∞ Mn −

√
2n− 1

2
√

2
log n = G in law,
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with G a Gumbel random variable. We refer to the book of Bovier [54, Chapter 1–4] for
more details

Hence, compared to i.i.d. settings, the maximal displacement in spatial branching pro-
cesses present several distinct features. First, the logarithmic correction is slightly larger,
due to the presence of correlation between particles alive at generation n. Additionally, the
limiting distribution of the maximal displacement is obtained as a mixture of a Gumbel
random variable and the logarithm of a martingale of the process. This shift by the log-
arithm of a martingale expresses the dependence of the law of the maximal displacement
to the first steps of the process. Indeed, if the initial particle makes an anomalously large
displacement to the right, it will move in the same way the rest of the process to the right,
therefore have a macroscopic effect on the maximal displacement after a large time. This
effect is absent when considering i.i.d. random variables.

Before turning in the next section to the study of extremal processes, we mention below
several time-inhomogeneous extension for the position of the maximal displacement in a
time-inhomogeneous branching process. By modifying the correlation structure of parti-
cles, the asymptotic behaviours of the maximal displacement in these time-inhomogeneous
processes differ from the one observed in the time-homogeneous branching processes.

Time-inhomogeneous branching random walks

A time-inhomogeneous branching random walk is a spatial branching process defined
in such a way that the reproduction law depend on the generation. Given n ∈ N, we
fix (L0, . . . ,Ln−1) a family of point measures distributions. The time-inhomogeneous
branching random walk X(n) is the branching process such that for all k ≤ n− 1, we have∑

j∈N
δX(n)(uj)−X(n)(u), |u| = k

 are i.i.d. point measures of law Lk.

In other words, a particle alive at generation k gives birth to offspring that are positioned
around their parent according to the law Lk. We refer to (Lk) as the environment of the
process.

Time-inhomogeneous branching random walks were introduced by Fang and Zeitouni
[92, 93], who studied in particular the maximal displacement in a branching random walk
with an interface, such that particles reproduce according to the law L1 for the n/2 first
units of time, and according to the law L2 for the n/2 next ones. This time-inhomogeneous
process models the effect of a brutal modification of the environment on the evolution of
an invading species.

Fang and Zeitouni [92] observed that in this model, the maximal displacement Mn

behaves as an − b log n + OP(1), and that the parameters a and b depend on the order
of the law L1 and L2. Mallein [M1] studied a generalization of this problem, and gave a
formula for the parameters a and b such that

Mn = an− b log n + OP(1),

in a branching random walk with a finite number of interfaces, which hold under quite
general integrability assumptions analogous to assumption A.

Another class of time-inhomogeneous branching random walks are defined using a
continuous family (Lt, t ∈ [0, 1]), such that particles alive at generation k reproduce ac-
cording to the law Lk/n. This class of processes models the evolution of a population
under gradual shift of its environment. One of the simplest such models is the branching
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Brownian motion with time-inhomogeneous variance profile (σs, s ∈ [0, 1]). Bovier and
Hartung [55, 56] proved the convergence in distribution of the maximal displacement in
this time-inhomogeneous branching Brownian motion in the weak correlation regime.

Theorem 4.4 (Bovier and Hartung (2015)). Let Mt be the maximal displacement at time
t of a time-inhomogeneous branching Brownian motion with time-inhomogeneous variance
profile σ. We write τ2 :=

∫ 1
0 σ2

rdr. If ∀s ∈ (0, 1)
∫ s

0 σ2
rdr < sτ2, then

lim
t→∞

Mt −
√

2τ2t + 1
2
√

2τ2
log t = G− 1

2
√

2τ2
log W∞(

√
2σ2

0/τ2) in law,

with W∞(β) the limit of the additive martingale at parameter β of a time-homogeneous
branching Brownian motion and G an independent Gumbel random variable.

At the other end of the correlation spectrum lies the branching Brownian motion with
decreasing variance. In this process, the motion of particles becomes more difficult as time
grows, hence a particle reaching a far position has to have stayed close to the boundary of
this process for a long time, and particles that realize a large displacement are usually very
correlated. As a result, the maximal displacement in this process lies much lower than for
i.i.d. Gaussian variables with similar variance. This result was obtained by Maillard and
Zeitouni [143].

Theorem 4.5 (Maillard and Zeitouni (2016)). Let Mt be the maximal displacement at
time t of a time-inhomogeneous branching Brownian motion with time-inhomogeneous
variance σ. We assume that σ is C2, decreasing and σ1 > 0, and we set

mt =
√

2t

∫ 1

0
σsds + α1

21/3 t1/3
∫ 1

0
σ(s)1/3|σ′(s)|2/3ds− σ1 log t,

where α1 ≈ −2.3381 is the largest zero of the Airy Ai function of the first kind. The
sequence (Mt −mt, t ≥ 0) is tight.

The t1/3 main correction term in the branching Brownian motion with decreasing
variance holds for any branching Brownian motion in the large disorder regime, as has
been proved in [M2] for general branching random walks.

Theorem 4.B (Mallein (2015)). Let Mt be the maximal displacement at time t of a time-
inhomogeneous branching Brownian motion with time-inhomogeneous variance σ. We
assume that σ is C2 and that there exists t0 ∈ (0, 1) such that

∫ t0
0 σ2

sds < t0
∫ 1

0 σ2
sds. There

exists v > 0 and α > 0 such that

lim
t→∞

Mt − vt

t1/3 = −α in probability.

More precisely, writing (at, t ≥ 0) the solution of the optimization problem

max{
∫ 1

0
bsds : b ∈ C1,

∫ t

0

b2
s

2σ2
s

ds ≤ t},

we have v =
∫ 1

0 asds and α = − α1
21/3

∫ 1
0 σ

2/3
s

(2asσ′
s−a′

sσs)2/3

as
ds.

Note that the first two orders asymptotic of the maximal displacement obtained in [M2]
coincide with the ones obtained by Maillard and Zeitouni as as =

√
2σs for all s ∈ [0, 1] if

σ is decreasing.
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Finally, a third class of time-inhomogeneous branching processes concern branching
random walks in random environment. In this model, which explores the effect of seasonal
fluctuations on the behaviour of an invading population, at each generation the reproduc-
tion law of all the particles is chosen at random, according to some distribution of P. In
this setting, Kriechbaum [125] proved the tightness of the maximal displacement around
its quenched mean mn. Additionally, Mallein and Miłoś [M7] computed constants v and
γ > 0 such that

mn − nv

log n
→ −γ in probability,

while observing almost sure fluctuations at the logarithmic level for the median of Mn−nv.

