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Chapter 1

Introduction

Summary
The aim of this course is to introduce the supervised learning techniques

most commonly used in data science for decision-making aid in many fields
of application: industrial applications, marketing, insurance, biology, medicine
... The main objective is to built a model for forecasting and therefore to
search for optimal models for different classical statistical algorithms (linear
or generalized linear models, discriminant analysis), less classical (penalized
regression, binary decision trees) or even so-called learning algorithms (ran-
dom forests, neural networks, support vector machines, aggregation models)
from machine learning.

1 Statistical learning/ Machine learning
Statistical learning and Machine learning play a key role in many fields of

sciences, medicine, industry, marketing, insurance ..

As soon as a phenomenon is too complex or even too noisy to access an

analytical description leading to a deterministic modeling, a set of approaches
have been developed in order describe and model it from a series of observa-
tions. Let us see the historical steps of the development of statistical learning,
machine learning, data science and artificial intelligence.

1.1 From Statistic to Artificial Intelligence through
Data Science

1930-70 h-Octets Statistical inference

1950 Beginnings of Artificial Intelligence: Allan Turing

1970s kO Data analysis and exploratory data analysis

1980s MO Neural networks, functional data analysis

1990s GO Data mining: pre-acquired data

2000s TO Bioinformatics: p >> n, Machine Learning

2008 Data Science
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2010s PO Big Data p and n very large

2012 Deep Learning

2016 Artificial Intelligence (IA): AlphaGo, Imagenet, Generative Adversarial
Networks ..

VVV... : Volume, Variety, Velocity...

The development of data storage and computing resources gives rise to the
production and the storage of a huge amount of data from which the data sci-
entist will try to learn crucial informations to better understand the underlying
phenomena or to provide predictions. Many fields are impacted, here are some
examples of learning problems:

• Medicine: identify the risk factors for a certain type of cancer, based on
clinical and demographic variables

• Meteorology: predict an air pollution rate based on weather conditions

• Energy: forecast an electricity consumption curve for a customer as a
function of climatic variables and specific characteristics of this customer,
build a model for energy optimization of buildings, or predict the energy
production of a wind farm.

• Consumers preferences data: Websites and supermarkets collect a
huge amount of data on the behavior of consumers. Machine learning
algorithms are used to valorize these data (gathered sometimes with per-
sonal data such as age, sex, job, address .. ) for recommandation systems,
fixing personalized prices ..

• Risk modeling: construct a substitution model for a complex numerical
code which allows to predict a map of the concentration of a pollutant in

a soil after an accidental release. The objective is to perform a sensitivity
analysis on the numerical code.

• Genomics: DNA microarrays allow to measure the expression of thou-
sands of genes simultaneously on a single individual. It is, for example,
a challenge to try to infer from those kind of data which genes are in-
volved in a certain type of cancer, by comparing expression levels be-
tween healthy and sick patients. This is generally a high dimensional
problem: number p of genes measured on a microarray is generally much
larger than the number n of individuals in the study.

• Aeronautical engineering: Aerospace industry produces a huge amont
of signal measurements obtained from thousand of on-board sensors. It
is particularly important to detect possible anomalies before launching
the satellite. Similarly, many sensors are involved in planes and it is
important to detect a abnormal behavior on a sensor. The main objectives
are curve clustering or classification and anomaly detections in a set of
curves for predictive maintenance purposes.

• Images: Convolutional neural networks and deep learning led to im-
pressive progresses for image classification. Many fields are concerned:
medical images (e.g. tumor detection), earth observation satellite images,
computer vision, autonomous vehicles, ...

• Geolocalisation data: Machine learning based on geolocalisation data
has also many potential applications: targeted advertising, road traffic
forecasting, monotoring the behavior of fishing vessels ...

The main reference for this course is the book " The elements of Statistical
Learning" by T. Hastie et al [19]. Studying a certain phenomenon (presence
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of a cancer or not/ abnormal behavior or not/ interest for a certain product ..),
it is a challenge to derive which explanatory variables (among a possibly large
number of available ones) are influent for the phenomenon of interest, as well
as to provide a prediction rule. The main objective is therefore a modeling
objective which can be specified into sub-objectives that have to be clearly
defined prior the study since this determines the methods that can be imple-
mented:

Explore, represent, describe, the variables, their correlations ..

Explain or test the influence of a variable or a factor in a specific model,
assumed to be a priori known

Predict & Select a (small) set of predictors, to obtain an interpretable model,
for example searching for biomarkers

Predict by a "black box" without the need for an explicit interpretation.

Important parameters of the problem are the dimensions: the number n of
observations or sample size and the number p of variables observed on this
sample. The high dimensional framework, where p is possibly greater than
n has received a great interest in the statistical literature these last 20 years
and specific methods have been developed for this non classical setting. We
will see the importance of parcimony: "it is necessary to determine a model
that provides an adequate representation of the data, with as few parameters as
possible".

Historically, statistical methods have been developed around this type of
problems and one has proposed models incorporating on the one hand explana-
tory or predictive variables and, on the other hand, a random component or
noise. It is then a matter of estimating the parameters of the model from the
observations, testing the significance of a parameter, selecting a model or a

small set of influent variables, using the vocabulary of statistical learning.
The main methods are implemented in the software R.

In the same time, the IT community talks more about machine learning,
where the approach is more centered on a pure prediction objective, most of
the time by a "black box" without the need for an explicit interpretation. With
the increase in the size of datasets (in the era of Big Data), algorithms have
been developed in Python, in particular in the scikit learn library.

A common objective of learning is to built a prediction algorithm, mini-
mizing a prediction error, with or without the constraint of interpretability of
the algorithm. Contexts are diverse, whether the aim is to publish a research
article in an academic journal or participating in a Kaggle-type competition
or developing an industrial solution for example for recommendation systems,
fraud detection, predictive maintenance algorithms ... The publication of a new
learning method or new options of existing methods requires showing that it
outperforms its competitors on a battery of examples, generally from the site
hosted at the University of California Irvine UCI Repository [24]. The biases
inherent in this approach are discussed in numerous articles (e.g. Hand; 2006)
[18] and conferences (e.g. Donoho (2015) [13]. It is notable that the academic
pressure of publication has caused an explosion in the number of methods and
their variants. The analysis of Kaggle type competitions and their winning
solutions is also very instructive. The pressure leads to combinations, even
architecture of models, of such complexity (see e.g. Figure 1.1) that these so-
lutions are concretely unusable for slight performance differences (3rd or 4th
decimal).

Especially if the data are voluminous, the operational and "industrialized"
solutions, necessarily robust and fast, are often satisfied with rather rudimen-
tary methodological tools (see Donoho (2015) [13]).

This course proposes to address the wide variety of criteria and methods,
their conditions of implementation, the choices to be made, in particular to op-

http://wikistat.fr
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Figure 1.1: Winning solution of a kaggle contest: Identify people who have
a high degree of Psychopathy based on Twitter usage. Weighted combination
of combinations (boosting, neural networks) of thirty three models (random
forest, boosting, k nearest neighbors ...) and 8 new variables (features)

timize the complexity of the models. It is also the opportunity to remind that
robust and linear methods as well as old strategies (descending, ascending,
step-by-step) or more recent (lasso) for the selection of linear or polynomial
models should not be too quickly evacuated from academic or industrial prac-
tices.

2 Tutorials and datasets
Tutorials and practical works are important to illustrate the behavior and

the performances of the studied methods or algorithms and to become more
familiar with them. In addition to pedagogical examples simply illustrating
the different methods, other full-scale examples allow to really assess the effi-
ciency of the machine learning algorithms but also all the complexity of their
implementation.

The analysis of these different usecases is presented in tutorials contained
in jupyter notebooks in R or Python. They are available in the repository
github.com/wikistat

We present here some of the datasets that will be considered.

Ozone dataset

This example, studied by Besse et al. (2007) [5] is a real situation whose
objective is to predict, for the next day, the risk of exceeding the legal ozone
concentration threshold in urban areas. The problem can be considered as a
regression problem: the variable to explain is an ozone concentration, but also
as a binary classification problem: exceeding or not the legal threshold. There
are only 8 explanatory variables, one of them is already a prediction of ozone
concentration but obtained by a deterministic fluid mechanics model (Navier
and Stockes equations). This is an example of statistical adaptation. The de-
terministic forecast on the basis of a global grid (30 km) is improved locally, at

http://wikistat.fr
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the scale of a city, by a statistical model including this deterministic prediction
but also other variables such as concentration of nitrogen oxide and dioxide,
temperature, wind speed and wind direction. The more complete description
is given in the following tabular:

Ozone data set: 1041 observations of the following components:
JOUR type of the day: public holiday (1) or not (0)
O3obs Ozone concentration observed the next day at 17h.

generally the maximum of the day
MOCAGE Prediction of this pollution obtained by a deterministic model

of fluid mechanics
TEMPE Temperature forecast by Météo France for the next day 17h
RMH2O Moisture ratio
NO2 Nitrogen dioxide concentration
NO Concentration of nitric oxide
STATION Location of the observation: Aix-en-Provence, Rambouillet, Munchhausen,

Cadarache and Plan de Cuques
VentMOD Wind force
VentANG Orientation of the wind

This example, of both regression and binary classification, has pedagogical
virtues which allow it to be used as a red thread to compare most methods.

Human Activity Recognition (HAR) dataset

The HAR dataset are Public data, which were acquired and described by
Anguita et al. (2013) [3]. They are available on the UCI repository and they
represent usecases of Human Activity Recognition from signal recordings (gy-
roscope, accelerometer) obtained with a smartphone. The dataset contains 9
signals per individual: the accelerations in x, y, and z, those by subtracting the
natural gravity and the angular accelerations in x, y, and z obtained from the
gyroscope. Each signal contains p = 128 measures sampled at 64 htz during
2s. 7352 samples for learning and 2947 for testing. The objectives: Activity
recognition (6 classes) standing, sitting, lying, walking, walking upstairs or
walking downstairs: this is a supervised classification problem.

The first step is to build machine learning algorithms from the "features"

Figure 1.2: Human activity recognition acceleration in y by class

variables obtained by transformation of the raw data with signal processing
techniques: p = 561 new variables (features) obtained in the time domain:
min, max, means, variances, correlations... and in the frequency domain:
largest, mean, energy per frequency band... The next step is to try to obtain
the same performances directly on the raw data by algorithms for functional
data such as 1D or 2D convolutional neural networks (High Dimensional and
Deep Learning course).

MNIST dataset

This famous data set is available on Yann le Cun website. It is composed of
a learning set with 60.000 handwritten digits, 28× 28 = 784 pixels and a test
set with 10.000 images. The images are labelled, this is therefore a supervised
classification problem with 10 classes: 0, 1, . . . , 9. Buy transforming these
images into vectors, we can apply classical methods such as k-nn, Random
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Forests, neural networks... More appropriate algorithms, acting directly on
images such as convolutional neural networks will be studied next year.

Figure 1.3: MNIST some examples of handwritten digits

3 Introduction to supervised learning
In the framework of Supervised learning, we have a Learning sample

composed with observation data of the type input/output:

dn1 = {(x1, y1), . . . , (xn, yn)}

where, for i = 1 . . . n, xi = (x1
i , . . . , x

p
i ) ∈ X is a set of p explanatory

variables and yi ∈ Y is a response variable.
In this course, we consider supervised learning for real regression (Y ⊂ R)
or for classification (Y finite). The explanatory variables x1, . . . xp can be
qualitatives or quantitatives.

Objectives: From the learning sample, we want to

• Estimate the link between the input vector x (explanary variables) and
the output y (variable to explain):

y = f(x1, . . . ,xp).

• Predict the output y associated to a new entry x.

• Select the important explanatory variables among x1, . . . , xp.

We consider supervised regression or classification problems. We have a
training data set with n observation points (or objects)Xi and their associated
output Yi (real value in regression, class or label in classification).
dn corresponds to the observation of a random n-sample Dn =
{(X1, Y1), . . . , (Xn, Yn)} with joint unknown distribution P on X × Y .

A prediction rule is a measurable function f̂ : X → Y that associates
the output f̂(x) to the input x ∈ X .
In order to quantify the quality of the prevision, we introduce a loss function.

DEFINITION 1. — A measurable function ` : Y × Y → R+ is a loss function
if `(y, y) = 0 and `(y, y′) > 0 for y 6= y′.

In real regression, it is natural to consider Lp (p ≥ 1) losses

l(y, y′) = |y − y′|p.

If p = 2, the L2 loss is called "quadratic loss".
In classification, one can consider the consider the 0-1 loss defined, for all
y, y′ ∈ Y by

l(y, y′) = 1y 6=y′ .

Since the 0-1 loss is not smooth, it may be useful to consider other losses that
we will see in the classification courses.

The goal is to minimize the expectation of this loss function, leading to the
notion of risk:

DEFINITION 2. — Let f be a prediction rule defined from the learning sample
Dn. Given a loss function `, the risk - or generalization error - of the

http://wikistat.fr
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prediction rule f is defined by

RP (f) = E(X,Y )∼P [l(Y, f(X))],

where, in the above expression, (X, Y ) is independent from the learning sam-
pleDn.

An accurate evaluation of the generalization error has two objectives:

• Model selection: selecting, among a collection of models (or predic-
tion rules), the one with the smallest risk, realizing the best bias/variance
trade-off.

• Model assessment: once the final model has been chosen, evaluating its
generalization error on a new data set.

In practice, we have a training sample Dn = {(X1, Y1), . . . , (Xn, Yn)}
with unknown joint distribution P , from which we construct a regression or
classification rule. The aim is to find a "good" classification rule, in the sense
that its risk is as small as possible. In order to evaluate a prediction rule, we
have to estimate its risk.
A first natural idea to estimate the risk RP (f) = E(X,Y )∼P [l(Y, f(X))] is to
consider its empirical estimator, called empirical risk, or training error:

Rn(f) =
1

n

n∑
i=1

l(Yi, f(Xi)).

This is not a good idea: this estimator is optimistic and will under estimate the
risk (or generalisation error) as illustrated in the following binary classification
example, where three classification rules are compared.

Supervised binary classification: Complexity of the models.

The generalization performance of a learning procedure is related to its
prediction capacity on a new data set, independent of the learning sample that
was used to build the learning algorithm.

If we have enough data, the recommended approach is to divide randomly
the dataset in two parts: the train sample and the test sample, the train sample
being itself divided into a learning sample and a validation sample.

• The learning sample is used to train the models (generally by minimizing
the training error).

• The validation sample is used for model selection: we estimate the gen-
eralization error of each model with the validation sample and we select
the model with the smallest generalization error.

• The test sample is used for model assessment, to evaluate the risk of the
final selected model.

http://wikistat.fr
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It is generally recommended to take 50% of the data for the learning sample,
25% of the data for the validation sample and 25% of the data for the test
sample.

Splitting the data set is not always a good solution, especially if its size is
quite small. We will see in Chapter 2 several ways to estimate the generaliza-
tion error.

4 Strategy for statistical learning

4.1 The steps of a statistical analysis

In a real situation, the initial preparation of the data (data munging: extrac-
tion, cleaning, verification, possible allocation of missing data, transformation
...) is the most thankless phase, the one that requires the most time, human
resources and various skills: informatics, statistics and knowledge of the field
of the data. This stage does not require major theoretical developments but
rather a lot of common sense, experience and a good knowledge of the data.
Once successfully completed, the modeling or learning phase can begin.

Systematically and also very schematically, the analysis, also called the
Data science follows the steps described below for most fields of application.

1. Data extraction with or without sampling applied to structured databases
(SQL) or not (NoSQL)

2. Visualization, exploration of the data for the detection of atypical values,
errors or anomalies; study of distributions and correlation structures and
search for transformations of variables, construction of new variables and
/ or representation in adapted bases (Fourier, spline, wavelets ...).

3. Taking into account missing data, by simple deletion or by imputation.

4. Random partition of the sample into a train set and a test set according
to its size and choice of a loss function that will be used to estimate the
prediction error.

5. The train set is separated into a learning sample and a validation sam-
ple. For each method considered: generalized linear model (Gaussian, bi-
nomial or Poisson), parametric (linear or quadratic) or nonparametric (k
nearest neighbors), discrimination, neural network (perceptron), binary
decision tree, support vectors machine, aggregation (bagging, boosting,
random forest. . . )

• Estimate the model with the learning set for given values of a pa-
rameter of complexity: number of variables, neighbors, leaves, neu-
rons, penalization or regularization . . .

• optimization of this parameter (or these parameters) by minimizing
the empirical loss on the validation set, or by cross-validation on
the train set or the training error plus a penalty term.

6. Comparison of the previous optimal models (one per method) by estimat-
ing the prediction error on the test set.

7. Possible iteration of the previous approach or Monte Carlo cross-
validation: if the test sample at step 4 is too small, the prediction error
obtained at step 6 can be very dependent on this test sample. The Monte
Carlo cross-validation approach consists in successive random partitions
of the sample (train and test) to study the distribution of the test error
for each model or at least take the mean of the prediction errors obtained
from several Monte-Carlo iterations to ensure the robustness of the final
selected model.

8. Choice of the "best" method according to its prediction error, its robust-
ness but also its interpretability if necessary.

http://wikistat.fr
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9. Re-estimation of the selected model on all the data.

10. Industrialization: implementation of the model on the complete data base.

The end of this process can be modified by building a combination of the
different methods rather than selecting the best one. This is often the case
with winning "gas factory" solutions in Kaggle competitions. This has also
been theorized in two approaches leading to a collaboration between models:
COBRA from Biau et al. (2016) [6] and SuperLearner from van der Laan et
al. (2007) [37].

4.2 The methods or algorithms

We will see during this course the most widespread learning methods.

• In chapter 2, we will see how to estimate the prediction error of an algo-
rithm. This is a crucial step to choose the "best" prediction rule, among a
collection, and to evaluate the performances of the selected procedure.

• In chapter 3, make some reminders on linear models and logistic regres-
sion. In chapter 4, we introduce model selection for linear models via
penalized criterion: Mallows CP, BIC, Ridge, Lasso. . .

• Linear methods for classification will be the subject of Chapter 5, where
we will study the linear (and quadratic) discriminant analysis and the
Linear Support Vector Machine (SVM). This chapter will be followed in
Chapter 6, by the introduction of classification and regression algorithms
based on kernel methods: Support Vector Machine (SVM) and Support
Vector Regression, particularly adapted to analyse various kinds of data.

• We will then study Classification And Regression Trees (CART algo-
rithm) in Chapter 7, and the aggregating methods and the Random Forests
in Chapter 8.

• Neural networks will be introduced in Chapter 9. We will focus on mul-
tilayer perceptron, backpropagation algorithms, optimization algorithms,
and provide an introduction to deep learning to will be completed next
year by the study of the Convolutional Neural Networks.

• Finally, we will approach ethical aspects of statistical decisions and legal
and societal impacts of AI.

http://wikistat.fr
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Chapter 2

Risk estimation and Model selection

1 Introduction

1.1 Objectives

The performance of a model or algorithm is evaluated by a risk or general-
ization error. The measurement of this performance is very important since,
on the one hand, it allows to operate a model selection in a family of models
associated with the learning method we used and, on the other hand, it guides
the choice of the best method by comparing each of the optimized models at
the previous step. Finally, it provides a measure of the quality or even of the
confidence that we can give to the prediction with the selected model.

Once the notion of statistical model or prediction rule is specified, the risk
is defined from an associated loss function. In practice, this risk needs to be
estimated and different strategies are proposed.

The main issue is to construct an unbiased estimator of this risk. The empir-
ical risk (based on the training sample), also called the training error is biased
by optimism, it underestimates the risk. If we compute an empirical estimator

of the risk on a test sample (independent of the training sample), measuring the
generalization capacity of the algorithm, we generally obtain higher values. If
these new data are representative of the whole distribution of the data, we ob-
tain an unbiased estimator of the risk. Three strategies are described to obtain
unbiased estimates of risk:

1. a penalisation of the empirical risk

2. a split of the sample: train set and test set. The train set is itself decom-
posed into a leaning set to estimate the models for a given algorithm and
a validation set to estimate the generalization error of each model in order
to choose the best one, the test set is used to estimate the risk of each
optimized model.

3. by simulation: cross validation, bootstrap.

The choice depends on several factors including the desired objective, the size
of the initial sample, the complexity of the models, the computational com-
plexity of the algorithms.

15
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2 Risk and model selection

2.1 Loss function and risk

We consider supervised regression or classification problems. We have a
training data set with n observation points (or objects)Xi and their associated
output Yi (real value in regression, class or label in classification).
dn corresponds to the observation of the random n-sample Dn =
{(X1, Y1), . . . , (Xn, Yn)} with unknown joint distribution P on X × Y .

A prediction rule is a measurable function f̂ : X → Y that associates
the output f̂(x) to the input x ∈ X . It depends onDn and is thus random.
In order to quantify the quality of the prevision, we introduce a loss function.

DEFINITION 3. — A measurable function ` : Y × Y → R+ is a loss function
if `(y, y) = 0 and `(y, y′) > 0 for y 6= y′.

In real regression it is natural to consider Lp (p ≥ 1) losses

`(y, y′) = |y − y′|p.

If p = 2, the L2 loss is called "quadratic loss".
In classification, one can consider the 0-1 loss defined, for all y, y′ ∈ Y by

`(y, y′) = 1y 6=y′ .

Since the 0-1 loss is not smooth, it may be useful to consider other losses.

Assuming that Y ∈ {1, 2, . . . ,K}, rather than providing a class, many clas-
sification algorithms provide estimation of the probability that the output Y
belongs to each class, given the inputX = x, that is

f̂k(x) = P̂ (Y = k/X = x),∀k = 1, . . . ,K.

Then, the prediction rule generally assigns to the input x the class that maxi-
mizes the estimated probability that is

f̂(x) = argmaxk∈{1,2,...,K}f̂k(x).

In this setting, a loss function often used is the so-called cross-entropy (or
negative log-likelihood). Minimizing this loss function is equivalent to maxi-
mizing the log-likelihood. It is defined as:

`(Y, f̂(X)) = −
K∑
k=1

1Y=k log(f̂k(X)).

In all cases, the goal is to minimize the expectation of the loss function,
leading to the notion of risk.

DEFINITION 4. — Let f be a prediction rule build on the learning sampleDn.
Given a loss function `, the risk - or generalisation error - of f is defined by

RP (f) = E(X,Y )∼P [`(Y, f(X))],

where, in the above expression (X, Y ) is independent from the learning sam-
pleDn.

Let F be the set of possible prediction rules. f∗ is called an optimal rule if

RP (f∗) = inf
f∈F

RP (f).

A natural question then arises: is it possible to build optimal rules ?

Case of real regression with L2 loss:

Y = R, `(y, y′) = (y − y′)2.

http://wikistat.fr
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DEFINITION 5. — We call regression function the function η∗ : X → Y
defined by

η∗(x) = E[Y |X = x].

THEOREM 1. — The regression function η∗ : x 7→ E[Y |X = x] satisfies:

RP (η∗) = inf
f∈F

RP (f).

Case of real regression with L1 loss :

Y = R, `(y, y′) = |y − y′|.

THEOREM 2. — The regression rule defined by µ∗(x) = median[Y |X = x]
verifies:

RP (µ∗) = inf
f∈F

RP (f).

Case of classification with 0− 1 loss :

`(y, y′) = 1y 6=y′ .

DEFINITION 6. — We call Bayes rule any function f∗ of F such that for all
x ∈ X ,

P(Y = f∗(x)|X = x) = max
y∈Y

P(Y = y|X = x).

THEOREM 3. — If f∗ is a Bayes rule, then RP (f∗) = inff∈F RP (f).

The definition of the optimal rules described above depends on the knowl-
edge of the distribution P of (X, Y ). In practice, we have a training sample
Dn = {(X1, Y1), . . . , (Xn, Yn)} with joint unknown distribution P , from
which we construct a regression or classification rule. The aim is to find a
"good" classification rule, in the sense that its risk is as small as possible.

2.2 Minimisation of the empirical risk

In order to evaluate a prediction rule, we have to estimate its risk.
A first natural idea to estimate the risk RP (f) = E(X,Y )∼P [l(Y, f(X))] is to
consider its empirical estimator, called empirical risk, or training error:

Rn(f) =
1

n

n∑
i=1

`(Yi, f(Xi)).

Nevertheless, this is not a good idea: this estimator is optimistic and will un-
der estimate the risk (or generalisation error) as illustrated in the polynomial
regression example presented in Figure 2.1.

The empirical risk (also called training error) is not a good estimate of the
generalization error: it decreases as the complexity of the model increases.
Hence minimizing the training error leads to select the most complex model,
this leads to overfitting. Figure 2.2 illustrates the optimism of the training
error, that underestimates the generalization error, which is estimated here on
a test sample.

A first way to have a good criterion for model selection is to minimize the
empirical risk plus a penalty term, the penalty term will penalize too complex
model to prevent overfitting.

http://wikistat.fr


18

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2

x

y

Régression linéaire simple

●

●

●

●

●

●

● ●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2

x

y

Polynôme de degré 2

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

x

y

Polynôme de degré 5

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

x

y

Polynôme de degré 10

Figure 2.1: Polynomial regression: adjusted model are polynomials with re-
spective degrees 1: R2 = 0.03, 2: R2 = 0.73, 5: R2 = 0.874 and 10: R2 = 1.
The empirical risk is equal to 0 for the polynomial of degree n− 1 (which has
n coefficients) and passes through all the training points. Selecting a model
which minimizes the empirical risk leads to overfitting.

2.3 Minimisation of the penalized empirical risk

Decomposition approximation/estimation (or bias/variance)

Let f∗ such that RP (f∗) = inff RP (f), f∗ is an optimal rule, also called
an "oracle". From the training sample, the objective is to determine a model F

Figure 2.2: Behavior of training error (in blue) and test error (in red) as the
complexity of the model increases. Source: "The elements of Statistical Learn-
ing", T. Hastie, R. Tibshirani, J. Friedman.

for which the risk of the estimator f̂F is close to the one of the oracle

RP (f̂F )−RP (f∗) ={
RP (f̂F )− inf

f∈F
RP (f)︸ ︷︷ ︸

}
+
{

inf
f∈F

RP (f)−RP (f∗)︸ ︷︷ ︸
}

Estimation error Approximation error
(Variance) (Bias)
↗ ↘ (dimension of F )
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These two terms are of different natures. To evaluate them, we will use tools
respectively from statistics and approximation theory.

The selection of a model F̂ in a collection of models C for which the risk of
the estimator f̂F̂ (Dn) is close to the one of the oracle will be obtained by the
minimization of a penalized criterion of the type:

F̂ = argminF∈C{Rn(f̂F ) + pen(F )}.

In the above formula, a penalty is added to the empirical risk. The role of the
penalty is to penalize models with "large" dimension, in order to avoid over-
fitting. The optimal choice of the penalty (according to the statistical models
considered) is a very active research topic in statistics.

The more complex a model, the more flexible it is and can adjust to the
observed data and therefore the smaller the bias. On the other hand, the vari-
ance increases with the number of parameters to be estimated and therefore
with this complexity. The objective is to minimize the quadratic risk, which
is a sum of the variance and the squared bias term. Hence, we are looking for
the best compromise between the bias and the variance term: it is sometimes
preferable to accept to bias the estimate as for example in ridge regression to
reduce its variance.

Penalized criterion: Mallow’s CP

The Mallow’s Cp (1973)[26] was historically the first penalized criterion,
introduced for Gaussian linear model. It is based on the penalization of the
least square criterion by a penalty which is proportional to the dimension of
the model. It is based on the decomposition

RP (f̂) = Rn(f̂) + Optim

which corresponds to the empirical risk plus a estimation of the bias corre-
sponding to the optimism of the empirical risk. This optimism has to be esti-
mated to obtain a better estimation of the risk. This criterion is expressed as

follows

Cp =
1

n

n∑
i=1

(Yi − Ŷi)2 + 2
p

n
σ̂2

where p is the number of parameter of the model, n the number of observations
and σ̂2 is an estimation of the variance of the error.

In framework of a the linear model Y = Xβ + ε, for which this criterion
was historically introduced, the expression becomes

Cp =
1

n

n∑
i=1

(Yi − (Xβ̂)i)
2 + 2

p

n
σ̂2,

where β ∈ Rp and σ2 is an estimator of the variance of the variables εi’s
obtained by a model with large dimension (small bias). This last point is crucial
for the quality of the criterion: it amounts to assume that the full model (with
all the variables) is the "true" model, or at least a model with a small bias to
allow a good estimation of σ2.

The Figure 2.3 shows the behavior of the Mallow’s Cp in the pedagogical
example of polynomial regression. This criterions selects a polynomial with
degree 3.

AIC, AICc, BIC

While Mallow’s CP is associated to the quadratic loss, Aikaike’s Informa-
tion Criterion (1974)[2] (AIC) is, more generally, related to the log-likelihood.
It corresponds to the opposite of the empirical log-likelihood L plus a penalty
term proportional to the dimension of the model:

AIC = −2L+ 2
p

n
.

The quantity−2L is also called deviance. One easily verifies that, in the Gaus-
sian model with variance assumed to be known, the deviance and least square
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Figure 2.3: Polynomial regression: Mallow’s CP against the degree of the
polynomial: a polynomial with degree 3 is selected

criterion coïncide. In this case, AIC is equivalent to CP . A refined version of
the AIC criterion, called corrected AIC is defined as

AICc = −2L+
n+ p

n− p− 2
.

It is recommended for small samples sizes and asymptotically equivalent to
AIC for large values of n.

Another criterion called BIC, (Bayesian Information Criterion) (Schwartz;
1978) [33] derives from Bayesian arguments. It is also based on the penaliza-
tion of the negative log likelihood, but with a higher penalty than AIC:

BIC = −2L+ log(n)
p

n
.

Since the factor 2 in the AIC criterion is here replaced by log(n), as soon as

n > e2 ≈ 7.4, BIC penalizes more heavily complex models. The consequence
is that BIC will generally select simpler model than AIC.

Whatever the chosen criterion, the strategy is to select a model minimizing
this criterion, among a collection of possible models.

3 Estimation of the generalization error
Instead of minimizing a penalized criterion, other strategies for model selec-

tion consists in estimating the generalization error, either with data that where
not used during the training phase, or by Bootstrap’s methods.

The generalization performance of a learning procedure is related to its
prediction capacity on a new data set, independent of the learning sample
that was used to build the learning algorithm. Evaluating this performance is
crucial to choose a learning method or model among several possible ones. It
is also important to measure the quality of the ultimately chosen procedure. It
is therefore crucial to estimate the generalization error of a learning algorithm
f̂ : when the model becomes more and more complex, it is able to capture more
complex underlying structures in the "true " model: the bias decreases, but at
the same time, the estimation error increases, due to the increase of the vari-
ance. The "optimal" model is the one realizing the best compromise between
the bias term and the variance term to give the smallest generalization error.

An accurate evaluation of the generalization error has two objectives:

• Model selection: selecting, among a collection of models (or predic-
tion rules), the one with the smallest risk, realizing the best bias/variance
trade-off.

• Model assessment: Once the final model has been chosen, evaluating its
generalization error on a new data set.

We concentrate here on the first objective, assuming that we have a test set for
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model assessment.

3.1 Estimation by cross-validation

As seen previously, it is crucial to evaluate the performances of an algorithm
on data that were not use during the learning step. For this purpose, cross-
validation methods are widely used. The main variations of this method are
presented here.

Holdout cross-validation

If we have enough data in the training set, the recommended approach is to
divide randomly the training set into a learning sample and a validation sample.

• The learning sample denotedDn1
1 is used to train the models (generally

by minimizing the training error).

• The validation sample denoted Dn2
2 is used to estimate the generaliza-

tion error of each model by the quantity

1

n2

∑
(Xi,Yi)∈D

n2
2

`(Yi, f(Xi)).

It is generally recommended to take 75% of the training data for the learning
sample, 25% of the data for the validation sample.

Often, taking only 75% of the data set to train the models may lead to bad
performances, especially if we do not have too much data. Moreover, if the
size of the validation set is small, the estimation of the generalization error
will have a high variance and be highly dependent on this validation set. To
prevent this problem, K fold cross-validation is widely used.

K-fold cross-validation

K-fold cross-validation is a widely used method to estimate the general-
ization error without splitting the training set as done in the previous section.
Its different steps are the following:

• We split randomly the training data into K subsamples, with (almost) the
same size (K = 10 generally).

• Each of the K folds will be successively used as a validation sample.

• When the fold k is the validation sample, we train a model with the K −
1 other folds, and we evaluate the loss function of this model on each
element the fold k.

• This is done for k = 1, . . . ,K, and we compute a global estimation of
the generalization error.