Consistent maximal displacement It is worth noting that the n1/3 second order
term in the asymptotic behaviour of time-inhomogeneous branching processes can be un-
derstood as a penalty for requiring particles to stay as close as possible to the boundary
of the process. The existence of this correction was previously observed by Fang and
Zeitouni [91], who computed the asymptotic behaviour of the so-called consistent maxi-
mal displacement of the branching random walk, defined as

Ln := min
|u|=n

max
k≤n

kv −X(uk). (4.3)

They proved that Ln/n1/3 converges a.s. to an explicit well-defined limit. Mallein [M9]
obtained a necessary and sufficient condition for this almost sure convergence to hold (see
also Roberts [163] for a similar result on branching Brownian motion).

Theorem 4.C (Mallein (2019)). Let X be a branching random walk such that there exists
θ∗ verifying θ∗κ′(θ∗)− κ(θ∗) = 0 with σ2 = κ′′(θ∗) ∈ (0,∞). Then

lim
n→∞

Ln

n1/3 =
(

3π2σ2

2

)1/3

a.s. on the survival event

if and only if limx→∞ x2E
(∑

|u|=1 e−X(u)1{
∑

|v|=1 e−X(v)≥ex}

)
= 0.

In particular, Ln

n1/3 converges almost surely under the assumptions of Theorem 2.12.
The proof of this result is based on Mogul’skii estimates on the probability for random
walks to stay in a domain of width of order n1/3, following the method used by Aïdékon
and Jaffuel [7] to study the critical line above which a particle can survive in the branching
random walk.

4.2 Convergence of extremal processes
In order to refine the convergence in distribution results obtained in the previous

section, one can consider the extremal process of the spatial branching processes, i.e. the
relative positions of all particles within distance O(1) from the position of the rightmost
individual. We note that if the extremal process of a spatial branching process converges,
it has to satisfy the branching property, which can be rephrased as a branching fixed point
equation (3.20). As a result, the extremal process of a spatial branching process satisfying
mild conditions is a shifted decorated Poisson point process with exponential intensity.

We will first discuss the convergence of the extremal process of the branching Brownian
motion, using again the convergence of solutions of the F-KPP equation to travelling waves,
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then Theorem 3.C to identify the law of the limit. We then illustrate several extensions of
this result, to multidimensional, multitype and time-inhomogeneous branching Brownian
motions, to illustrate the variety of results one might find in the extremal process of spatial
branching processes.

We then turn to the branching random walk setting, in which the literature is less
developed. If the convergence in law of the extremal process of a branching random walk
seen from its tip is now well-known, few extensions of this result are currently available.
The study of this problem remains an active field.

4.2.1 Extremal process of the branching Brownian motion

Let (Xt(u), u ∈ Nt) be a standard branching Brownian motion. We denote by

Et :=
∑

u∈Nt

δXt(u)−mt

its extremal process. We take interest in the convergence in distribution of Et as t → ∞,
for the topology of weak convergence. This topology is equivalent to the joint convergence
in distribution of the position of the k rightmost atoms for all k ∈ N, thus informs us on
the repartition of particles in the branching Brownian motion close to its tip.

Given f a continuous compactly supported function, we define for x ∈ R and t ≥ 0

Φt(x) = E (exp (−⟨τxEt, f⟩)) = E

exp

− ∑
u∈Nt

f(Xt(u)−mt + x)

 .

We have Φt(x) = 1− u(t, mt − x) by McKean’s representation, where u is the solution to
the F-KPP equation with (compact) initial condition 1− e−f . By uniform convergence on
compact sets to a travelling-wave solution to the equation with speed

√
2 of u(t, mt − x)

and Lalley-Sellke’s representation of this travelling wave solution, we immediately deduce
that there exists cf > 0 such that

lim
t→∞

Φt(x) = E
(
exp

(
−cf e

√
2xZ∞

))
. (4.4)

Hence, we conclude that (Et, t ≥ 0) converges in law to a random point measure satisfying
the assumptions of Theorem 1.10. We therefore obtain the first part of the following
result, first proved by Arguin, Bovier and Kistler [20] and Aïdékon, Berestycki, Brunet
and Shi [5].

Theorem 4.6 (Aïdékon et al., Arguin et al. (2013)). Let X be a branching Brownian
motion such that

∑∞
k=1 k(log k)2ν(k) < ∞. The extremal process Et converges in law as

t→∞ to a decorated Poisson point process with intensity c⋆

√
2(m− 1)e−

√
2(m−1)xdx and

decoration measure D, introduced in (3.28), which can be defined by

D = lim
t→∞

P

∑
u∈Nt

δXt(u)−Mt

∣∣∣∣∣∣Mt >
√

2t

 = lim
t→∞

P

∑
u∈Nt

δXt(u)−Mt
1{u∈Gt} ∈ ·

 ,

where Gt is the set of particles alive at time t that share a common ancestor with the
rightmost particle at time t that was alive after time t/2.

Remark that in some sense, the law of the decoration D is encoded by the constant
cf appearing in (4.4), i.e. by the function which associates to the initial condition of
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the F-KPP equation the shift of the the limiting travelling wave front. However, the
connection between this constant and a construction of the law D is far from obvious.
Two constructions of this decoration distribution are available, as the extremal process of
the branching Brownian motion conditioned on an anomalously large displacement [20], or
as the extremal process of a branching Brownian motion with a spine moving in a complex
potential [5].

Using the branching property of the branching Brownian motion, we remark that,
writing E∞ for the limiting distribution of the extremal process, the following equation in
distribution holds for all t ≥ 0:

E∞
(d)=

∑
u∈Nt

τ
Xt(u)−

√
2(m−1)tE

u,

with (Eu, u ∈ Nt) i.i.d. copies of E∞. Using the superposition property of the Poisson
point process, this equality implies that all particles belonging to the same decoration at
a large time T have a most recent common ancestor larger that t for all t > 0. Conversely,
particles in different decorations have a most recent common ancestor with an age of order
1. This heuristic observation, made precise in [M12], allows us to describe the limiting
extremal process as follows. The atoms of the Poisson point process with exponential
intensity correspond to leaders, particles realizing the largest displacement at time t among
their relatives. The decoration point process then represents the relative positions of the
close family of these leaders.