More precisely, assume that we have a n-sample (Xi, Yi)1≤i≤n and a collec-
tion of models (f̂m,m ∈M). We split the data into K folds.

• Let for all i ∈ {1, . . . , n}, τ(i) ∈ {1, . . . ,K} denote the number of the
fold containing the observation (Xi, Yi).

• Let f̂ (−k)
m denote the model m trained with all the data, except the fold k.

• The cross-validation estimate of the generalization error of the model m
is

CV (m) =
1

n

n∑
i=1

`(Yi, f̂
(−τ(i))
m (Xi)).

http://wikistat.fr


22

• CV (m) estimates the generalization error of the model m and we select
the model which minimizes CV (m).

Note that, if K is small (for example K = 2), each estimator f̂ (−k)
m is trained

with around n/2 observations. Hence, these estimators are less accurate than
an estimator built with n observations, leading to a bias in the estimation of the
generalization error by cross-validation. When the number of foldsK = n, the
method is called leave-one-out cross-validation. This method has a low bias
to estimate the generalization error, but a high variance since all the estimators
f̂

(−i)
m are highly correlated. The computation time is also high for the leave-

one-out method. This is why, in practice an intermediate choice such as K =
10 is often recommended. This is generally the default value in softwares.

Monte Carlo Cross-Validation

This method consists in iterating several times the random subdivision of
the initial sample into a learning set and a validation set. The most simple way
to apply Monte Carlo Cross-Validation is to iterate the holdout procedure. The
advantage of this method is to provide an estimation of the whole distribution
of the risk, for all considered methods. The disadvantage is the computational
time.

The proportion between samples: learning and test, depends on the initial
sample size in order to preserve a significant part to the learning sample. The
number B of iterations depends on the computation ressources. The smaller
the initial sample size is, the less “independent” are the error evaluations and
therefore the reduction in variance obtained at the end by the mean.

This strategy can also be coupled with K-fold cross-validation as described
in the Algorithm 2. An example is presented in Figure 2.4.

Algorithm 1 Monte Carlo Cross-Validation
for k=1 à B do

Split randomly the sample into two parts: training set and test set with a
prescribed proportion

for models in list of models do
Estimate the parameters of the current model with the training set.
Compute the test error by the empirical risk on the test set.

end for
end for
For each model, compute the mean of theB test errors and draw the boxplots
of the distributions of these errors.

Algorithm 2 Monte Carlo K-fold Cross-Validation
for k=1 to B do

Split randomly the sample into two parts: training set and test set with a
prescribed proportion.

for method in list of methods do
Optimise the complexity (or tuning parameters) of the method by

K-fold cross-validation.
Estimate the parameters of the optimized model for this method with

the training set.
Compute the test error by the empirical risk on the test set for the

optimized model of the current method.
end for

end for
For each method, compute the mean of the B test errors and draw the box-
plots of the distributions of these errors.
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Figure 2.4: Boxplot of the test errors for various methods optimized by Monte
Carlo K-fold Cross-Validation on Ozone data set

3.2 Estimation by Bootstrap

Let us first describe the Bootstrap, before showing how it can be used to
estimate the extra-sample prediction error. Suppose we have a training data set
Z = {z1, . . . zn}, with zi = (xi, yi) and a model to be fitted on these data. We
denote by f̂ the model fitted with the sample Z. The principle of the bootstrap
is to randomly draw datasets of size n with replacement from the original sam-
ple Z. Conditionally on Z, all these draws are independent. Figures 2.6 and
2.7 show two bootstrap samples from the original dataset presented in Figure
2.5.

We draw B bootstrap samples (for example B = 500) that we denote
(Z∗b, b = 1, . . . , B). We fit the model with each of these bootstrap sam-
ples. We denote f̂∗b the model fitted with the sample Z∗b. How can we use all
these predictors to estimate the prediction error of f̂ ? A first idea would be to
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Figure 2.5: Original data

consider the following estimator:

Êrrboot =
1

B

1

n

B∑
b=1

n∑
i=1

`(yi, f̂
∗b(xi)),

measuring the mean, over the B bootstrap predictors, of the error on the train-
ing sample Z. However, we easily see that this is not a good estimate of the
generalization error since the bootstrap samples and the original sample have
many observations in common. Hence, this estimator will be too optimistic: it
will underestimate the generalization error. A better idea is to exploit the fact
that each bootstrap sample does not contain all the observations of the original
sample. Namely, we have

P (Observation zi /∈ bootstrap sample b) =

(
1− 1

n

)n
≈ 1

e
= 0.368.
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Figure 2.6: Bootstrap sample no1 (in blue), and corresp. prediction with tree.
The point size is proportional to the number of replicates.
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Figure 2.7: Bootstrap sample no2 (in violet), and corresp. prediction with tree.
The point size is proportional to the number of replicates.

Mimicking the idea of cross-validation, we denote by C−i the set of indices b
in {1, . . . B} such that Z∗b does not contain the observation zi, and we intro-
duce the estimator

Êrroob =
1

n

n∑
i=1

1

|C−i|
∑
b∈C−i

`(yi, f̂
∗b(xi)).

This estimator is called the out-of-bag estimator. If B is large enough, then for
all i , |C−i| 6= 0. Otherwise, the observation i for which |C−i| = 0 can be
removed from the above formula. This estimator uses extra sample observation
to estimate the error of each predictor f̂∗b, avoiding the overfitting problem
encountered by Êrrboot. Nevertheless, in expectation, each bootstrap sample
contains 0.632n observations, which is less that 2n/3 and we would like to
estimate the generalization error of a predictor f̂ built with n observations.
Each bootstrap predictors f̂∗b will be less accurate than f̂ since it is built with a
smaller sample size. This induces a bias in the estimation of the generalization
error of f̂ by Êrroob. To correct this bias, the ".632 bootstrap estimator " has
been introduced by Efron and Tibshirani (1997) [14]. It is defined by

Êrr
(.632)

= .368 ¯err + .632Êrroob,

where ¯err is the training error of f̂ . This estimator is problematic in overfitting
situation, and a correction has been proposed in this case. It is called the
.632+bootstrap (see Hastie et al. [19] p. 220 for more details).

Remarks.

1. All the estimators proposed to estimate the generalization error are
asymptotically equivalent, and it is not possible to know which method
will be more precise for a fixed sample size n.

2. The boostrap is time consuming and more complicated. It is less used
in practice. Nevertheless, it plays a central role in recent methods of
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aggregation, involving the bagging (for bootstrap aggregating) such as
random forests as we will see in Chapter 8 .

3. In conclusion, the estimation of a generalization error is delicate, and it is
recommended to consider the same estimator to compare two prediction
methods and to be very careful, without theoretical justification, to use
one of these estimation to certify an algorithm. For this last purpose, the
use of a test sample, with sufficiently large size, would be recommended.

We will end this chapter by presenting the ROC curves, that are used to com-
pare the relative performances of several binary classification methods.

4 Discrimination and ROC curves
For a two class classification problem: Y = {0, 1}, prediction methods

often provide an estimator of P(Y = 1|X = x). Then, a natural prediction is
to affect the observation x to the class 1 if

P̂(Y = 1|X = x) >
1

2
.

This gives a symmetric role to classes 0 and 1, which is sometimes not desir-
able (health context, for instance). The idea is to parameterize the decision by
a new threshold parameter s:

P̂(Y = 1|X = x) > s ⇔ x belongs to class 1

s should be chosen according to policy decision, typically a tradeoff between
the rate of true positive and false positive.

Confusion matrix

Given a threshold s, we use the prediction rule: if P̂(Yi = 1|X = xi) > s,
then Ŷi = 1, else Ŷi = 0.

The confusion matrix crosses the modalities of the predicted variable for a
threshold value s with those of the observed variable in a contingency table:

Prediction Observation Total
Yi = 1 Yi = 0

ŷi = 1 n11(s) n10(s) n1+(s)
ŷi = 0 n01(s) n00(s) n0+(s)
Total n+1 n+0 n

In classic situations of medical diagnosis, marketing, pattern recognition,
signal detection ... the following main quantities are considered:

• Number of positive conditions P = n+1

• Number of negative conditions N = n0+

• True positives TP = n11(s) (Ŷi = 1 et Yi = 1)

• True negatives TN = n00(s) (Ŷi = 0 et Yi = 0)

• False negatives FN = n01(s) (Ŷi = 0 et Yi = 1)

• False positives FP = n10(s) (Ŷi = 1 et Yi = 0)

• Accuracy and error rate: ACC = TN+TP
N+P = 1− FN+FP

N+P

• True positive rate or sensitivity, recall TPR = TP
P = 1− FNR

• True negative rate or specificity, selectivity TNR = TN
N = 1− FPR

• Precision or positive predictive value PPV = TP
TP+FP = 1− FDR

• False positive rate FPR = FP
N = 1− TNR
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• False negative rate FNR = FN
P = 1− TPR

• False discovery rate FDR = FP
FN+TN ,

• F1 score or harmonic mean of precision and sensitivity

F1 = 2× PPV × TPR
PPV + TPR

=
2× TP

2× TP + FP + FN
.

• Fβ(β ∈ R+) score,

Fβ = (1 + β2)
PPV × TPR
β2PPV + TPR

.

The notions of specificity and sensitivity come from signal theory; their val-
ues depend directly on the threshold s. By increasing s, the sensitivity de-
creases while the specificity increases. A good model combines high sensitiv-
ity and high specificity for signal detection.

The last criterion Fβ makes it possible to weight between specificity and
sensitivity by taking into account the importance or the cost of false positives.
The smaller β, the more expensive false positives are compared to false
negatives.

By analogy with the first and second kind errors for testing procedures, we
consider the two following quantities that will be used to draw the ROC curve.

• The False Positive Rate:

FPR(s) =
]{i, Ŷi = 1, Yi = 0}

]{i, Yi = 0}
.

• The True Positive Rate:

TPR(s) =
]{i, Ŷi = 1, Yi = 1}

]{i, Yi = 1}
.

The ROC curve plots TPR(s) versus FPR(s) for all values of s ∈ [0, 1].
We illustrate the construction of a ROC curve for a naïf example of logistic
regression in dimension 1 in Figure 2.8.

By making the threshold s vary in [0, 1], we obtain the complete ROC curve
presented in Figure 2.9

How to use ROC curve to select classifiers ? The "ideal" Roc curve corre-
sponds to FPR=0 and TPR =1 (no error of classification).
We would like to use ROC curve to compare several classification rules, but
generally, the curves will intersect as shown in Figure 2.9 The AUC: Area
Under the Curve is a criterion which is often used to compare several classi-
fication rules.
In order to compare several methods with various complexity, the ROC curves
should be estimated on a test sample, they are indeed optimistic on the learning
sample.
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Figure 2.8: Points in the ROC curve obtained for s = 0.5 and s = 0.2
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Figure 2.10: ROC curves for several classification rules on bank data
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Chapter 3

Linear models

1 Introduction
The linear regression model is the simplest model to study multidimensional

data. It assumes that the regression function E(Y/X) is linear in the input
(or explanatory) variables X1, . . . ,Xp. Although very simple, these models
are still widely used, because they are very interpretable and often provide
an adequate description on the influence of the input variables to the output.
For small sample sizes n (with respect to the number of variables p), or when
the signal to noise ratio is high, they often outperform more complex models.
Furthermore, it is possible to use linear models with nonlinear transformations
of the variables, which considerably enlarges the scope of these models. In
high dimensional framework, when p is possibly larger than n, model selection
for linear models has been this past twenty years and is still a very active field
of research in statistics. This will be the topic of Chapter 4. The aim of this
chapter is to make some reminders on linear model for regression and logistic
regression for classification.

2 The Linear model

2.1 The model

We have a quantitative variable Y to explain (or response variable) which is
related with p variables X1, . . . ,Xp called explanatory variables (or regres-
sors, or input variables).

The data are obtained from the observation of a n sample of R(p+1) vectors :

(x1
i , . . . , x

j
i , . . . , x

p
i , yi) i = 1, . . . , n.

We assume in a first time that n > p + 1. In the linear model, the re-
gression function E(Y/X) is linear in the input (or explanatory) variables
X1, . . . ,Xp. We assume for the sake of simplicity that the regressors are
deterministic. In this case, this means that E(Y) is linear in the explanatory
variables {1,X1, . . . ,Xp} where 1 denotes the Rn-vector with all compo-
nents equal to 1. The linear model is defined by:

Yi = β0 + β1X
1
i + β2X

2
i + · · ·+ βpX

p
i + εi i = 1, 2, . . . , n
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with the following assumptions :

1. The random variables εi are independent and identically distributed
(i.i.d.) ; E(εi) = 0, V ar(εi) = σ2.

2. The regressors Xj are assumed to be deterministic or the errors ε are
independent of (X1, . . . ,Xp). In this case, we have :

E(Y|X1, . . . ,Xp) = β0+β1X
1+β2X

2+· · ·+βpXp and V ar(Y|X1, . . . ,Xp) = σ2.

3. The unknown parameters β0, . . . , βp are supposed to be constant.

4. It is sometimes assumed that the errors are Gaussian: ε = [ε1 · · · εn]′ ∼
Nn(0, σ2In). The variables εi are then i.i.d. N (0, σ2).

The explanatory variables are given in the matrix X(n×(p+1)) with general
term Xj

i , the first column contains the vector 1 (Xi
0 = 1). The regressors Xj

can be quantitative variables, nonlinear transformation of quantitative variables
(such as log, exp, square ..), interaction between variablesXj = Xk.X l, they
can also correspond to qualitative variables: in this case the variables Xj are
indicator variables coding the different levels of a factor (we remind that we
need identifiability conditions in this case).
The response variable is given in the vector Y with general term Yi. We
set β = [β0β1 · · ·βp]′, which leads to the matricial formulation of the linear
model:

Y = Xβ + ε.

As a practical example, we consider the Ozone data set.
The data frame has 1041 observations of the following components:

JOUR type of the day ; public holiday(1) or not (0)
O3obs Ozone concentration observed the next day at 17h.,

generally the maximum of the day
MOCAGE Prediction of this pollution obtained by a deterministic model

of fluid mechanics
TEMPE Temperature forecast by MétéoFrance for the next day 17h
RMH2O Moisture ratio
NO2 Nitrogen dioxide concentration
NO Concentration of nitric oxide
STATION Location of the observation: Aix-en-Provence, Rambouillet, Munchhausen,

Cadarache and Plan de Cuques
VentMOD Wind force
VentANG Orientation of the wind.

We denote by Y the variable (O3obs) to explain. We set X1, . . .Xp for the
explanatory variables (MOCAGE , TEMPE, JOUR ..). The variables are
quantitative (MOCAGE , TEMPE , ...), or qualitative (JOUR, STATION).
We consider the linear model:

Yi = β0 + β1X
1
i + β2X

2
i + . . .+ βpX

p
i + εi, 1 ≤ i ≤ n,

For the qualitative variables, we consider indicator functions of the different
levels of the factor, and introduce some constraints for identifiability. By
default, in R, the smallest value of the factor are set in the reference.
This is an analysis of covariance model (mixing quantitative and qualitative
variables).

2.2 Estimation of the parameters

Least square estimators

The regressors Xj are observed, the unknown parameters of the model are
the vector β and σ2. β is estimated by minimizing the residuals sum of square
or equivalently, assuming that the errors are Gaussian, by maximisation of the
likelihood.
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We minimise with respect to the parameter β ∈ Rp+1 the criterion :

n∑
i=1

(Yi − β0 − β1X
1
i − · · · − βpX

p
i )2 = ‖Y −Xβ‖2

= (Y −Xβ)′(Y −Xβ)

= Y′Y − 2β′X′Y + β′X′Xβ.

Derivating the last equation, we obtain the “ normal equations” :

2(X′Y −X′Xβ) = 0

The solution is indeed a minimiser of the criterion since the Hessian 2X′X is
positive semi definite (the criterion is convex) .