Multidimensional branching Brownian motion A version of Theorem 4.6 was
proved in [M40] for the multidimensional binary branching Brownian motion. We re-
call that in this situation, the largest particle in the process is, with high probability, at
distance of order rt =

√
2t + d−4

2
√

2 log t of the origin. To give a more precise description of
the extremal process of this model, we define the extremal process on R× Sd−1

Et :=
∑

u∈Nt

δ∥Xt(u)∥−rt,
Xt(u)

∥Xt(u)∥
,

which encodes both the radial and the angular positions of particles that made a large
displacement in that process.

Theorem 4.D (Berestycki, Kim, Lubetzky, Mallein and Zeitouni (2022)). The extremal
process Et converges in law as t → ∞ for the topology of the weak convergence to a
decorated Poisson point process with intensity cd

⋆Z∞(φ)
√

2e−
√

2xdxσ(dφ) with decoration
D ⊗ δ0.

In other words, in the multidimensional branching Brownian motion, the leaders choose
the direction φ with probability proportional to Z∞(φ), and all their relatives share the
same direction. Indeed, as the angular direction of a particle at distance t from the origin
remains almost fixed for times of order 1, no relative has enough time to move in a different
direction from its leader. The decoration distribution appearing in the multidimensional
branching Brownian motion is identical to the one obtained in dimension 1.

Using that ∥x + y∥ = ∥x∥+ y x
∥x∥ + O(∥y∥2/∥x∥) and the branching property, one can

prove that the motion of particles far away from the origin can be coupled with the motion
of particles in a unidimensional branching Brownian motion [120, Section 5]. The proof
of Theorem 4.D then relies on proving an analogue to (4.4) using connections with the
unidimensional branching Brownian motion.
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4.2.2 Decoration(s) of the branching Brownian motion

The decoration distribution D of the branching Brownian motion plays an important
role in the description of the extremal process. To simplify the exposition, we restrict
ourselves to binary branching Brownian motions. The properties of D have been studied
notably by Cortines, Hartung and Louidor [77, 78], notably the behaviour of the intensity
of this random point measure. However, a larger class of decoration distributions can be
constructed, defined for all a >

√
2 by

Da := lim
t→∞

P

∑
u∈Nt

δXt(u)−Mt
∈ ·
∣∣∣∣∣∣Mt ≥ at

 . (4.5)

These decorations distribution were introduced by Bovier and Hartung [55] when investi-
gating the asymptotic behaviour of the extremal process of a time-inhomogeneous branch-
ing Brownian motion. They appear as the decoration point measures of the extremal
processes of several variants of the branching Brownian motion.

An alternative description of these decorations was given in [M23], as random point
measures conditioned on an event of positive probability. More precisely, given B a stan-
dard Brownian motion, (τj , j ∈ N) the atoms of a Poisson point process with intensity 2
and Xj i.i.d. branching Brownian motions, we define

D
a = δ0 +

∞∑
k=1

∑
u∈N k

τk

δBτk
−aτk+Xτk

(u).

As long as a >
√

2, D
a is a well-defined random point measure, which can be described

as the positions of particle alive at time 0 in the following process: a spine particle moves
backwards in time according to a Brownian motion with drift −a, while giving birth to
particles that will start independent branching Brownian motions (forward in time) at
rate 2. The law Da can the be constructed as follows.

Theorem 4.E (Berestycki, Brunet, Cortines, Mallein (2018)). For all a >
√

2, we have

Da := P(Da ∈ ·|Da((0,∞)) = 0).

In particular, the family of laws (Da, a >
√

2) is continuous in distribution. Moreover,

P(Da((0,∞)) = 0) =
√

2πa lim
t→∞

t1/2e( a2
2 −1)tP(Mt ≥ at).

This alternative description of the family of point measure distributions Da allows in
particular an explicit description of the constant appearing in the large deviations of the
maximal displacement of the branching Brownian motion. Derrida, Meerson and Sasorov
[83] conjectured that this constant satisfies P(Da((0,∞)) = 0) ∼ c(a−

√
2) as a→

√
2 for

some explicit constant c. We also conjecture that this family can be used to represent the
decoration D appearing in Theorem 4.6.

Conjecture 4.7. We have lima→
√

2Da = D for the topology of weak convergence.

Time-inhomogeneous branching Brownian motion. In [56], Bovier and Hartung
proved that in the weak correlation regime, the centred extremal process of the time-
inhomogeneous branching Brownian motion converges in law to a decorated Poisson point
process.
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Theorem 4.8 (Bovier and Hartung (2015)). Let Mt be the maximal displacement at time
t of a time-inhomogeneous branching Brownian motion with time-inhomogeneous variance
profile σ satisfying the assumptions of Theorem 4.4. We set

Et :=
∑

u∈Nt

δ
Xt(u)−

√
2τ2t+ 1

2
√

2τ2
log t

,

where we recall that τ2 =
∫ 1

0 σ2
sds. The process Et converges in law, for the topology of weak

convergence to a decorated Poisson point process with intensity cW∞(
√

2σ2
0/τ2)e−

√
2τ2xdx,

and decoration point measure obtained by dilating the point measure D
√

2σ2
1/τ2 by σ(1).

The form of the extremal point measure obtained here is consistent with Theorem 3.C
and with Conjecture 3.6. In the strong correlation regime, the convergence in distribution
of the extremal point measure is currently unknown. However, due to Conjecture 3.6, it
becomes possible to make the following prediction.

Conjecture 4.9. Let (Xt(u), u ∈ Nt) be a branching Brownian motion with time-inho-
mogeneous variance σ. We assume that σ is C2 and decreasing, and write

Et =
∑

u∈Nt

δXt(u)−mt
,

with mt the quantity defined in Theorem 4.5. The extremal process converges in law to
a decorated Poisson point process with intensity cZ∞e−

√
2/σ0xdx, and with a decoration

point measure that can be described as a decorated Poisson point process with intensity
e−

√
2/σ1xdx and decoration measure given by the dilatation of D by σ1.

We remark that this conjecture is consistent with [55, Theorem 1.2], which describes the
extremal process of a branching variance with piecewise constant non-increasing variance.