We make the additional assumption that the matrix X′X is invertible, which
is equivalent to the fact that the matrix X has full rank (p + 1) and so that
there is no collinearity between the columns of X (the variables). Under this
assumption, the estimation of β is give by :

β̂ = (X′X)−1X′Y

and the predicted values of Y are :

Ŷ = Xβ̂ = X(X′X)
−1

X′Y = HY

where H = X(X′X)
−1

X′ is called the “hat matrix” ; which puts a "hat" on
Y. Geometrically, it corresponds to the matrix of orthogonal projection in Rn
onto the subspace Vect(X) generated by the columns of X.
Remark. — We have assumed that X′X is invertible, which means that the
columns of X are linearly independent. If it is not the case, this means that the
application β 7→ Xβ is not injective, hence the model is not identifiable and β
is not uniquely defined. Nevertheless, even in this case, the predicted values Ŷ

are still defined as the projection of Y onto the space generated by the columns
of X, even if there is not a unique β̂ such that Ŷ = Xβ̂. In practice, if X′X
is not invertible (which is necessarily the case in high dimension when the
number of variables p is larger than the number of observations n - since p
vectors of Rn are necessarily linearly dependent), we have to remove variables
from the model or to consider other approches to reduce the dimension ( Ridge,
Lasso, PLS ...) that we will developed in the next chapters.

We define the vector of residuals as:

e = Y − Ŷ = Y −Xβ̂ = (I−H)Y

This is the orthogonal projection of Y onto the subspace Vect(X)⊥ in Rn.
The variance σ2 is estimated by

σ̂2 =
‖e‖2

n− p− 1
=
‖Y −Xβ‖2

n− p− 1
.

Properties of the least square estimator

THEOREM 4. — Assuming that

Y = Xβ + ε

with ε ∼ Nn(0, σ2In), we obtain that β̂ is a Gaussian vector:

β̂ ∼ Np+1(β, σ2(X ′X)−1).

In particular, the components of β̂ are Gaussian variables:

β̂j ∼ N (βj , σ
2(X ′X)−1

j,j ).

σ̂2 ∼ σ2

n− (p+ 1)
χ2

(n−(p+1))

and is independent of β̂.
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Exercise. — Prove Theorem 4

β̂ is a linear estimator of β (it is a linear transformation of the observation
Y) and it is unbiased. One can wonder if it has some optimality property. This
is indeed the case: the next theorem, called the Gauss-Markov theorem, is very
famous in statistics. It asserts that the least square estimator β̂ has the smallest
variance among all linear unbiased estimator of β.

THEOREM 5. — Let A and B two matrices. We say that A � B if B −A is
positive semi-definite. Let β̃ a linear unbiased estimator of β, with variance-
covariance matrix Ṽ. Then, σ2(X′X)

−1 � Ṽ.

Exercise. — Prove the Gauss-Markov theorem.

Theorem 5 shows that the estimator β̂ is the best among all linear unbiased
estimator of β, nevertheless, in the next section, we will see that it can be
preferable to consider biased estimator, if they have a smaller variance than β̂,
to reduce the quadratic risk. This will be the case for the Ridge, Lasso, PCR,
or PLS regression.

Confidence intervals

One can easily deduce from Theorem 4 that

β̂j − βj√
σ̂2(X ′X)−1

i,i

∼ T(n−(p+1))

follows a Student distribution with n−(p+1) degrees of freedom. This allows
to build confidence intervals and tests for the parameters βj . The following
interval is a 0.95 confidence interval for βj :

[β̂j − tn−(p+1),0.975

√
σ̂2(X ′X)−1

j,j , β̂j + tn−(p+1),0.975

√
σ̂2(X ′X)−1

j,j ].

In order to test that the variable associated to the parameter βj has no influence
in the model, hence H0: βj = 0 contre H1: βj 6= 0, we reject the null
hypothesis at the level 5% if 0 does not belong to the previous confidence
interval.

Exercise. — Recover the construction of the confidence intervals.

Test of significance of a variable

We recall the linear model

Yi = β0 + β1X
1
i + β2X

2
i + · · ·+ βpX

p
i + εi i = 1, 2, . . . , n

We want to test if the variable Xj is significant in the model or not, which is
equivalent to test the nullity of the parameter βj .
We test H0: βj = 0 against H1: βj 6= 0.
Under the hypothesis H0,

Tj =
β̂j√

σ̂2(X ′X)−1
j,j

∼ T(n−(p+1)).

The p-value of the test is defined as

PH0(|Tj | > |Tj |obs) = P(|T(n−(p+1))| > |Tj |obs),

where |Tj |obs is the observed value for the variable |Tj | with our data. If the
p-value is very small, then it is unlikely that |Tj |obs is obtained from a Student
distribution with n − (p + 1) degrees of freedom, hence we will reject the
hypothesis H0, and conclude that the variable Xj is significant. We fix some
level α (generally 5%) for the test . If p-value < α, we reject the nullity of
βj and conclude that the variable Xj is significant in the model. One easily
prove that the probability to reject H0 when it is true (i.e. to conclude that the
variable Xj is significant when it is not) is less than the level α of the test.
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On the example of the Ozone data set, the software R gives the following
output, with the default constraints of R:

Coefficients Estimate Std. Error t value Pr(>|t|)
(Intercept) -33.43948 6.98313 -4.789 1.93e-06 ****
JOUR1 0.46159 1.88646 0.245 0.806747
MOCAGE 0.37509 0.03694 10.153 < 2e-16 ***
TEMPE 3.96507 0.22135 17.913 < 2e-16 ***
... ... ... ... ...

Residual standard error: 27.83 on 1028 degrees of freedom

2.3 Prediction

As mentioned above, the vector of predicted values is

Ŷ = Xβ̂ = X(X′X)
−1

X′Y = HY.

This corresponds to the predicted values at the observation points. Based on
the n previous observations, we may be interested with the prediction of the
response of the model for a new point: X0

′ = (1, X0
1, . . . , X0

p):

Y0 = β0 + β1X
1
0 + β2X

2
0 + . . .+ βpX

p
0 + ε0,

where ε0 ∼ N (0, σ2). The predicted value is

Ŷ0 = β̂0 + β̂1X0
1 + . . . β̂pX0

p = X0
′β̂.

We derive from Theorem 4 that

E(Ŷ0) = X0
′β = β0 + β1X

1
0 + β2X

2
0 + . . .+ βpX

p
0

and that Ŷ0 ∼ N (X0
′β, σ2X

′

0(X′X)−1X0). We can deduce a confidence
interval for the mean response X0

′β at the new observation point X0:[
X0
′β̂ − tn−(p+1),0.975σ̂

√
X
′
0(X′X)−1X0,

X0
′β̂ + tn−(p+1),0.975σ̂

√
X
′
0(X′X)−1X0

]
.

A prediction interval for the response Y0 at the new observation point X0 is:[
X0
′β̂ − tn−(p+1),0.975σ̂

√
1 + X

′
0(X′X)−1X0,

X0
′β̂ + tn−(p+1),0.975σ̂

√
1 + X

′
0(X′X)−1X0

]
.

Exercise. — Recover the construction of the prediction intervals. Hint: what
is the distribution of Ŷ0 − Y0 ?

On the example of the Ozone data, with the - simple linear regression model
with the single variable X= MOCAGE

Yi = β0 + β1Xi + εi, i = 1, . . . , n,

we obtain the following confidence and prediction intervals.

2.4 Fisher test of a submodel

Suppose that our data obey to a polynomial regression model of degree p
and we want to test the null hypothesis that our data obey to a polynomial
regression model of degree k < p , hence we want to test that the p − k last
coefficients of β are equal to 0. More generally, assume that our data obey to
the model, called Model (1):

Y = Xβ + ε.
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Figure 3.1: Simple linear regression model: confidence intervals for the mean
response (in grey) and prediction intervals (red dotted lines)

where β ∈ Rp and consider another model, called Model (0):

Y = X̃θ + ε.

where θ ∈ Rl with l < p.

DEFINITION 7. — We define

V = {Xβ,β ∈ Rp}

and
W = {X̃θ,θ ∈ Rl}.

We say that Model (0) is a submodel of Model (1) if W is a linear subspace of
V .

We want to test the hypothesis:
H0: "the vector Y of observations obeys to Model (0)” against the alternative
H1: “the vector Y of observations obeys to Model (1)”.
In the Model (0), the least square estimator of θ is:

θ̂ =


θ̂0

θ̂1

.

.

θ̂l

 = (X̃′X̃)−1X̃′Y.

The F -statistics is defined by:

F =
‖Xβ̂ − X̃θ̂‖2/(p− l)
‖Y −Xβ̂‖2/(n− p)

.
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An alternative way to write the F -statistics is:

F =
(SSR0 − SSR1)/(p− l)

SSR1/(n− p)
,

where SSR0 and SSR1 respectively denote the residuals sum of square under
Model (0) and Model (1).

Exercise. — Prove that, under the null hypothesis H0, the F -statistics is a
Fisher distribution with parameters (p− l, n− p).

The numerator of the F -statistics corresponds to
∥∥∥Ŷ0 − Ŷ1

∥∥∥2

, where Ŷ0

and Ŷ1 correspond respectively to the predicted values under the sub-model
and under the full model. This quantity is small under the null hypothesis,
when the sub-model is valid, and becomes larger under the alternative. Hence,
the null hypothesis is rejected for large values of F , namely, for a level-α test,
when

F > fp−l,n−p,1−α,

where fp,q,1−α is the (1−α) quantile of the Fisher distribution with parameters
(p, q). The statistical softwares provide the p− value of the test:

PH0
(F > Fobs)

where Fobs is the observed value for the F -statistics. The null hypothesis is
rejected at level α if the p− value is smaller than α.

2.5 Diagnosis on the residuals

As illustrated for Ozone data on Figure 3.2, the analysis and visualisation of
the residuals allow to verify some hypotheses:

• Homoscedasticity: the variance σ2 is assumed to be constant,
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Figure 3.2: Diagnosis on the residuals for Ozone data

• The linear model is valid: there is no tendancy in the residuals,

• Detection of possible outliers with the Cook’s distance

• Normality of the residuals (if this assumption was used to provide confi-
dence/prediction intervals or tests).

This is rather classical for linear regression, and we focus here on the detec-
tion of possible high collinearities between the regressors, since it has an im-
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pact on the variance of our estimators. Indeed, we have seen that the variance-
covariance matrix of β̂ is σ2(X′X)−1.

When the matrix X is ill-conditioned, which means that the determinant of
X′X is close to 0, we will have high variances for some components of β̂. It
is therefore important to detect and remedy these situations by removing some
variables of the model or introducing some constraints on the parameters to
reduce the variance of the estimators.

VIF

Most statistical softwares propose collinearity diagnosis. The most classical
il the Variance Influence Factor (VIF)

Vj =
1

1−R2
j

where R2
j corresponds to the determination coefficient of the regression of

the variable Xj on the other explanatory variables ; Rj represents also the
cosine of the angle in Rn between Xj and the linear subspace generated by
the variables {X1, . . . ,Xj−1,Xj+1, . . . ,Xp}. The more Xj is “linearly”
linked with the other variables, the more Rj is close to 1 ; we show that the
variance of the estimator of βj is large in this case. This variance is minimal
whenXj is orthogonal to the subspace generated by the other variables.

Condition number

We consider the covariance matrix R between the regressors. We denote
λ1 ≥ . . . ≥ λp the ordered eigenvalues of R. If the smallest eigenvalues
are close to 0, the inversion of the matrix R will be difficult and numerical
problems arise. In this case, some components of the least square estimator β̂
will have high variances. The condition number of the matrix R is defined as
the ratio

κ = λ1/λp

between the largest and the smallest eigenvalues of R. If this ratio is large,
then the problem is ill-conditioned.
This condition number is a global indicator of collinearities, while the VIF
allows to identify the variables that are problematic.

3 Determination coefficient and Model se-
lection

3.1 R2 and adjusted R2

We define respectively the total, explicated and residual sums of squares by

SST =

n∑
i=1

(Yi − Ȳ )2 =
∥∥Y −Y1

∥∥2
,

SSE =

n∑
i=1

(Ŷi − Ȳ )2 =
∥∥∥Ŷ −Y1

∥∥∥2

,

SSR =

n∑
i=1

(Ŷi − Yi)2 =
∥∥∥Y − Ŷ

∥∥∥2

= ‖e‖2 .

Since, by Pythagora’s theorem,∥∥Y −Y1
∥∥2

=
∥∥∥Y − Ŷ

∥∥∥2

+
∥∥∥Ŷ −Y1

∥∥∥2

,

we have the following identity:

SST = SSR + SSE.

We define the determination coefficient R2 by:

R2 =
SSE
SST

= 1− SSR
SST

.
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Figure 3.3: Polynomial regression: adjusted model, on the left: y = β0 +
β1x+ ε, R2 = 0.03, on the right: y = β0 + β1x+ β2x

2 + ε, R2 = 0.73.

Note that 0 ≤ R2 ≤ 1. The model is well adjusted to the n training data if the
residuals sum of square SSR is close to 0, or equivalently, if the determination
coefficient R2 is close to 1. Hence, the first hint is that a "good" model is a
model for which R2 is close to 1. This is in fact not true, as shown by the
following pedagogical example of polynomial regression. Suppose that we
have a training sample (Xi, Yi)1≤i≤n where Xi ∈ [0, 1] and Yi ∈ R and we
adjust polynomials on these data:

Yi = β0 + β1Xi + β2X
2
i + . . .+ βkX

k
i + εi.

When k increases, the model is more and more complex, hence
∥∥∥Y − Ŷ

∥∥∥2

decreases, and R2 increases as shown in Figures 3.3 and 3.4.

The determination coefficient is equal to 1 for the polynomial of degree
n − 1 (which has n coefficients) and passes through all the training points.
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Figure 3.4: Polynomial regression: adjusted model, on the left: y = β0+β1x+
. . .+ β5x

5 + ε, R2 = 0.874, on the right: y = β0 + β1x+ . . .+ β10x
10 + ε,

R2 = 1.

Of course this model is not the best one: it has a very high variance since
we estimate as much coefficients as the number of observations. This is a
typical case of overfitting. When the degree of the polynomial increases, the
bias of our estimators decreases, but the variance increases. The best model is
the one that realizes the best trade-off between the bias term and the variance
term. Hence, we have seen that maximizing the determination coefficient is
not a good criterion to compare models with various complexity. It is more
interesting to consider the adjusted determination coefficient defined by:

R′2 = 1− SSR/(n− k − 1)

SST/(n− 1)
.

The definition of R′2 takes into account the complexity of the model, repre-
sented here by its number of coefficients: k + 1 for a polynomial of degree k,
and penalizes more complex models. One can choose, between several mod-
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els, the one which maximizes the adjusted R2. In the previous example, we
would choose a polynomial of degree 3 with this criterion.
More generally, we have to define model selection procedures that realize a
good compromise between a good adjustment to the data (small bias) and a
small variance; and an unbiased estimator is not necessarily the best one in
this sense. We will prefer a biased model if this allows to reduce drastically
the variance. There are several ways to do that:

• Reducing the number of explanatory variables and by the same way sim-
plifying the model (variable selection or Lasso penalization)

• Putting some constraints on the parameters of the model by shrinking
them (Ridge or Lasso penalization)

This penalized criterion will be the topic of the Chapter 4.

4 Logistic regression
We assume that X = Rp. One of the most popular model for binary

classification when Y = {−1, 1} is the logistic regression model. The idea
for logistic regression is to use a linear model for probabilities, thanks to a
one-to-one mapping ("link" function) from [0, 1] to R.
The most used is the logit function and its inverse, the sigmoid function:

[0, 1] R
logit: π → ln

(
π

1−π

)
exp(x)

1+exp(x)
← x : sigmoid
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Other link functions can be considered such as :

• The probit function g(π) = F−1(π) where F is the distribution function
of the standard normal distribution.

• The log-log function g(π) = ln(− ln(1− π)).

4.1 The model

This leads to the following formulation for the logistic regression model:

πβ(x) = Pβ(Y = 1/X = x) =
exp(〈β,x〉)

1 + exp(〈β,x〉)
for all x ∈ X ,

with β ∈ Rp.
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Exercise. — Compute the Bayes classifier f∗ for this model and determine the
border between f∗ = 1 and f∗ = −1.

4.2 Estimation of the parameters

Given a n-sample Dn = {(X1, Y1), . . . , (Xn, Yn)}, we can estimate the
parameter β by maximizing the conditional likelihood of Y = (Y1, . . . , Yn)
given (X1, . . . ,Xn). Since the distribution of Y given X = x is a Bernoulli
distribution with parameter πβ(x), the conditional likelihood is

L(Y1, . . . , Yn,β) =

n∏
i=1

πβ(Xi)
Yi(1− πβ(Xi))

1−Yi .

L(Y ,β) =
∏
i,Yi=1

exp(〈β,Xi〉)
1 + exp(〈β,Xi〉)

∏
i,Yi=0

1

1 + exp(〈β,Xi〉)
.