Multitype branching Brownian motion. In [M33], Belloum and Mallein study the
asymptotic behaviour of the extremal process of two-type reducible branching Brownian
motion. In this process, particles of type 1 move according to independent Brownian
motions with variance σ2 and branch at rate β into two children. Additionally, particles
of type 1 create at rate 1 particles of type 2, which behave as independent standard
binary branching Brownian motions. Biggins [45] computed the asymptotic behaviour of
the speed in such processes, observing in particular that the speed of the two-type particle
system is larger that the speed of either particles of type 1 or particles of type 2 alone if

β + σ2 > 2 and (2β − 1)σ2 < β. (4.6)

These conditions in particular ensure that particles of type 1 branch at a higher rate
(β > 1) but move with a lower speed (σ2 < 1) than type 2 particles. In this case, the
following result then holds.

Theorem 4.F (Belloum and Mallein (2021)). We denote by

v = σ2 − β

2
√

(1− σ2)(β − 1)
and θ =

√
2β − 1

1− σ
,

and set Et := ∑
u∈Nt

δXt(u)−vt. This process converges in law for the topology of the
weak convergence to a decorated Poisson point process with intensity cW (σθ)e−θxdx and
decoration distribution Dθ.
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This result is notably analogous to Theorem 4.4, obtained by Bovier and Hartung
for the variable speed branching Brownian motion. Indeed, in this regime, particles that
contribute to the extremal process at time t remain of type 1 for a time pt + O(

√
t) before

changing to type 2. This strategy allows to use the first half of the time to produce a lot
of offspring, of which one will reach a high position at time t.

When parameters β, σ2 do not satisfy (4.6), similar results to Theorem 4.F are known
to hold. In particular, if β = σ2 = 1, Belloum [27] proved that the extremal process of this
system is the same as the limiting extremal process of a single type branching Brownian
motion, shifted by

√
2 log t. It yields to the following conjecture.

Conjecture 4.10. Let (Xt(u), u ∈ ∪k≥1N k
t ) be a cascading family of branching Brownian

motions, in which particles of type k (in the set N k
t ) behave as in a standard branching

Brownian motion, and additionally give birth to particles of type k + 1 at rate α. For all
k ∈ N, the extremal process

Ek
t :=

∑
u∈N k

t

δXt(u)−
√

2t+ 3−2k

2
√

2
log t

converges in law as t → ∞ for the topology of weak convergence towards a decorated
Poisson point process with intensity ck,αe−

√
2xdx and decoration measure D.

4.2.3 The extremal process of the branching random walk

Let X be a non-lattice branching random walk satisfying assumption A. We recall the
notation

v = inf
θ>0

κ(θ)
θ

= κ(θ∗)
θ∗ and mn = nv − 3

2θ∗ log n.

Under these conditions, we recall that Aïdékon [4] proved the convergence in distribution of
Mn−mn towards a shifted Gumbel distribution. Under the same conditions, Madaule [136]
proved the convergence in distribution for the extremal process

En :=
∑

|u|=n

X(u)−mn.

Theorem 4.11 (Madaule (2017)). Given X a non-lattice branching random walk satis-
fying assumption A, the point measure En converges in law to a decorated Poisson point
process with intensity c⋆θ∗Z∞e−θ∗x.

The proof used by Madaule to obtain the convergence in distribution of the extremal
process relies on a tightness argument, and an identification of the limit by its superposition
properties (due to Maillard [140]). As a result, the distribution of the decoration does not
has a simple an expression as in branching Brownian motions settings. In [M12], an
expression of this distribution is obtained as

D = lim
n→∞

∑
|u|=n

δX(u)−Mn
1{u∈Gn},

with Gn the set of particles alive at time n that share a common ancestor with the
rightmost particle alive at time n alive after generation n/2. The proof is based on the
following straightforward extension of the convergence obtained by Madaule.
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Theorem 4.G (Mallein (2018)). Given X a non-lattice branching random walk satisfying
assumption A, the random point measure En := ∑

|u|=n δu,X(u)−mn
converges in law to

a decorated Poisson point process with intensity c⋆θ∗Z∞(du)e−θ∗x, with Z∞ the random
measure on NN such that for all u ∈ U,

Z∞({v : v|u| = u}) = lim
n→∞

∑
|w|=n

(nv −X(w))e−θ∗(X(w)−nw)1{w|u|=u} a.s.

Note that the enriched point measure En allows to study the joint convergence in
distribution of the positions of faraway particles and the genealogical relationships of the
different clusters of particles. It remains an open problem to provide a convergence result
for the extremal process of spatial branching processes recording both the genealogical
relationships of leaders belonging to different cluster, as well as those within each cluster.
This result can be used to obtain the convergence in distribution of the so-called overlap
distribution of the branching random walk at low temperature.

Enriching the information in the extremal process allows us to obtain more precise
information on the behaviour of particles reaching a large position in the branching ran-
dom walk. For example, Chen, Madaule and Mallein [M6] obtained the convergence in
distribution of the trajectories yielding to the family of particles in the branching random
walk.
Theorem 4.H (Chen, Madaule and Mallein (2015)). Let X be a non-lattice branching
random walk satisfying assumption A, we denote by

Ẽn :=
∑

|u|=n

δX(u)−mn,Hn(u),

with Hn(u) =
(

X(u⌊nt⌋)−ntv√
n

, t ∈ [0, 1]
)

the scaled trajectory followed by particle u. We have

lim
n→∞ Ẽn =

∞∑
k=1

∑
d∈D(k)

δξk+d,σek
,

where (ξk, k ≥ 1) are the atoms of a Poisson point process with intensity cZ∞e−θ∗xdx,
(D(k)) are i.i.d. random point measures with law D and (ek, k ≥ 1) are i.i.d. standard
Brownian excursions

In other words, the trajectories followed by the leaders of each cluster of particles are
given by i.i.d. Brownian excursion above the boundary of the branching random walk,
and all particles in a same cluster follow the same trajectory as its leader. This result
generalizes the observation of Chen [73], that the scaled trajectory leading to the maximal
displacement in the branching random walk converges to a Brownian excursion.

We strongly expect that the decoration appearing in the branching random walk can
be described, similarly to the branching Brownian motion setting, as the extremal process
on the branching random walk conditioned on a moderate deviation event. More precisely,
we expect the following to hold.
Conjecture 4.12. Given X a non-lattice branching random walk satisfying assumption A,
we have

D = lim
n→∞P

 ∑
|u|=n

δX(u)−Mn
∈ ·
∣∣∣∣∣∣Mn ≥ nv

 .

Similarly, we expect that similar results to the one proved for branching Brownian mo-
tions to hold in a multitype reducible branching random walk or in a time-inhomogeneous
branching random walk.



CHAPTER 5

Branching-selection particle
systems

“La raison du plus fort est encore la meilleure :
Nous l’allons montrer tout à l’heure.”

Jean de la Fontaine – Le loup et l’agneau, 1668.

Summary.
We give in this chapter some result related to the evolution of branching-
selection particle systems. These particle systems model the evolution of a
population with limited resources that individuals compete for. A prototypical
example of such a system is the N -branching random walk. In this model, at
each generation the N particles occupying the rightmost positions (treated as
their fitness in this model) reproduce in the next generation, while all others
die. Brunet, Derrida and their co-authors made prediction on the asymptotic
behaviour of the cloud of particle, as well as the genealogical relationships
between particles over time. Bérard and Gouéré obtained the asymptotic be-
haviour of the speed of the N -branching random walk as N grows to ∞. This
result was generalized in [M4], while the case of branching random walk with
a varying population size is considered in [M3].
We then focus on an exactly solvable model, the exponential model introduced
by Brunet, Derrida, Mueller and Munier [61]. Cortines and Mallein studied
various generalization of that process, which we describe below. In particular,
a solvable model for branching Ornstein-Uhlenbeck process can be showed to
fall outside the universality class of the Brunet-Derrida processes.
In a final section, we present an application of the computation of the speed
of branching-selection particle systems to the study of the longest path in a
directed Erdős-Rényi random graph. More precisely, we show that the growth
rate of the longest increasing path in a sparse Erdős-Rényi graph with vertex set
{1, . . . , n} can be computed via a coupling with a continuous-time N -branching
random walk [M15]. We also give the asymptotic properties of the growth rate
C(p) of the Erdős-Rényi graph in the dense phase. This function is proved
to be analytic on (0, 1] with an asymptotic expansion at 1 consisting only of
integers [M19].
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A branching-selection particle system is a particle system in which each individual
moves and reproduces as in a spatial branching process, while undergoing a selection
procedure. This selection has the effect of giving a reproductive advantage to some of the
particles, based on their position. These models can often be based on a fitness function f ,
which associate to a particle located at x a value f(x) representing its degree of adaptation
to the current environment. A large class of phenomena observed in natural selection can
be modelled by branching-selection particle systems.

In the present chapter, we focus on the so-called N -branching random walk, a particle
system in which every particle alive at each generation reproduces as in the branching
random walk, but among the children only the N rightmost are selected to reproduce
in the next generation. We discuss in particular the rate of adaptation of the process,
i.e. the speed at which particles move to areas of higher fitness. We take a particular
interest in the exponential model, an exactly solvable branching-selection system. Exact
computations on this model are used to exhibit phenomena of interest and make prediction
on the asymptotic behaviour of generic branching-selection particle systems.

We present in Section 5.2 an example of application of the study of the speed of
adaptation of the N -branching random walk. We take interest in the length of the longest
increasing path in an Erdős-Rényi random graph. The length of this path in a large sparse
graph is connected to the speed of a continuous-time N -branching random walk in which
every particle gives birth at rate 1 to a child one unit of space to its right, such that at
every branching event, the leftmost particle gets killed.

5.1 The N-branching random walk
The N -branching random walk is a simple branching-selection particle system in which

at each generation, the N rightmost particles are allowed to reproduce and give birth to the
next generation. More precisely, for all n ∈ N, we write XN

n (1), . . . XN
n (N) for the positions

of all particles alive in the nth generation, ranked in the decreasing order. Then, setting
(Ln(1), . . . , Ln(N)) the point measures describing the relative positions of the children of
each of these particles, we define XN

n+1(1), . . . XN
n+1(N) as the N largest values, ranked in

the decreasing order, of {
XN

n (j) + ℓ, ℓ ∈ Ln(j), 1 ≤ j ≤ N
}

.

The genealogical relationships of particles as recorded using ordered partitions of in-
tegers. For k ≤ n, we write ΠN

k,n for the partition (π1, . . . , πN ) of {1, . . . , N} such that
i ∈ πj if and only if the particle at position XN

n (i) is a descendant of the particle at
position XN

k (j). This family of partitions satisfy a flow property, for all p ≤ q ≤ r

ΠN
p,r = Coag(ΠN

q,r, ΠN
p,q),

with Coag(Π, Π′) =
(
∪i∈π′

j
πi, 1 ≤ j ≤ n

)
.

The N -branching random walk was introduced by Brunet and Derrida [59] as a model
connected to a noisy versions of the F-KPP equation. In this article, they conjectured
that the speed vN of this cloud of particle, defined as

vN = lim
n→∞

XN
n (1)
n

= lim
n→∞

XN
n (N)
n

a.s.

will satisfy, under typical integrability conditions

v∞ − vN ∼N→∞
χ

(log N)2 , (5.1)
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with χ a positive constant depending only on the reproduction law of the branching-
selection process, and v∞ the speed of the associated branching random walk without
selection. We refer to this slow convergence of the speed of the branching particle system
with selection to the speed of the branching particle system without selection as the
Brunet-Derrida behaviour of branching-selection particle systems. This result hints at the
algorithmic hardness [2] of the exploration of a branching process to identify a particle at
time n with a large displacement. The number of sites that need to be visited in order to
detect a particle in the neighbourhood of nvN at time n is indeed of order nN .

Through the introduction of more precise analytic approximations of the N -branching
random walk and the study of an exactly solvable model [60, 61], Brunet, Derrida, Mueller
and Munier refined the predictions for the asymptotic behaviour of the N -branching ran-
dom walk. They predicted that

v∞ − vN = χ

(log N + 3 log log N + O(1))2 , (5.2)

and that its genealogical structure, on a time-scale (log N)3, converges to the Bolthausen-
Sznitman coalescent [50].

Bérard and Gouéré [64] proved the Brunet-Derrida behaviour of a N -branching ran-
dom walk in which every particle gives birth to two children at each generation. Their
proof is based on the following general coupling argument, which informally states that
a branching-selection particle system with more particles further to its right will displace
faster to the right.