• Unlike the linear model, there is no explicit expression for the maximum
likelihood estimator β̂.

• It can be shown that computing β̂ is a convex optimization problem.

• We compute the gradient of the log-likelihood, also called the score func-
tion S(Y, β) and use a Newton-Raphson algorithm to approximate β̂
satisfying S(Y, β̂) = 0.

We then compute the logistic regression classifier:

∀x ∈ X , f̂(x) = sign(〈β̂,x〉).

An illustration of the logistic regression for one-dimensional predictors in pre-
sented in Figure 3.5.
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Figure 3.5: Logistic regression for a dataset composed of 2 groups of size 15,
sampled from Normal distributions, centered at 5 and 7, with variance 1.

Like for linear models, in a high dimensional setting (p is large), it will be
necessary to use variable selection and model selection procedures by intro-
ducing penalized likelihood criterions (AIC, BIC, LASSO ..). This is the topic
of Chapter 4.
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Chapter 4

Model selection for linear models

1 Introduction
We have made some reminders on linear models in Chapter 3. We have seen

that, in a high dimensional framework, when p is possibly large, even larger
than n, a complete model obtained by least square estimation is overfitted and
it is necessary to regularize the least square estimation by introducing some
penalty on the complexity of the models in order to reduce the variance of
the estimators. The adjusted R2, presented in Chapter 3 is a first step in this
direction. Model selection and variable selection for linear models has been
intensively studied this past twenty years and is still a very active field of re-
search in statistics. Some of these methods such as Ridge or Lasso methods,
will be at the core of this course.

2 Variable selection
As we have seen, the least square estimator is not satisfactory since it has low

bias but generally high variance. In most examples, several variables are not
significant, and we may have better results by removing those variables from

the model. Moreover, a model with a small number of variables is more inter-
esting for the interpretation, keeping only the variables that have the strongest
effects on the variable to explain. There are several ways to do that.

Assume we want to select a subset of variables among all possible subsets
taken from the input variables. Each subset defines a model, and we want to
select the "best model". We have seen that maximizing the R2 is not a good
criterion since this will always lead to select the full model. It is more inter-
esting to select the model maximizing the adjusted determination coefficient
R′2. Many other penalized criterion have been introduce for variable selection
such as the Mallow’s CP criterion or the BIC criterion. In both cases, it corre-
sponds to the minimization of the least square criterion plus some penalty term,
depending on the number k of parameters in the model m that is considered.

Crit(m) =

n∑
i=1

(Yi − Ŷi)2 + pen(k).
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The Mallow’s CP criterion is

CritCP (m) =

n∑
i=1

(Yi − Ŷi)2 + 2kσ2,

and the BIC criterion penalizes more the dimension of the model with an ad-
ditional logarithmic term.

CritBIC(m) =

n∑
i=1

(Yi − Ŷi)2 + log(n)kσ2.

The aim is to select the model (among all possible subsets) that minimizes one
of those criterion. On the example of the polynomial models, we obtain the
results summarized in Figure 4.1.

Nevertheless, the number of subsets of a set of p variables is 2p, and it is
impossible (as soon as p > 30) to explore all the models to minimize the cri-
terion. Fast algorithms have been developed to find a clever way to explore a
subsample of the models. This are the backward, forward and stepwise algo-
rithms.
Backward/Forward Algorithms:

• Forward selection: We start from the constant model (only the intercept,
no explanatory variable), and we add sequentially the variable that allows
to reduce the more the criterion.

• Backward selection: This is the same principle, but starting from the
full model and removing one variable at each step in order to reduce the
criterion.

• Stepwise selection: This is a mixed algorithm, adding or removing one
variable at each step in order to reduce the criterion in the best way.
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Figure 4.1: Mallows’CP in function of the degree of the polynomial. Selected
model: polynomial with degree 3.

All those algorithms stop when the criterion can no more be reduced. Let us
see some applications of those algorithms on the Ozone data.
Stepwise Algorithm
We apply the StepAIC algorithm, with the option both of the software R in
order to select a subset of variables, and we present here an intermediate result:

Start: AIC=6953.05
O3obs ∼ MOCAGE + TEMPE + RMH2O + NO2 + NO + VentMOD +

VentANG
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Df Sum of Sq RSS AIC
- VentMOD 1 1484 817158 6952.9
<none> 815674 6953.0
- RMH2O 1 4562 8202354 6956.9
- VentANG 1 12115 827788 6966.4
- NO2 1 21348 837022 6977.9
- NO 1 21504 837178 6978.1
- MOCAGE 1 225453 1041127 7205.1
- TEMPE 1 268977 1084651 7247.7

Step: AIC= 6952.94

O3obs ∼ MOCAGE + TEMPE + RMH2O + NO2 + NO + VentANG

3 Ridge regression
The principle of the Ridge regression is to consider all the explanatory vari-

ables, but to introduce constraints on the parameters in order to avoid overfit-
ting, and by the same way in order to reduce the variance of the estimators. In
the case of the Ridge regression, we introduce an l2 constraint on the parameter
β.

3.1 Model and estimation

If we have an ill-conditionned problem, but we want to keep all the variables,
it is possible to improve the numerical properties and to reduce the variance of
the estimator by considering a slightly biased estimator of the parameter β.

We consider the linear model

Y = X̃β̃ + ε,

where

X̃ =


1 X1

1 X2
1 . Xp

1

1 X1
2 X2

2 . Xp
2

. . . . .
1 X1

n X2
n . Xp

n

 ,

β̃ =


β0

β1

.

.
βp

 , β =


β1

β2

.

.
βp

 .

We set X0 = (1, 1, . . . , 1)′, and X the matrix X̃ where we have removed the
first column. The ridge estimator is defined by a least square criterion plus a
penalty term, with an l2 type penalty.

DEFINITION 8. — The ridge estimator of β̃ in the model

Y = X̃β̃ + ε,

is defined by

β̂ = argminβ∈Rp+1

 n∑
i=1

(Yi −
p∑
j=0

X
(j)
i βj)

2 + λ

p∑
j=1

β2
j

 ,

where λ is a non negative parameter, that we have to calibrate.

Note that the parameter β0 is not penalized.

PROPOSITION 1. — Assume that X is centered. We obtain the following ex-

http://wikistat.fr


44

plicit solution for the Ridge estimator:

β̂0 = Ȳ , β̂R =


β̂1

.

.

β̂p

 = (X′X + λIp)
−1X′(Y − Ȳ 1).

Exercise. — Prove the Proposition 1.

Remarks:

1. X′X is a nonnegative symmetric matrix (for all vector u in Rp,
u′(X′X)u = ‖Xu‖2 ≥ 0. Hence, for any λ > 0, X′X + λIp is in-
vertible.

2. The constant β0 is not penalized, otherwise, the estimator would depend
on the choice of the origin for Y. We obtain β̂0 = Y, adding a constant
to Y does not modify the values of β̂j for j ≥ 1.

3. The ridge estimator is not invariant by normalization of the vectors X(j),
it is therefore important to normalize the vectors before minimizing the
criterion.

4. The ridge regression is equivalent to the least square estimation under the
constraint that the l2-norm of the vector β is not too large:

β̂R = arg min
β

{
‖Y −Xβ‖2 ; ‖β‖2 < c

}
.

The ridge regression keeps all the parameters, but, introducing constraints
on the values of the βj’s avoids too large values for the estimated param-
eters, which reduces the variance.

Choice of the penalty term

In the Figure 4.2, we see results obtained by the ridge method for several
values of the tuning parameter λ = l on the polynomial regression example.
Increasing the penalty leads to more regular solutions, the bias increases, and
the variance decreases. We have overfitting when the penalty is equal to 0 and
under-fitting when the penalty is too large.

For each regularization method, the choice of the parameter λ is crucial and
determinant for the model selection. We see in Figure 4.3 the Regularisation
path, showing the profiles of the estimated parameters when the tuning param-
eter λ increases.

Choice of the regularization parameter

Most softwares use the cross-validation to select the tuning parameter
penalty. The principe is the following:

• We split the data into K sub-samples. For all I from 1 to K:

– We compute the Ridge estimator associated to a regularization pa-
rameter λ from the data of all the subsamples, except the I-th (that
will be a "‘test"’ sample).

– We denote by β̂
(−I)
λ the obtained estimator.

– We test the performances of this estimator on the data that have not
been used to build it, that is the one of the I-th sub-sample.

• We compute the criterion:

CV (λ) =
1

n

n∑
i=1

(Y i −Xiβ̂
(−τ(i))

λ )2.

• We choose the value of λ which minimizes CV (λ).
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Figure 4.2: Ridge penalisation for the polynomial model
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Figure 4.3: Regularization paths for the Ridge regression
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Figure 4.4: Selection of the regularization parameter by CV

Application to the Ozoner data: The value of λ selected by cross-validation
is 5.4. We show the obtained value in Figure 4.4.

Singular Value Decomposition and Ridge regression

The Singular Value Decomposition (SVD) of the centered matrix X allows
to interpret the ridge regression as a shrinkage method. The SVD of the matrix
X has the following form:

X = UDV′,

where X is a n× p matrix, U is n× n, D is a n× p "diagonal" matrix whose
all elements are ≥ 0 and ordered by decreasing values, V is a p × p matrix.
The elements of D are the singular values of the matrix X . U and V are
orthogonal: UU′ = U′U = In, VV′ = V′V = Ip.
We have

Xβ̂R = UD(D′D + λIp)
−1D′U′Y.

Suppose that n ≤ p. We denote by u(1), . . . ,u(n) the columns of the matrix
U. Setting d1 ≥ . . . ≥ dp ≥ 0 the diagonal elements of D, UD is a n × p
matrix whose j-th column is dju(j). We therefore have

Xβ̂R =

p∑
j=1

uj

(
d2
j

d2
j + λ

)
(uj)′Y.

Let us compare this estimator with the least square estimator (which corre-
sponds to λ = 0):

Xβ̂ =

p∑
j=1

uj(uj)′Y.

(uj)′Y corresponds to the j-th component of Y in the basis (u1, . . . ,un).
In the case of the ridge regression, this component is multiplied by the factor
d2
j/
(
d2
j + λ

)
∈]0, 1[, we can say that this component has been thresholded.

Remarks:
1) When the tuning parameter λ increases, the coefficients are more and more
thresholded.
2) x 7→ x/(x + λ) is a non decreasing function of x for x > 0. The largest
coefficients are slightly thresholded: if d2

j >> λ, d2
j/
(
d2
j + λ

)
is close to 1.

The threshold decreases when j increases since dj decreases.

We can give an interpretation in relation with the Principal Components
Analysis . X being centered, X′X/n is the empirical variance-covariance
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matrix of the column vectors of the matrixX .

X′X = VD′DV′,

where D′D is the diagonal matrix composed by the elements d2
i . We denote

by v1, . . . ,vp the column vectors in Rp of the matrix V.
Let v be an Rp vector with norm 1.

ˆV ar(Xv) =
1

n
(Xv)′(Xv) =

1

n
v′(X′X)v,

which is maximal for v = v1 and is equal to d2
1.

z1 = Xv1 is the first principal component of the matrix X.
The orthonormal eigenvectors v1, . . . ,vp are the principal directions (or
Karhunen Loeve directions) of X. The variables zj = Xvj are the princi-
pal components. We remark that

zj = Xvj = UDV′vj = dju
(j).

We see that the ridge regression shrinks slightly the first principal components
(for which dj is large), and more the last principal components.
We can associate to the ridge procedure the quantity df(λ) which is called the
effective number of degrees of freedom in the ridge regression and is defined
by

df(λ) =

p∑
j=1

d2
j

d2
j + λ

.

If λ = 0, df(λ) = p (no shrinkage), if λ→∞, df(λ)→ 0, at the limit, all the
coefficients are equal to 0.

4 The LASSO regression
The ridge regression allows to get around the collinearity problems even if

the numbers of predictors p is large with possibly p > n. The main weak-
ness of this method is related to interpretation difficulties because, without
selection, all variables are included in the model. Other regularization ap-
proaches also allow selection, as the LASSO regression, which leads to more
interpretable solutions.

4.1 Model and estimation

LASSO is the abbreviation of Least Absolute Shrinkage and Selection Op-
erator. The Lasso estimator is introduced in the paper by Tibshirani, R.
(1996)[36]: Regression shrinkage and selection via the lasso. J. Royal. Statist.
Soc B., Vol. 58, No. 1, pages 267-288. The Lasso corresponds to the mini-
mization of a least square criterion plus an l1 penalty term (and no more an l2
penalization like in the ridge regression). We denote ‖β‖1 =

∑p
j=1 |βj |.

DEFINITION 9. — The Lasso estimator of β in the model

Y = Xβ + ε,

is defined by:

β̂Lasso = argminβ∈Rp+1

 n∑
i=1

(Yi −
p∑
j=0

X
(j)
i βj)

2 + λ

p∑
j=1

|βj |

 ,

where λ is a nonnegative tuning parameter.

We can show that this is equivalent to the minimization problem:

β̂L = argminβ∈Rp,‖β‖1≤t(‖Y −Xβ‖2),
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where t is suitably chosen, and β̂0Lasso = Ȳ . Like for the Ridge regression,
the parameter λ is a regularization parameter:

• If λ = 0, we recover the least square estimator.

• If λ tends to infinity, all the coefficients β̂j are equal to 0 for j = 1, . . . , p.

The solution to the Lasso is parsimonious (or sparse), since it has many null
coefficients.

If the matrix X is orthogonal: (X′X = Id), the solution is explicit.

PROPOSITION 2. — If X′X = Ip, the solution β of the minimization of the
Lasso criterion

‖Y −Xβ‖2 + 2λ‖β‖1
is defined as follows: for all j = 1, . . . , p,

βj = sign(β̂j)(|β̂j | − λ)1|β̂j |≥λ,

where β̂ is the least square estimator: β̂ = X′Y.

The obtained estimator corresponds to a soft thresholding of the least square
estimator. The coefficients β̂j are replaced by φλ(β̂j) where

φλ : x 7→ sign(x)(|x| − λ)+.

Exercise. — Prove the proposition 2.

Another formulation

The LASSO is equivalent to the minimization of the criterion

Crit(β) =

n∑
i=1

(Yi − β0 − β1X
(1)
i − β2X

(2)
i − . . .− βpX

(p)
i )2

under the constraint
∑p
j=1 |βj | ≤ t, for some t > 0.

The statistical software R introduces a constraint expressed by a relative
bound for

∑p
j=1 |βj |: the constraint is expressed by

p∑
j=1

|βj | ≤ κ
p∑
j=1

|β̂(0)
j |,

where β̂(0) is the least square estimator and κ ∈ [0, 1].

For κ = 1 we recover the least square estimator (there is no constraint) and
for κ = 0, all the β̂j , j ≥ 1, vanish (maximal constraint).

4.2 Applications

We represent in Figure 4.5 the values of the coefficients in function of κ
for the Ozone data: this are the regularization paths of the LASSO. As for
the Ridge regression, the tuning parameter is generally calibrated by cross-
validation.

Comparison LASSO/ RIDGE

The Figure 4.6 gives a geometric interpretation of the minimization prob-
lems for both the Ridge and Lasso estimators. This explains why the Lasso
solution is sparse.

4.3 Optimization algorithms for the LASSO

Convex functions and subgradients

DEFINITION 10. — A function F : Rn → R is convex if ∀x, y ∈ Rn,∀λ ∈
[0, 1],

F (λx+ (1− λ)y) ≤ λF (x) + (1− λ)F (y).

LEMMA 3. — When F is differentiable, we have F (y) ≥ F (x)+〈∇F (x), y−
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Figure 4.5: Regularization paths of the LASSO when the penalty decreases

Figure 4.6: Geometric interpretation of Ridge and Lasso estimators
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x〉 ∀y ∈ Rn,∀x ∈ Rn.

When F is non differentiable, we introduce the subdifferential ∂F of F
defined by:

DEFINITION 11. — The subdifferential ∂F of F is:

∂F (x) = {ω ∈ Rn, F (y) ≥ F (x) + 〈ω, y − x〉,∀y ∈ Rn} .

A vector ω ∈ ∂F (x) is called a subgradient of F in x.

LEMMA 4. — F is convex⇔ ∂F (x) 6= ∅ ∀x ∈ Rn.

Example: subdifferential of the l1 norm

∂|x|1 = {ω ∈ Rn, ωj = 1 for xj > 0, ωj = −1 for xj < 0,

ωj ∈ [−1, 1] for xj = 0} .