Lemma 5.1 (Bérard and Gouéré (2010)). Let n ≥ p and (x1, . . . xn), (y1, . . . , yp) such
that

x1 ≥ y1, x2 ≥ y2, . . . xp ≥ yp.

Then, we can construct on the same probability space the positions (Xk) of the children
of particles located at positions (x1, . . . , xn) and (Y k) of the particles located at positions
(y1, . . . yp) such that

∀j ∈ N, Xj ≥ Y j .

This lemma implies that in any branching-selection particle system in which the right-
most particles are selected at each generation, the partial order

x ≼ y ⇐⇒ x1 ≤ y1, . . . x|x| ≤ y|x|

can be preserved as long there are at all times more particles in the larger particle system
than in the smaller particle system. This coupling allows us to compare different selection
procedures, as long as the total number of particles remain of the same order of magnitude.

In particular, the Brunet-Derrida behaviour of the branching random walk can be
obtained by comparison with a branching random walk killed by a linear, close to critical
boundary. Gantert, Hu and Shi [98] precisely computed the survival probability in such a
branching process with quasi-critical killing (see also a similar proof by Bérard and Gouéré
[65]).

Theorem 5.2 (Gantert, Hu, Shi (2011)). Let X be a non-lattice branching random walk
satisfying assumption A. For ε > 0, we set

ϱ(ε) = P (∀n ∈ N,∃u ∈ U : |u| = n and X(uk) ≥ n(v − ε)) .

We have log ϱ(ε) ∼ −
√

π2

2ε θ∗κ′′(θ∗) as ε→ 0.
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Using this result, Bérard and Gouéré proved that the N binary branching random
walk with selection satisfy the Brunet-Derrida behaviour. Indeed, note that choosing
ε ≈ (log N)2, the probability for one particle to stay above the line of slope v − ε will be
close to 1

N . Moreover, conditionally on surviving, this particle will take a time of order
(log N)3 to create N new particles. Chaining this argument gives the following result,
which was generalised [M4] to arbitrary N -branching random walks satisfying A.
Theorem 5.3 (Bérard and Gouéré (2010), Mallein (2018)). Writing vN for the speed of
a non-lattice N -branching random walk satisfying assumption A, and v the speed of the
associated branching random walk without selection, we have

v − vN ∼
π2

2(log N)2 θ∗κ′′(θ∗) as N →∞.

One can consider N -branching random walks that do not satisfy the Brunet-Derrida
behaviour. For example, in [M4] we studied N -branching random walks such that the
spine associated to the critical parameter are in the domain of attraction of an α-stable
random variable. In this case, one has

v − vN ∼
L(log N)
(log N)α

as N →∞,

where L is a slowly varying random variable. In other words, these random walks do not
satisfy the Brunet-Derrida behaviour. Bérard and Maillard [28] studied the asymptotic
behaviour of N -branching random walks with polynomial tails, in which the asymptotic
behaviour of the cloud of particles as well as the genealogical structure are dominated
by the large jumps. Penington, Roberts and Talyigás [158] took interest in N -branching
random walks with stretch exponential tails, which also falls in the “one big jump” class
of random variables.

An other way to give a description of the cloud of particles drifting at speed vN in
the N -branching random walk is to prove its scaled convergence as N →∞, to a limiting
profile [87, 82]. For example, the evolution of the density uN of an N -branching Brownian
motion can be shown to converge, up to a proper scaling, to the solution (u, γ) to the
following free boundary problem

∂tu(t, x) = 1
2∆u(t, x) + u(t, x) if x > γt

u(t, x) = 0 if x ≤ γt∫∞
γt

u(t, x) = 1.

The first equation in this free boundary problem illustrates that while not under selections,
particle are diffusing while creating offspring freely, while the second one reproduces the
strong selection procedure at the left boundary of the system. The third equation defines
γt as the position of the leftmost particle sustainable by the environment. Generalizations
of this free boundary problem can be obtained for various branching-selection systems, as
in [33].

The exponential model The exactly solvable N -branching random walk, introduced
by Brunet, Derrida, Mueller and Munier [61] is a branching-selection particle system in
which every particle gives birth to a Poisson point process with intensity e−xdx. Then the
N rightmost particles are selected to form the next generation. For all n ∈ N, we set

XN
n (eq) = log

 N∑
j=1

eXN
n (j)

 . (5.3)
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Using the superposition property of the Poisson point process, we remark that the set of
children of the nth generation are positioned as a Poisson point process with intensity
e−(x−XN

n (eq))dx (in other words, the set of children of the process is similar to the children
of one particle positioned at Xn(eq)). As a result,((

XN
n+1(j)−XN

n (eq), j ≤ N
)

, n ∈ N
)

are i.i.d. random variables distributed as the largest N atoms in a Poisson point process.
The asymptotic behaviour of the cloud of particles becomes explicit, as

(
XN

n (eq), n ≥ 1
)

is a random walk with finite mean, yielding by law of large numbers

vN = E
(
XN

1 (eq)−XN
0 (eq)

)
= ln ln N + ln ln N + 1

ln N
(1 + o(1)) as N →∞.

By comparing this result to N -branching random walks, Brunet, Derrida, Mueller and
Munier were able to state the conjecture (5.2).

The genealogical structure of this process becomes exactly solvable as well. Indeed,
using again the superposability property of Poisson point processes, we observe that in-
dependently for each individual i alive at time n + 1, the probability that i is a child of
the parent j is given by

eXN
n (j)∑N

k=1 eXN
n (k) = eXN

n (j)−XN
n (eq).

In particular, the law of the parent of a particle does not depend on its position, only
on the relative positions of the particles at the previous generation. Remarking that
the N rightmost particles in a Poisson point process with exponential intensity can be
represented as a random shift of N i.i.d. exponential random variables, we deduce that
the genealogical structure of the exponential model is given by a Cannings model [68, 69].
As a result, we deduce (see e.g. [149]) that the genealogical tree of the exponential model
converges in law to the Bolthausen-Sznitman coalescent on the time scale log N .

In [M10] and [M21], Cortines and Mallein considered modifications of the exponential
model to construct branching-selection particles system that do not satisfy the Brunet-
Derrida behaviour, and more importantly that do not exhibit a dichotomy between Bol-
thausen-Sznitman and Kingman’s genealogies. It is well-known that in neutral population
models, a one-parameter family of neutral models, the Beta coalescents, appear as an in-
termediate family between the Bolthausen-Sznitman coalescent in which a small number of
ancestors dominate the genalogy, and the Kinman’s coalescent in which small genealogical
events appear on a longer time scale, see e.g. Schweinsberg [169]. However, in branching-
selection models no known intermediary model, which would represent a moderate pressure
of selection, was known.

In [M10], Cortines and Mallein replaced the selection of the N rightmost particles with
a random selection procedure that advantages particles to the right. More precisely, for
a fixed β > 1, the N particles of the (n + 1)st generation are selected from the offspring
of particles in the nth generation at random without replacement, such that a particle at
position x is selected with probability proportional to eβx.

Theorem 5.A (Cortines and Mallein (2017)). In the (N, β)-branching random walk, we
have

vN ∼ log log Nas N →∞,

and the genealogy of the process converges on the log N scale to a Bolthausen-Sznitman
coalescent.
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In other words, the random selection procedure does not modify the main macroscopic
properties of the branching-selection procedure. Schertzer and Wences [179] studied fur-
ther modifications of the random selection procedure and obtained an interplay between
the Bolthausen-Sznitman coalescent and a discrete Poisson-Dirichlet coalescent.

In [M21], Cortines and Mallein turned to an exponential branching-selection particle
system evolving according to the following procedure. Given a < 1, in this system a
particle at position x gives birth to a Poisson point process with exponential intensity
shifted by ax. In this model, the selection advantage of an individual is partially diminished
by the multiplication by a. We refer to this process as the (N, a) branching Ornstein-
Uhlenbeck process, as the multiplication to the positions by a can be identified by the
application of a linear force calling back particles to 0.

The effect of a partially inherited fitness by a child can be observed in populations with
sexual reproduction [166], in which an individual with an important selective advantage
reproduces with average members of the population. For example, the height of the
children of tall parents is usually larger than in the overall population, but smaller than
their parent.

In the (N, a) branching Ornstein-Uhlenbeck process, the formula for the position of
the center of mass of the cloud has to be modified to

XN
n (eq) = log

 N∑
j=1

eaXN
n (j)

 .

There, we have again that
((

XN
n+1(j)−XN

n (eq), j ≤ N
)

, n ∈ N
)

are i.i.d. copies of the
N rightmost atoms in a Poisson point process with exponential intensity, using again the
superposability properties of Poisson point processes. In particular, observe that

XN
n+1(eq) = aXN

n (eq) + Yn+1,

with (Yn, n ≥ 1) i.i.d. random variables with finite moments.
As a result, as long as |a| < 1, XN

n (eq) converges in distribution to a well-defined
random variable as n → ∞. Hence the cloud of particles remains asymptotically stable.
Similarly, the genealogy can be expressed explicitly using that the probability that the
individual i at the n + 1st generation is a child of the parent j is given by

eaXN
n (j)∑N

k=1 eaXN
n (k) .

This dynamics again define a Canning’s model, which yields the following result.

Theorem 5.B (Cortines and Mallein (2018)). In the (N, a)-branching Ornstein-Uhlenbeck
process, if |a| < 1 we have

lim
N→∞

lim
n→∞E(XN

n (1))− log N − γ = lim
N→∞

lim
n→∞E(XN

n (N)) = − log(1− a)
1− a

,

where γ is the Euler-Mascheroni constant.
Moreover, writing (ΠN

n ) for the genealogical process, as N →∞, we have
1. if 0 < a < 1/2 then (ΠN

⌊tN⌋, t ≥ 0) converges in law to the Kingman’s coalescent;

2. if a = 1/2 then (ΠN
⌊tN/logN⌋, t ≥ 0) converges in law to the Kingman’s coalescent;

3. if 1/2 < a < 1 then (ΠN
⌊tN(1−a)/a⌋, t ≥ 0) converges in law to the Beta(2− a−1, a−1)

coalescent;
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4. if a = 1 then ΠN
⌊t log N⌋, t ≥ 0) converges in law to the Bolthausen-Sznitman coales-

cent;
5. if a > 1 then ΠN converges in law to a discrete-time coalescent.

The (N, a)-branching Ornstein-Uhlenbeck process is the first proposed model of natu-
ral selection with a genealogical structure different from the Bolthausen-Sznitman or the
Kingman’s coalescents. Since then, several newer, and more biologically relevant, models
were introduced, which could exhibit a genealogical structure given by the Bolthausen-
Sznitman coalescent. Tourniaire [177] introduced a branching Brownian motion with ab-
sorption in which the branching mechanism is larger close to the absorbing barrier, whose
population size converges to a stable CSBP whose genealogy is given by the Beta coales-
cent. Roberts and Schweinsberg [164] proposed a branching Brownian motion in which
particles at position x has an effective (birth rate minus death rate) branching of βx.

The results obtained on the (N, a)-branching Ornstein-Uhlenbeck process yield to the
following conjecture on the asymptotic behaviour of branching Ornstein-Uhlenbeck pro-
cesses with selection, present in [M21]

Conjecture 5.4. Let ΠN be the genealogy of a branching Ornstein-Uhlenbeck process
with selection of the N rightmost particles, such that particles at position x have a drift of
− γx

(log N)2 . There exists aγ ∈ [0, 1] such that (ΠN
⌊tNaγ ℓ(N)⌋) converges in distribution to the

Beta(1− aγ , 1 + aγ) coalescent (or the Kingman’s coalescent if aγ = 1). Moreover, γ 7→ aγ

is non-decreasing, and there exists 0 < γ⋆ <∞ such that

aγ < 1 ⇐⇒ γ ≤ γ⋆.

5.2 Length of the longest path in a directed Erdős-Rényi
graph

In this section, we present an application of the computation of the speed of a N -
branching random walk to the computation of the length of the longest path in a directed
acyclic Erdős-Rényi graph, which we refer to as the Barak-Erdős graph [26]. This random
graph was introduced by Barak and Erdős, who studied its number of strongly independent
vertices, and can be constructed as follows. Given p ∈ [0, 1] and n ∈ N, the set of vertices
is given by {1, . . . , n}, and for each 1 ≤ i < j ≤ n, a directed edge from i to j is present
with probability p, independently of any other edge.