Remark: The subdifferential of a convex function is monotone in the follow-
ing sense:

〈ωx − ωy, x− y〉 ≥ 0 ∀ωx ∈ ∂F (x),∀ωy ∈ ∂F (y).

Indeed

F (y) ≥ F (x) + 〈ωx, y − x〉
F (x) ≥ F (y) + 〈ωy, x− y〉.

By summing, 〈ωx − ωy, x− y〉 ≥ 0.

First optimality condition

PROPOSITION 5. — Let F : Rn → R be a convex function.

x∗ ∈ argminx∈RnF (x)⇔ 0 ∈ ∂F (x∗).

Proof: In both cases,

F (y) ≥ F (x∗) + 〈0, y − x∗〉.

The Lasso estimator

We consider the linear model:

Y = Xβ∗ + ε.

We assume that the columns of X have norm 1. Let

L(β) = ‖Y −Xβ‖2 + λ|β|1.

By definition, the Lasso estimator

β̂λ ∈ argminβ∈Rp(L(β)).

We deduce from the first order optimality condition that 0 ∈ ∂L(β̂λ).
We have that

L(β) = ‖Y ‖2 − β′X ′Xβ − 2β′XY + λ|β|1.

LEMMA 6. — Let h : β 7→ β′Aβ where A is a symmetric matrix. Then
5h(β) = 2Aβ.

Let g : β 7→ β′z = z′β = 〈z, β〉 where z ∈ Rp. Then5g(β) = z.
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Hence we have

∂L(β) = 2X ′Xβ − 2X ′Y + λ∂|β|1.

0 ∈ ∂L(β̂λ)⇔ ∃ẑ ∈ ∂|β̂λ|1 such that :

2X ′Xβ̂λ − 2X ′Y + λẑ = 0.

This last equality is equivalent to

X ′Xβ̂λ = X ′Y − λ

2
ẑ (E).

We have seen that

ẑj = sign((β̂λ)j if (β̂λ)j 6= 0

ẑj can be any real in [−1, 1] if (β̂λ)j = 0.

Orthogonal setting

When X ′X = Ip, (E) gives (β̂λ)j = X ′jY − λ
2 ẑj .

Moreover, ẑj = sign(β̂λ)j if (β̂λ)j 6= 0. Hence,{
(β̂λ)j > 0⇒ X ′jY > λ

2

(β̂λ)j < 0⇒ X ′jY < −λ2 .
.

(β̂λ)j 6= 0⇒
{
|X ′jY | > λ

2

sign((β̂λ)j) = sign(X ′jY )
.

This leads to the explicit solution of the Lasso in the orthogonal setting

(β̂λ)j = sign(X ′jY )

(
|X ′jY | −

λ

2

)
1|X′jY |>λ

2
.

It corresponds to a soft thresholding of the Ordinary Least Square estimator
β̂j = X ′jY .

Non orthogonal setting

In this case, there is no analytic formula for the Lasso estimator β̂λ.
Let m̂λ =

{
j, (β̂λ)j 6= 0

}
be the support of β̂λ.

We can derive from Equation (E) that

• If λ ≥ 2 supj |X ′jY |, then β̂λ = 0.

• If λ < 2 supj |X ′jY |, then denoting Xm̂λ the submatrix obtained from
X by keeping only the columns belonging to m̂λ, we have the following
equation:

X ′m̂λXm̂λ(β̂λ)m̂λ = X ′m̂λY −
λ

2
sign((β̂λ)m̂λ).

Computing the Lasso estimator

β 7→ L(β) = ‖Y −Xβ‖2 + λ|β|1 is convex.
Hence a simple and efficient approach to minimize this function is to alternate
minimization over each coordinate of β.
This algorithm converges to the Lasso estimator thanks to the convexity of L.
If we assume that the columns of X have norm 1, then we have

∂R

∂βj
(β) = −2X ′j(Y −Xβ) + λ

βj
|βj |

, ∀βj 6= 0.

Hence, we can see (after some easy computations) that βj 7→
R(β1, . . . , βj−1, βj , . . . , βp) is minimum in

βj = Rj

(
1− λ

2|Rj |

)
+

with Rj = X ′j(Y −
∑
k 6=j βkXk).

The coordinate descent algorithm is summarized as follows:
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• Initialise βinit arbitrarily

• Iterate until convergence:

∀j = 1, . . . , p, βj = Rj

(
1− λ

2|Rj |

)
+

with Rj = X ′j(Y −
∑
k 6=j βkXk).

• Output β.

This algorithm is implemented in the R package glmnet.

Due to its parsimonious solution, this method is widely used to select vari-
ables in high dimension settings (when p > n).

5 Elastic Net
Elastic Net is a method that combines Ridge and Lasso regression, by in-

troducing simultaneously the l1 and l2 penalties. The criterion to minimize
is

n∑
i=1

(Yi − β0 − β1X
(1)
i − β2X

(2)
i − . . .− βpX

(p)
i )2

+λ

α p∑
j=1

|βj |+ (1− α)

p∑
j=1

β2
j


• For α = 1, we recover the LASSO.

• For α = 0, we recover the Ridge regression.

In this case, we have two tuning parameters to calibrate by cross-validation.

6 Principal Components Regression and
Partial Least Square regression

6.1 Principal Component Regression (PCR)

We denote by Z(1), . . .Z(p) the principal components associated to the vari-
ables X(1), . . .X(p):

• Z(1) is the linear combination of X(1), . . . , X(p) of the form∑p
i=1 αjX

(j) with
∑
α2
j = 1 with maximal variance.

• Z(m) is the linear combination of X(1), . . . , X(p) of the form∑p
i=1 αj,mX

(j) with
∑
α2
j,m = 1 with maximal variance and orthog-

onal to Z(1), . . . , Z(m−1).

The Principal Component Regression (PCR) consists in considering a predictor
of the form:

Ŷ PCR =

M∑
m=1

θ̂mZ
(m)

with

θ̂m =
〈Z(m), Y 〉
‖Z(m)‖2

.

Comments:

• If M = p, we keep all the variables and we recover the ordinary least
square (OLS) estimator.

• If one can obtain a good prediction with M < p, then we have reduced
the number of variables, hence the dimension.
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• Nevertheless, interpretation is not always easy: if the variables are inter-
pretable, the principal components (that correspond to linear combination
of the variables) are generally difficult to interpret.

• This method is quite similar to the Ridge regression, which shrinks the
coefficients of the principal components. Here, we set to 0 the coefficients
of the principal components of order greater than M .

• The first principal components are not necessarily well correlated with
the variable to explain Y , this is the reason why the PLS regression has
been introduced.

6.2 Partial Least Square (PLS) regression

The principle of this method is to make a regression on linear combinations
of the variables Xi’s, that are highly correlated with Y .

• We assume that Y has been centered, and that the variables X(j) are also
centered and normalized (with norm 1).

• The first PLS component is defined by:

W (1) =

p∑
j=1

〈Y,X(j)〉X(j).

• The prediction associated to this first component is:

Ŷ 1 =
〈Y,W (1)〉
‖W (1)‖2

W (1).

Note that if the matrix X is orthogonal, this estimator corresponds to the ordi-
nary least square (OLS) estimator, and in this case, the following steps of the
PLS regression are useless.

• In order to obtain the following directions, we orthogonalize the variables
X(j) with respect to the first PLS component W (1):

• We substract to each variables X(j) (1 ≤ j ≤ p) its orthogonal projec-
tion in the direction given by W (1) and we normalize the variables thus
obtained.

• We compute the second PLS componentW (2) in the same way as the first
component by replacing the variables X(j)’s by the new variables.

• We iterate this process by orthogonalizing at each step the variables with
respect to the PLS components.

The algorithm is the following:

• Ŷ 0 = Ȳ and X(j),0 = X(j). For m = 1, . . . , p

• W (m) =
∑p
j=1〈Y,X(j,m−1)〉X(j,m−1).

• Ŷ m = Ŷ m−1 + 〈Y,W (m)〉
‖W (m)‖2 W

(m).

• ∀j = 1, . . . , p, X(j),m =
X(j),m−1−Π

W (m) (X(j),m−1)

‖X(j),m−1−Π
W (m) (X(j),m−1)‖ .

• The predictor Ŷ p obtained at step p corresponds to ordinary least square
estimator.

• This method is useless if the variables X(j) are orthogonal.

• When the variables X(j) are correlated, PCR and PLS methods present
the advantage to deal with new variables, that are orthogonal.

• The choice of the number of PCR or PLS components can be done by
cross-validation.
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• In general, the PLS method leads to more parcimoneous representations
than the PCR method.

• The PLS regression leads to a reduction of the dimension.

• If p is large, this is particularly interesting, but can lead to problems of
interpretation since the PLS components are linear combinations of the
variables.

• There exists a sparse version: sparse PLS (inspired from the Lasso
method), for which we consider linear combinations of the initial vari-
ables X(j) with only a few non zero coefficients, hence keeping only a
few variables, which makes the interpretation more easy.
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Chapter 5

Linear methods for classification, Linear Support Vector
Machine

1 Introduction
In this chapter, we consider supervised classification problems. We have a

data set with n observation points (or objects)Xi and their class (or label) Yi.
For example, the MNIST data set is a database of handwritten digits, where
the objects Xi are images and Yi ∈ {0, 1, . . . , 9}. Many other examples can
be considered, such as the recognition of an object in an image, the detection
of spams for emails, the presence of some illness for patients (the observation
points may be gene expression data) ... We have already seen in Chapter 2
the notion of best classifier, which is also called the Bayes classifier. A first
generalized linear model, namely the logistic regression has been presented in
Chapter 3. We propose here to study new linear methods for classification, first
the linear discriminant analysis and the core of the chapter will be devoted
to the linear Support Vector Machine (SVM), which will be generalized to
nonlinear SVM in Chapter 6.

2 Linear discriminant analysis
Let (X, Y ) with unknown distribution P on X × Y , where we assume that

X = Rp and Y = {1, 2, . . . ,K}. We define

fk(x) = P(Y = k/X = x).

A Bayes rule is defined by

f∗(x) = argmax
k∈{1,2,...,K}

fk(x).

We assume that the distribution of X has a density fX and the distribution of
X given Y = k has a density gk with respect to the Lebesgue measure on Rp,
and we set πk = P(Y = k).
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Exercise. — Prove that

fX(x) =

K∑
l=1

gl(x)πl

and that

fk(x) =
gk(x)πk∑K
l=1 gl(x)πl

.

If we assume that the distribution ofX given Y = k is a multivariate normal
distribution, with mean µk and covariance matrix Σk, we have

gk(x) =
1

(2π)p/2|Σk|1/2
exp

(
−1

2
(x− µk)′Σ−1

k (x− µk)

)
.

For the linear discriminant analysis, we furthermore assume that Σk = Σ
for all k. In this case we have

logP(Y = k/X = x) = C(x) + δk(x)

where C(x) does not depend on the class k, and

δk(x) = x′Σ−1µk −
1

2
µ′kΣ−1µk + log(πk).

The Bayes rule will assign x to the class f∗(x) which maximises δk(x).

log

(
P(Y = k/X = x)

P(Y = l/X = x)

)
= log

(
πk
πl

)
+ x′Σ−1(µk − µl)

− 1

2
(µk + µl)

′Σ−1(µk − µl).

Hence the decision boundary between the class k and the class l,
{x,P(Y = k/X = x) = P(Y = l/X = x)} is linear.

We want now to built a decision rule from a training sample Dn =
{(X1, Y1), . . . , (Xn, Yn)} which is close to the Bayes rule. For this purpose,
we have to estimate for all k πk, µk and the matrix Σ. We consider the follow-
ing estimators.

π̂k =
Nk
n
, µ̂k =

∑n
i=1Xi1Yi=k

Nk

where Nk =
∑n
i=1 1Yi=k. We estimate Σ by

Σ̂ =

K∑
k=1

n∑
i=1

(Xi − µ̂k)(Xi − µ̂k)′1Yi=k
n−K

.

To conclude, the Linear Discriminant Analysis assigns the input x to the class
f̂(x) which maximises δ̂k(x), where we have replaced in the expression of
δk(x) the unknown quantities by their estimators.
Remark: If we no more assume that the matrix Σ does not depend on the class
k, we obtain quadratic discriminant functions

δk(x) = −1

2
log |Σk| −

1

2
(x− µk)′Σ−1

k (x− µk) + log(πk).

This leads to the quadratic discriminant analysis.

3 Linear Support Vector Machine

3.1 Linearly separable training set

We assume that X = Rd, endowed with the usual scalar product 〈., .〉, and
that Y = {−1, 1}.
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DEFINITION 12. — The training set dn1 = (x1, y1), . . . , (xn, yn) is called
linearly separable if there exists (w, b) such that for all i,
yi = 1 if 〈w, xi〉+ b > 0,
yi = −1 if 〈w, xi〉+ b < 0,
which means that

∀i yi (〈w, xi〉+ b) > 0.

The equation 〈w, x〉+b = 0 defines a separating hyperplane with orthogonal
vector w.

The function fw,b(x) = 1〈w,x〉+b≥0 − 1〈w,x〉+b<0 defines a possible linear
classification rule.

The problem is that there exists an infinity of separating hyperplanes, and
therefore an infinity of classification rules.

Which one should we choose ? The response is given by Vapnik [38]. The
classification rule with the best generalization properties cooresponds to the
separating hyperplane maximizing the margin γ between the two classes on
the training set.

If we consider two entries of the training set, that are on the broder defining
the margin, and that we call x1 and x−1 with respective outputs 1 and −1,
the separating hyperplane is located at the half-distance between x1 and x−1.

The margin is therefore equal to the half of the distance between x1 and x−1

projected onto the normal vector of the separating hyperplane:

γ =
1

2

〈w, x1 − x−1〉
‖w‖

.

Let us notice that for all κ 6= 0, the couples (κw, κb) and (w, b) define the
same hyperplane.

DEFINITION 13. — The hyperplane 〈w, x〉+ b = 0 is canonical with respect
to the set of vectors x1, . . . , xk if

mini=1...k |〈w, xi〉+ b| = 1.

The separating hyperplane has the canonical form relatively to the vectors
{x1, x−1} if it is defined by (w, b) where 〈w, x1〉+ b = 1 and 〈w, x−1〉+ b =
−1. In this case, we have 〈w, x1 − x−1〉 = 2, hence

γ =
1

‖w‖
.
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3.2 A convex optimisation problem

Finding the separating hyperplane with maximal margin consists in finding
(w, b) such that

‖w‖2 or 1
2‖w‖

2 is minimal
under the constraint

yi (〈w, xi〉+ b) ≥ 1 for all i.

This leads to a convex optimization problem with linear constraints, hence
there exists a unique global minimizer.
The primal problem to solve is:

Minimizing 1
2‖w‖

2 s. t. yi (〈w, xi〉+ b) ≥ 1 ∀ i.

The corresponding Lagrangian is

L(w, b, α) =
1

2
‖w‖2 −

n∑
i=1

αi (yi (〈w, xi〉+ b)− 1) .

∂L

∂w
(w, b, α) = w −

n∑
i=1

αiyixi = 0 ⇔ w =

n∑
i=1

αiyixi

∂L

∂b
(w, b, α) = −

n∑
i=1

αiyi = 0 ⇔
n∑
i=1

αiyi = 0

This leads to the dual function

θ(α) =
1

2

n∑
i,j=1

αiαjyiyj〈xi, xj〉+

n∑
i=1

αi −
n∑

i,j=1

αiαjyiyj〈xi, xj〉

=

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyj〈xi, xj〉.

The corresponding dual problem corresponds to the maximization of

θ(α) =

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyj〈xi, xj〉

under the constraint
∑n
i=1 αiyi = 0 and αi ≥ 0 ∀i.

The Karush-Kuhn-Tucker conditions are

• α∗i ≥ 0 ∀i = 1 . . . n.

• yi (〈w∗, xi〉+ b∗) ≥ 1 ∀i = 1 . . . n.

• α∗i (yi (〈w∗, xi〉+ b∗)− 1) = 0 ∀ i = 1 . . . n.
(complementary condition)

The solution α∗ of the dual problem can be obtained with classical opti-
mization softwares.
Remarks : The only pertinent information from the observations (xi)1≤i≤n to
solve the problem is the Gram matrix G = (〈xi, xj〉)1≤i,j≤n.
The solution does not depend on the dimension d, but depends on the sample
size n, hence it is interesting to notice that when X is high dimensional, linear
SVM do not suffer from the curse of dimensionality.