The Barak-Erdős graph can be used to model community food webs in ecology [152],
or as the task graph for parallel processing in computer sciences [99]. In this case, an edge
is present between i and j if completing task i is necessary to start task j. A commonly
studied feature of this random graph is the length of its longest path Ln, as Ln + 1 is
exactly the number of steps that a massively parallelized system would need to complete
all n tasks. Using the subadditivity of the sequence (Ln+1, n ≥ 0), Newman [153] obtained
the almost sure asymptotic behaviour for the maximal displacement.

Theorem 5.5 (Newman (1992)). There exists a continuous increasing function C such
that for all p ∈ [0, 1], writing Ln for the length of the longest path in a Barak-Erdős graph
with parameters n and p, we have

lim
n→∞

Ln

n
= C(p) in probability.

Moreover, C(0) = 0, C ′(0) = e and C(1) = 1.
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To study more precisely the properties of the function C, Foss and Konstantopoulos
[96] introduced a coupling between the Barak-Erdős graph and a long-memory Markov
chain called the infinite-bin model. This process can be described as a balls-and-bins
scheme, in which a bin is associated to each integer k ∈ Z. In the initial configuration,
an infinite number of balls is added to the bins, in such a way that one can define the
rightmost occupied bin, that we call the front of the configuration. Then, at each step
n ≥ 0, a new ball is added to the right of the ξnth rightmost ball, with (ξn, n ≥ 1) a
sequence of i.i.d. integer-valued random variables. For all n ∈ N, we denote by Fn the
position of the front at the nth step.

Proposition 5.6 (Foss and Konstantopoulos (2003)). Let p ∈ (0, 1), if (ξn, n ≥ 1) is
distributed as a sequence of i.i.d. Geometric random variables with parameter p, then

lim
n→∞

Fn

n
= C(p) a.s.

Using this coupling, as well as an analogue to Lemma 5.1 for infinite-bin models, Foss
and Konstantopoulos obtained upper and lower bounds for the function C. In [M19] and
[M15], Mallein and Ramassamy extended the analysis of infinite-bin models to refine these
estimates. In particular, they proved that C is analytic on (0, 1], with an explicit formula
for the asymptotic expansion around p = 1.

Theorem 5.C. The function p 7→ C(p) is analytic on (0, 1]. Moreover, for p > 1/2, we
have

C(p) =
∞∑

n=0

∑
|u|=n

ε(u)(1− p)npR(u),

with R(u) = ∑|u|
j=1 u(j) and ε an explicit function U → {−1, 0, 1}.

In particular, the function C admits the following expansion as p→ 1

C(p) = 1− (1− p) + (1− p)2 − 3(1− p)3 + 7(1− p)4 − 15(1− p)5 + 29(1− p)6

− 54(1− p)7 + 102(1− p)8 − 192(1− p)9 + 375(1− p)10 + O
(
(1− p)11

)
.

The first 18 terms of this asymptotic expansion are known, and can be found as sequence
A321309 of the OEIS [174]. We believe that the sequence is alternate and increasing in
absolute value, but this is not yet known. The radius of convergence of C around p = 1 is
larger than 1/4, but smaller than 1. This result is mostly used by making a perturbation
analysis of patterns appearing in the sequence (ξn, n ∈ N) as p→ 1.

The asymptotic behaviour of C in the sparse graph limit, i.e. as p→ 0, is obtained in
a very different fashion. Here, it is noted in [M19] that the infinite-bin model is liked to
a branching random walk with selection. We first observe that if in an infinite-bin model
balls are added at rate 1, the process can be described alternatively as follows: each ball
currently present in the system gives birth independently to offspring one unit of space to
its right, in such a way that the kth rightmost ball give birth to offspring at rate p(1−p)k.
Thus, it can be thought-of as a rank-based branching process.

In the limit p→ 0, this branching process becomes comparable with an
⌊

1
p

⌋
-branching

random walk. Using the Brunet-Derrida behaviour of this branching random walk, it then
becomes possible to prove the following result.

Theorem 5.D (Mallein and Ramassamy (2019)). We have C(p) = pe
(
1− π2

2(log p)2

)
+

o(p(log p)−2) as p→ 0.
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The computation of an explicit value for C(p) can be attained through different meth-
ods. In particular, as (Ln+1, n ≥ 0) is a subadditive sequence of random variables, we
have

C(p) = inf
n≥1

E(Ln+1)
n

= lim
n→∞

Ln

n
a.s.

Hence, C can be approached by simulating an infinite-bin model for a long time, or using
Monte-Carlo simulations. However, both these methods give a biased estimate for C, that
they typically overestimate. In [M39], Foss, Konstantopoulos, Mallein and Ramassamy
describe a method for constructing a Bernoulli variable X(p) with parameter C(p). In
words, this method consists in constructing a stationary version of the infinite-bin model,
and identifying renovation events in its past, so that one can compute explicitly in terms
of the sequence (ξ−T , . . . , ξ0, ξ1) the variable X(p) which is equal to 1 if and only if the
ball added at time 1 is added in a previously empty bin.

Theorem 5.E (Foss et al. (2021)). Let

T := inf{k ∈ N : ξ−k = 1 and ξ−k+j ≤ j for 1 ≤ j ≤ k},

there exists an explicit measurable function F such that X(p) = F (ξ−T , . . . , ξ0, ξ1). Addi-
tionally, we have E(X(p)) = C(p).

Using this construction, it becomes possible to estimate C(p) by Monte-Carlo methods.
We complete this short tour of Barak-Erdős graph by a mention of an estimate on the
length of the shortest path between vertices 1 and n in these graphs, obtained in [M41].

Theorem 5.F (Mallein and Tesemnikov (2022)). Let γ ∈ (0, 1) and θ > 0. We denote
by Rn the length of the longest path between vertices 1 and n in a Barak-Erdős graph with
parameters n and θ

nγ . We have

lim
n→∞P(Rn ≤ k) =


0 if k < 1

1−γ ,

e− θk

k! if k = 1
1−γ ,

1 otherwise.

In particular, we mention that for γ = 1, the Barak-Erdős graph becomes disconnected,
so that Rn = ∞ with high probability for n large enough. These estimates are obtained
by Chen-Stein’s method, showing that the number of paths of length k between 1 and n
converge to a Poisson random variable.
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