3.3 Supports Vectors

Only the α∗i > 0 are involved in the definition of w∗ =
∑n
i=1 αiyixi. If the

number of values α∗i > 0 is small, the solution of the dual problem is called
"sparse".

DEFINITION 14. — The xi such that α∗i > 0 are called the support vec-
tors. They are located on the border defining the maximal margin namely
yi (〈w∗, xi〉+ b∗) = 1 (c.f. complementary KKT condition).
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We finally obtain the following classification rule:

f̂(x) = 1〈w∗,x〉+b∗≥0 − 1〈w∗,x〉+b∗<0,

with

• w∗ =
∑n
i=1 α

∗
i xiyi,

• b∗ = − 1
2 {minyi=1〈w∗, xi〉+ minyi=−1〈w∗, xi〉}.

The maximal margin equals γ∗ = 1
‖w∗‖ =

(∑n
i=1(α∗i )

2
)−1/2

(provided the
xi’s are normalized).

The α∗i that do not correspond to support vectors (sv) are equal to 0, and
therefore

f̂(x) = 1∑
xisv

yiα∗i 〈xi,x〉+b∗≥0 − 1∑
xisv

yiα∗i 〈xi,x〉+b∗<0.

The previous formulation has two main drawbacks : it assumes that the classes
are linearly separable and it is also very sensitive to outliers as illustrated in
Figure 5.1.

Figure 5.1: Lack of robustness of SVM’s in the separable case

3.4 Flexible margin

In the general case, we allow some points to be in the margin and even on
the wrong side of the margin. We introduce the slack variable ξ = (ξ1, . . . , ξn)
and the constraint yi(〈w, xi〉+ b) ≥ 1 becomes yi(〈w, xi〉+ b) ≥ 1− ξi, with
ξi ≥ 0.

• If ξi ∈ [0, 1] the point is well classified but in the region defined by the
margin.

• If ξi > 1 the point is misclassified.

The margin is called flexible margin.
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3.5 Optimization problem with relaxed constraints

In order to avoid too large margins, we penalize large values for the slack
variable ξi.

The primal optimization problem is formalized as follows :

Minimize with respect to (w, b, ξ) 1
2‖w‖

2 + C
∑n
i=1 ξi such that

yi (〈w, xi〉+ b) ≥ 1− ξi ∀ i
ξi ≥ 0

Remarks :

• C > 0 is a tuning parameter of the SVM algorithm. It will determine
the tolerance to misclassifications. If C increases, the number of misclas-
sified points decreases, and if C decreases, the number of misclassified
points increases. C is generally calibrated by cross-validation.

Exercise. — Write the Lagrangian, the dual problem, and the KKT conditions.

Karush-Kuhn-Tucker conditions :

• 0 ≤ α∗i ≤ C ∀i = 1 . . . n.

• yi (〈w∗, xi〉+ b∗) ≥ 1− ξ∗i ∀i = 1 . . . n.

• α∗i (yi (〈w∗, xi〉+ b∗) + ξ∗i − 1) = 0 ∀ i = 1 . . . n.

• ξ∗i (α∗i − C) = 0.

As previously, we obtain the following classification rule:

f̂(x) = 1〈w∗,x〉+b∗≥0 − 1〈w∗,x〉+b∗<0,

with

• w∗ =
∑n
i=1 α

∗
i xiyi,

• b∗ = − 1
2 {minyi=1〈w∗, xi〉+ minyi=−1〈w∗, xi〉}.

We have here two types of support vectors (xi such that α∗i > 0) :

• The support vectors for which the slack variables are equal to 0. They are
located on the border of the region defining the margin.

• The support vectors for which the slack variables are not equal to 0: ξ∗i >
0 and in this case α∗i = C.

For the vectors that are not support vectors, we have α∗i = 0 and ξ∗i = 0.

Figure 5.2: Support Vectors in the non separable case

We have assumed in this chapter that the classes are (nearly) linearly sep-
arable. This assumption is often unrealistic, and we will see in the Chapter 6
how to extend the SVM classifiers to a more general setting. Moreover, we fo-
cused here on classification problems but procedures based on support vector
for regression have also been proposed and will be presented in Chapter 6.
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Chapter 6

Kernel methods: Support Vector Machines and Support
Vector Regression

1 Introduction
In Chapter 5, we have studied linear SVM. The assumption was that the

training set is nearly linearly separable. In most cases, this assumption is not
realistic.

In this case, a linear SVM leads to bad performances and a high number of
support vectors. We can make the classification procedure more flexible by en-
larging the feature space and sending the entries {xi, i = 1 . . . n} in an Hilbert
spaceH, with high or possibly infinite dimension, via a function φ, and we ap-
ply a linear SVM procedure on the new training set {(φ(xi), yi), i = 1 . . . n}.
The space H is called the feature space. This idea is due to Boser, Guyon,
Vapnik (1992).
In the previous example, setting φ(x) = (x2

1, x
2
2, x1x2), the training set be-

comes linearly separable in R3, and a linear SVM is appropriate.

2 The kernel trick
A natural question arises: how can we choose H and φ ? In fact, we do not

chooseH and φ but a kernel .

61



62

The classification rule is

f̂(x) = 1∑
yiα∗i 〈φ(xi),φ(x)〉+b∗≥0 − 1∑

yiα∗i 〈φ(xi),φ(x)〉+b∗<0,

where the α∗i ’s are the solutions of the dual problem in the feature spaceH:

Maximizing θ(α) =
∑n
i=1 αi −

1
2

∑n
i,j=1 αiαjyiyj〈φ(xi), φ(xj)〉

s. t.
∑n
i=1 αiyi = 0 and 0 ≤ αi ≤ C ∀i.

It is important to notice that the final classification rule in the feature
space depends on φ only through scalar products of the form 〈φ(xi), φ(x)〉 or
〈φ(xi), φ(xj)〉.
The only knowledge of the function k defined by k(x, x′) = 〈φ(x), φ(x′)〉
allows to define the SVM in the feature space H and to derive a classification
rule in the space X . The explicite computation of φ is not required.

DEFINITION 15. — A function k : X × X → R such that k(x, x′) =
〈φ(x), φ(x′)〉 for a given function φ : X → H is called a kernel.

A kernel is generally more easy to compute than the function φ that returns
values in a high dimensional space. For example, for x = (x1, x2) ∈ R2,
φ(x) = (x2

1,
√

2x1x2, x
2
2), and k(x, x′) = 〈x, x′〉2.

Let us now give a property to ensure that a function k : X ×X → R defines a
kernel.

PROPOSITION 7. — Mercer condition If the function k : X × X → R is
continuous, symmetric, and if for all finite subset {x1, . . . , xk} inX , the matrix
(k(xi, xj))1≤i,j≤k is positive definite:

∀c1, . . . , ck ∈ R,
k∑

i,j=1

cicjk(xi, xj) ≥ 0,

then, there exists an Hilbert space H and a function φ : X → H such that
k(x, x′) = 〈φ(x), φ(x′)〉H. The space H is called the Reproducing Kernel
Hilbert Space (RKHS) associated to k.
We have:

1. For all x ∈ X , k(x, .) ∈ H where k(x, .) : y 7→ k(x, y).

2. Reproducing property:

h(x) = 〈h, k(x, .)〉H for all x ∈ X and h ∈ H.

Let us give some examples. The Mercer condition is often hard to verify but
we know some classical examples of kernels that can be used. We assume that
X = Rd.

• p degree polynomial kernel : k(x, x′) = (1 + 〈x, x′〉)p

• Gaussian kernel (RBF): k(x, x′) = e−
‖x−x′‖2

2σ2

φ returns values in a infinite dimensional space.

• Laplacian kernel : k(x, x′) = e−
‖x−x′‖

σ .

• Sigmoid kernel : k(x, x′) = tanh(κ〈x, x′〉 + θ) (this kernel is not
positive definite).

By way of example, let us precise the RKHS associated with the Gaussian
kernel.

PROPOSITION 8. — For any function h ∈ L1(Rd) ∩ L2(Rd) and ω ∈ Rd, we
define the Fourier transform

F [f ](ω) =
1

(2π)d/2

∫
Rd
f(t)e−i〈ω,t〉dt.
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For any σ > 0, the functional space

Hσ = {f ∈ C0(Rd) ∩ L1(Rd) such that
∫
Rd
|F [f ](ω)|2eσ

2|ω|2/2dω < +∞}

endowed with the scalar product

〈f, g〉Hσ = (2πσ2)−d/2
∫
Rd
F [f ](ω)F [g](ω)eσ

2|ω|2/2dω,

is the RKHS associated with the Gaussian kernel k(x, x′) = e−
‖x−x′‖2

2σ2 .

Indeed, for all x ∈ Rd, the function k(x, .) belongs toHσ and we have

〈h, k(x, .)〉Hσ = F−1[F [h]](x) = h(x).

The RKHS Hσ contains very regular functions, and the norm ‖h‖Hσ controls
the smoothness of the function h. When σ increases, the functions of the
RKHS become smoother. See A. Smola and B. Scholkopf [32] for more
details on RKHS.

We have seen some examples of kernels. One can construct new ker-
nels by aggregating several kernels. For example let k1 and k2 be two kernels
and f a function Rd → R, φ : Rd → Rd′ , B a positive definite matrix, P a
polynomial with positive coefficients and λ > 0.

The functions defined by k(x, x′) = k1(x, x′) + k2(x, x′), λk1(x, x′),
k1(x, x′)k2(x, x′), f(x)f(x′), k1(φ(x), φ(x′)), xTBx′, P (k1(x, x′)), or
ek1(x,x′) are still kernels.

We have presented examples of kernels for the case where X = Rd but a
very interesting property is that kernels can be defined for very general input
spaces, such as sets, trees, graphs, texts, DNA sequences ...

3 Minimization of the convexified empirical
risk

The ideal classification rule is the one which minimizes the risk L(f) =
P(Y 6= f(X)), we have seen that the solution is the Bayes rule f∗. A classical
way in nonparametric estimation or classification problems is to replace the
risk by the empirical risk and to minimize the empirical risk:

Ln(f) =
1

n

n∑
i=1

1Yi 6=f(Xi).

In order to avoid overfitting, the minimization is restricted to a set F :

f̂ = argminf∈FLn(f).

The risk of f̂ can be decomposed in two terms:

0 ≤ L(f̂)− L(f∗) = min
f∈F

L(f)− L(f∗) + L(f̂)−min
f∈F

L(f).

The first term minf∈F L(f)− L(f∗) is the approximation error, or bias term,
the second term L(f̂) − minf∈F L(f) is the stochastic error or variance
term. Enlarging the class F reduces the approximation error but increases
the stochastic error.
The empirical risk minimization classifier cannot be used in practice because
of its computational cost, indeed Ln is not convex. This is the reason why we
generally replace the empirical misclassification probability Ln by some con-
vex surrogate, and we consider convex classes F . We consider a loss function
`, and we require the condition `(z) ≥ 1z<0, which will allow to give an upper
bound for the misclassification probability; indeed

E(`(Y f(X))) ≥ E(1Y f(X)<0) = P(Y 6= f(X)).
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Classical convex losses ` are the hinge loss `(z) = (1 − z)+, the exponential
loss `(z) = exp(−z), the logit loss `(z) = log2(1 + exp(−z)).

Let us show that SVM are solutions of the minimization of the convexified
(with the hinge loss) and penalized empirical risk. For the sake of simplicity,
we consider the linear case.

We first notice that the following optimization problem:

Minimizing 1
2‖w‖

2 + C
∑n
i=1 ξis. t.

{
yi (〈w, xi〉+ b) ≥ 1− ξi ∀ i
ξi ≥ 0

is equivalent to minimize

1

2
‖w‖2 + C

n∑
i=1

(1− yi (〈w, xi〉+ b))+ ,

or equivalently

1

n

n∑
i

(1− yi (〈w, xi〉+ b))+ +
1

2Cn
‖w‖2.

γ(w, b, xi, yi) = (1− yi (〈w, xi〉+ b))+ is a convex upper bound of the
empirical risk 1yi(〈w,xi〉+b)<0 with the hinge loss.

Hence, SVM are solutions of the minimization of the convexified empirical
risk with the hinge loss ` plus a penalty term. Indeed, SVM are solutions of

argminf∈F
1

n

n∑
i=1

`(yif(xi)) + pen(f),

where
F = {〈w, x〉+ b, w ∈ Rd, b ∈ R}

and
∀f ∈ F , pen(f) =

1

2Cn
‖w‖2.

4 Support Vector Regression
Although the framework of the chapter is classification, let us mention that

kernel methods can also be used for regression function estimation.

Suppose we have a training sample {(x1, y1), . . . , (xn, yn)} ∈ (X × R)n,
where X denotes the space of the inputs (for example X = Rd). The ε support
vector regression, introduced by Vapnik (1995) aims to find a function f such
that for all i, the deviation between f(xi) and yi is at most ε, and such that, at
the same time, f is as flat as possible. Let us first consider the case of linear
predictors :

f(x) = 〈w, x〉+ b, with x ∈ X , b ∈ R.
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Flatness means here that ‖w‖ is small. This leads to the convex optimization
problem :

Minimize 1
2‖w‖

2

under the constraints, for all i{
yi − (〈w, xi〉+ b) ≤ ε
−yi + (〈w, xi〉+ b) ≤ ε

Note that here, we do not care of errors less than ε, but we do not accept
errors greater than ε. The tacit assumption is that the above problem admits
a solution. To be more general, we want to allow some errors. Like for
the classification problem, we introduce slack variables ξi, ξ′i to overcome
possible unfeasible constraints in the previous optimization problem. This
leads to the following formulation :

Minimize
1

2
‖w‖2 + C

n∑
i=1

(ξi + ξ′i) (6.1)

under the constraints, for all i yi − (〈w, xi〉+ b) ≤ ε+ ξi
−yi + (〈w, xi〉+ b) ≤ ε+ ξ′i

ξi, ξ
′
i ≥ 0

Exercise. — Prove that this optimization problem is equivalent to the mini-
mization of

1

2
‖w‖2 + C

n∑
i=1

`ε(yi, f(xi)),

where `ε is the so-called ε-insensitive loss function defined by

`ε(y, y
′) = 0 if |y − y′| ≤ ε

= |y − y′| − ε otherwise .

Draw a picture to represent the support vector regression problem in the linear
case.

In most cases, the optimization problem 6.1 can be solved more easily in its
dual formulation. Moreover, like for classification problems, the dual formu-
lation allows to extend easily the support vector regression to nonlinear func-
tions. The Lagrangian is

L(w, b, ξ, ξ′, η, η′, α, α′) =
1

2
‖w‖2 + C

n∑
i=1

(ξi + ξ′i)−
n∑
i=1

(ηiξi + η′iξ
′
i)

−
n∑
i=1

αi(ε+ ξi − yi + 〈w, xi〉+ b)−
n∑
i=1

α′i(ε+ ξ′i + yi − 〈w, xi〉 − b),

with η, η′, α, α′ the Lagrange multipliers, ηi, η′i, αi, α
′
i ≥ 0.

The cancellation of the partial derivatives with respect to the pri-
mal variables ∂L

∂w (w, b, ξ, ξ′, η, η′, α, α′), ∂L
∂b (w, b, ξ, ξ′, η, η′, α, α′) and

∂L

∂ξ
(′)
i

(w, b, ξ, ξ′, η, η′, α, α′) leads to the following dual problem.

Dual problem. Show that the dual problem can be formulated as follows :

Maximize −1

2

n∑
i,j=1

(αi − α′i)(αj − α′j)〈xi, xj〉

−ε
n∑
i=1

(αi + α′i) +

n∑
i=1

yi(αi − α′i)

subject to
n∑
i=1

(αi − α′i) = 0 and 0 ≤ αi, α′i ≤ C ∀i.

Karush-Kuhn-Tucker conditions :

• α∗i (ε+ ξ∗i − yi + 〈w∗, xi〉+ b∗) = 0
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• (α′i)
∗(ε+ (ξ′i)

∗ + yi − 〈w∗, xi〉 − b∗) = 0

• ξ∗i (C − α∗i ) = 0, (ξ′i)
∗(C − (α′i)

∗) = 0

Exercise. — Draw a picture similar to Figure 5.2 to show the support vectors
for the regression problem.

As previously, only the scalar product 〈xi, xj〉 are involved in the solution,
allowing easily to extend to nonlinear regression functions.

5 Kernel Regression Least Square
We present here another regression method based on kernels : the Kernel

Regression Least Square procedure. It is based on a penalized least square
criterion. Let (Xi, Yi)1≤i≤n the observations, with Xi ∈ Rp, Yi ∈ R. We
consider a positive definite kernel k defined on Rp:

k(x,y) = k(y,x);

n∑
i,j=1

cicjk(Xi,Xj) ≥ 0.

We are looking for a predictor of the form

f(x) =

n∑
i=1

cjk(Xj ,x), c ∈ Rn.

Let us denote by K the matrix defined by Ki,j = k(Xi,Xj). The KRLS
method consists in minimizing for f on the form defined above the penalized
least square criterion

n∑
i=1

(Yi − f(Xi))
2 + λ‖f‖2K ,

where

‖f‖2K =

n∑
i,j=1

cicjk(Xi,Xj).

Equivalently, we minimize for c ∈ Rn the criterion

‖Y −Kc‖2 + λc′Kc.

There exists an explicit solution

ĉ = (K + λIn)−1Y,

which leads to the predictor

f̂(x) =

n∑
j=1

ĉjk(Xj ,x).

Ŷ = Kĉ.

With a kernel corresponding to the scalar product, we recover a linear predictor

K = XX′, ĉ = (XX′ + λIn)−1Y,

f̂(x) =

n∑
j=1

ĉj〈Xj ,x〉.

For polynomial or Gaussian kernels for example, we obtain non linear predic-
tors. As for SVM, an important interest of this method is the possibility to be
generalized to complex predictors such as text, graphs, DNA sequences .. as
soon as one can define a kernel function on such objects.
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6 Conclusion
• Using kernels allows to delinearize classification algorithms by mapping
X in the RKHS H with the map x 7→ k(x, .). It provides nonlinear
algorithms with almost the same computational properties as linear ones.

• SVM have nice theoretical properties, cf. Vapnik’s theory for empirical
risk minimization [38].

• The use of RKHS allows to apply to any setX (such as set of graphs, texts,
DNA sequences ..) algorithms that are defined for vectors as soon as we
can define a kernel k(x, y) corresponding to some measure of similarity
between two objects of X .

• Important issues concern the choice of the kernel, and of the tuning pa-
rameters to define the SVM procedure.

• Note that SVM can also be used for multi-class classification problems
for example, one can built a SVM classifier for each class against the
others and predict the class for a new point by a majority vote.

• Kernels methods are also used for non supervised classification (kernel
PCA), and for anomaly detection (One-class SVM).
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Chapter 7

Classification and Regression Trees

1 Introduction
The recursive partitioning or segmentation methods were first introduced in

the 1960’s. The method studied in this course was presented in a paper by
Breiman et al [9] in 1984 under the acronym of CART for Classification and
Regression Trees. As indicated by its name, this method can be used either
for regression or for classification. The CART algorithm is a non parametric
method to build estimators in a multidimensional framework. The method,
based on trees, rely on a partition of the space of input variables. We then
infer a simple model (constant piecewise functions in regression and a single
class in classification) on each element of the partition. The obtained solutions
can be represented in a graphic with a tree that is very easy to interpret. The
trees are based on a recursive sequence of division rules or splits, each of them
based on a single explanatory variable.

Figure 1 shows an illustrative example of a classification tree. The variables
Age, Income and Sex are used partition the observations with tree structure.
All the observations are gathered at the root of the tree then each division or cut
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Figure 7.1: Elementary example of classification tree.
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separates each node into two child nodes more homogeneous than the parent
node in the sense of a criterion to be specified and depending on the type of
the variable Y that we have: quantitative or qualitative.

A first very simple and natural non parametric procedure in supervised re-
gression or classification is the k-Nearest Neighbors (k-NN) method. Given a
leaning sample {(X1, Y1), . . . , (Xn, Yn)} in X × Y , we want to predict the
output Y associated to a new entry x. For this, it seems natural to built the pre-
dictor from the observations in the training sample that are "close" to x. We
consider a distance d on X . We fix an integer k and we retain the k nearest to
x observations {X(1), . . . ,X(k)} and the associated outputs (Y(1), . . . , Y(k)).
In a regression context, the prediction at point x is obtained from the mean of
the observations (Y(1), . . . , Y(k)) while in classification we consider a majority
vote. The choice of k is of course crucial. A too small value leads to overfitting
(small bias but high variance) while a large value of k may lead to underfitting
(small variance but probably high bias).

CART will use the same idea of local mean or majority vote, but the cell in
X that is used to predict at point x is obtained from a more sophisticated way
than simply considering the k-Nearest Neighbors of x in the learning sample.
It will also take into account the values of the Yi’s. When partitioning ends,
each terminal node of the complete tree becomes a leaf to which is assigned a
value if Y is quantitative and a class if Y is qualitative.

The last step consists in pruning the complete tree, which corresponds to a
model selection procedure in order to reduce the complexity and avoid over-
fitting. Since Breiman et al. (1984) [9] have introduced this algorithm, CART
have been very successful with the major advantage of an easy interpretation
of the trees. The drawback is that these models are particularly unstable (not
robust), very sensitive to fluctuations in the training sample. Furthermore,
for quantitative explanatory variables, the construction of a tree constitutes
a dyadic partitioning of space (see Figure 7.2). The model thus defined is, by
construction, discontinuous which may be a problem if the phenomenon to be

Figure 7.2: Source: Hastie, Tibshirani, Friedman (2019), “The elements of
statistical learning”

modeled is regular.

These two aspects or weaknesses of CART: instability and irregularities are
at the origin of the success of the methods of aggregation leading to Random
Forests proposed by Breiman (2001) [8], that will be the topic of next chapter.

2 Construction of a maximal binary tree
We observe p quantitative or qualitative explanatory variables Xj and a

variable to predict Y which is either qualitative with m modalities {T`; ` =
1 . . . ,m} or real quantitative, on a sample of n individuals.

The construction of a binary discrimination tree (cf. figure 1) consists in
determining a sequence of nodes.

• A node is defined by the choice of a variable among the p explanatory
variables and of a division which induces a partition into two classes.
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Implicitly, to each node corresponds a subset of the initial sample to which
a dichotomy is applied.

• A division is defined by a threshold value if the selected variable is quan-
titative or a split into two groups of modalities if the variable is qualitative.

• At the root, the initial node corresponds to the whole sample; the proce-
dure is then iterated over each of the subsets.

The algorithm requires:

1. the definition of a criterion allowing to select the best division among all
admissible ones for the different variables;

2. a rule allowing to decide that a node is terminal: it thus becomes a leaf;

3. the predicted value (class or real value) associated to a leaf.

2.1 Division criteria

A division is said to be admissible if the two corresponding son nodes are
not empty. If the explanatory variable is a quantitative variable withm possible
values (or qualitative but ordinal with m modalities), it provides (m− 1) pos-
sible binary divisions. If it qualitative but not ordinal, the number of divisions
becomes 2(m−1) − 1.

Warning : the algorithm tends to favor the selection of explanatory variables
with many modalities because they offer more flexibility in the construction of
two subgroups. These variables should be used carefully (e.g. the postal code)
because they are likely to favor overfitting; it is often preferable to drastically
reduce the number of modalities (e.g. geographic region or urban zone vs. rural
zone) by merging modalities, which is classical in multiple correspondence
analysis for example.

The division criterion is based on the definition of an heterogeneity func-
tion presented in the next section. The objective is to divide the observations
which compose a node into two more homogeneous groups with respect to the
variable to explain Y .

Dividing the node κ creates two son nodes. For simplicity, they are denoted
κL (left node) and κR (right node).

Among all the admissible divisions of the node κ, the algorithm retains the
one which minimizes the sum of the heterogeneities of the son nodes DκL +
DκR . This amounts to solving at each node κ:

max
{divisions ofXj ;j=1,p}

Dκ − (DκL +DκR)

Graphically, the length of each branch can be represented proportionally to the
reduction in heterogeneity induced by the division.

2.2 Stopping rule

The growth of the tree stops at a given node, which therefore becomes a
terminal node also called a leaf, when it is homogeneous (all the individuals
have the same value for Y ) or when there is no longer an admissible partition
or ( to avoid unnecessarily fine splittings) when the number of observations it
contains is less than some prescribed value (generally chosen between 1 and
5).

2.3 Assignment

When Y is quantitative, the predicted value associated to a leaf is the average
of the values of the Yi’s among the observations belonging to this terminal
node. In the qualitative case, each leaf or terminal node is assigned to a class
T` of Y by a majority vote.
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3 Homogeneity criterion

3.1 Constructing regression trees

For a given region (node) κ with cardinality |κ|, we define the empirical
variance at node |κ| by

Vκ =
1

|κ|
∑
i∈κ

(Yi − Y κ)2,

where Y κ = 1
|κ|
∑
i∈κ Yi.

The heterogeneity at the node κ is then defined by

Dκ =
∑
i∈κ

(Yi − Y κ)2 = |κ|Vκ

Splitting procedure: For a variable xj , and a split candidate t, define left
and right subregions

κL(t, j) = {Xj ≤ t}, κR(t, j) = {Xj > t}.

Find (j, t) in order to minimize

J(j, t) = DκL(t,j) +DκR(t,j),

or equivalently to maximize the decrease in heterogeneity

Dκ − J(j, t)

Figure 7.3 provides an illustration in dimension 1.
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Figure 7.3: A regression tree in dimension 1
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3.2 Constructing classification trees

We use the same procedure, with specific notions of heterogeneity mea-
sures in classification. Two main measures are considered to define the het-
erogeneity of node κ.
For ` = 1, . . . ,m, let p`κ denote proportion of the class T` of Y in the node κ.

• The Cross-Entropy or deviance is defined by

Eκ = −
m∑
`=1

p`κ log(p`κ).

The heterogeneity at the node κ is then defined by

Dκ = −|κ|
m∑
`=1

p`κ log(p`κ).

The cross-entropy is maximal in ( 1
m , . . . ,

1
m ), minimal in

(1, 0, . . . , 0), . . . , (0, . . . , 0, 1)
(by continuity, we assume that 0 log(0) = 0).

• The Gini concentration s defined by

Gκ =

m∑
`=1

p`κ(1− p`κ),

which leads to the heterogeneity at the node κ

Dκ = |κ|
m∑
`=1

p`κ(1− p`κ).

An illustration of these two heterogeneity measures in presented in Figure
7.4 in the simple case where we have two classes (m = 2).

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2
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6
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Entropy
Gini

Figure 7.4: Heterogeneity criterions for classification. Both are minimal for
p = 0 or p = 1, and maximal for p = 1/2.

4 Pruning the maximal tree
The previous construction leads to a maximal tree Amax (depending on the

stopping rule) with K leaves, that is generally very unstable and heavily de-
pends on the training sample: it is overfitted. We have to build a more parsi-
monious, and hence more robust, prediction model. This will be achieved by
pruning) the maximal tree. We have to find a compromise between the trivial
tree reduced to the root (which is underfitted) and the maximal tree Amax. The
prediction performances of various tress could be compared on a validation
set. All sub trees of the maximal tree are admissible, but they are generally
too many to be all considered. To get around this problem, Breiman et al.
(1984)[9] have proposed an algorithm, based on a penalized criterion, to build
an nested sequence of sub-trees of the maximal tree. One then chooses, among
this sequence, the optimal tree minimizing a generalization error.
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4.1 Construction of Breiman’s subsequence

For a given tree A, we denote by KA it number of leaves or terminal nodes
κ, κ = 1, . . . ,KA de A. The value of KA is a measure of the complexity of
the tree A. We define the fit quality of a tree A by

D(A) =

KA∑
κ=1

Dκ

where Dκ is the heterogeneity of the terminal node κ of the tree A. The con-
struction of Breiman’s subsequence relies on the penalized criterion

C(A) = D(A) + γ ×KA.

For γ = 0, Amax minimizes C(A). When γ increases, a pruned tree will
be preferable to the maximal tree. More precisely, Breiman’s subsequence is
obtained as follows:

• Let AK be the sub tree of Amax (maximal tree) obtained by pruning the
nodes κ such that D(κ) = D(κL) +D(κR).

• For each node in AK , D(κ) > D(κL) + D(κR) and D(κ) > D(AκK)
where AκK is the subtree of AK from node κ.

• For γ small, for all node κ of AK , D(κ) + γ > D(AκK) + γ|AκK |. This
holds while, for all node κ of AK ,

γ < (D(AκK)−D(κ))/(|AκK | − 1) = s(κ,AκK).

We then define

γK = inf
κ node of AK

s(κ,AκK) = s(κ∗, Aκ
∗

K ).

• CritγK (κ∗) = CritγK (Aκ
∗

K ) and, for γ = γK , the node κ∗ becomes
preferable to the subtree Aκ

∗

K .

• AK−1 is the subtree obtained by pruning the branches from the nodes κ∗

minimizing s(κ,AκK): this gives the second tree in the sub-sequence

• This process is iterated.

We obtain a nested sequence of sub trees

Amax ⊃ AK ⊃ AK−1 ⊃ · · ·A1

where A1 is the trivial tree, reduced to the root, gathering all the training sam-
ple.

4.2 Determination of the optimal tree

Once the nested sequence of trees is obtained, we have to determine an op-
timal one, minimizing the generalization error. As explained in Chapter 2, this
error can be estimated on a validation set. More often, V -fold cross-validation
is used. In this case, the implementation of the V -fold cross-validation is par-
ticular since for each of the V subsamples composed of V −1 folds, we obtain a
different sequence of trees. In fact, the aim of cross-validation is to determine
the optimal value of the penalization parameter γ resulting from Breiman’s
subsequence produced with the whole training set. We then choose the tree
associated with this optimal value of γ. In the cross-validation procedure, for
each value of γ produced by Breiman’s subsequence, the mean error is com-
puted for the V subtrees . This leads to an optimal value of γ, minimizing the
prediction error estimated by cross-validation. We then retain the tree corre-
sponding to this value of γ in Breiman’s subsequence.

Algorithm 3 describes the selection of an optimal tree :
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Algorithm 3 Selection of an optimal tree by cross-validation
Construction of the maximal tree Amax
Construction of Breiman’s sequence AK . . . A1 of nested trees associated
with the
Sequence of penalization parameters (γK , . . . , γ1)
for v = 1, . . . , V do

For each sample (composed of V − 1 folds), estimation of the se-
quence of trees associated with the sequence of penalization parameters
(γK , . . . , γ1).

Estimation of the error on the validation fold.
end for
For each value (γK , . . . , γ1), computation of the means of these errors.
Determination of the optimal value γOpt, corresponding to the minimal error
mean.
Retain the tree corresponding to γOpt in Breiman’s subsequence AK . . . A1

4.3 Practical remarks

Misclassification cost

For some classification problems, the consequences of misclassification may
be more serious from some classes than for others. For example, if tap water
is infected by some pollutant dangerous for health, it is worse to predict that
the water is drinkable if it is not than vice versa. To account this problem, we
define a m × m loss matrix L (m being the number of classes), where L``′
denotes the loss incurred for classifying an observation from class ` into the
class `′. L`` = 0 for all `. For binary classification problems, the loss can be
incorporated in the Gini index of cross-entropy by weighting the observations
in class ` by L``′ . This can also be used for multi-class classification if L``′
does not depend on `′. In a terminal node κ, we classify to the class minimizing
the loss:

k̂(κ) = argmink

m∑
`=1

L`kp
`
κ.

Missing predictor values

CART is tolerant to missing data in the following sense. Assume that the
dataset has some missing predictor values for some (or all) of the variables. In-
stead of discarding observations with missing values, or imputing the missing
values, CART proposes two better strategies. First, for categorical variables,
we can add a category for "missing". The second approach is to construct sur-
rogate variables that will be considered if the value of a variable is missing. We
choose as usual the best predictor and split at one node, the first surrogate is
the second best, and so on.. When an observation is sent down the tree (during
the training or prediction phase), if the value of a predictor is missing at one
node, we use the first surrogate; if this one is missing, we use the second and
so on..

http://wikistat.fr


76

Instability of trees

A major drawback of trees is their high variance. They are not robust, in the
sense that a small change in the data can lead to very different sequences of
splits. This is why we have to be careful with the interpretation. This is due
to the hierarchical procedure : an error in the choice of a split in the top of
the tree cannot be corrected below. This instability is the price to pay to have
a simple and interpretable model. We will see in Chapter 8 how to aggregate
trees to reduce the variance of the prediction rule.

Lack of smoothness

In a regression framework, the trees are constant piecewise functions, they
are hence not smooth (not even continuous). This may be a problem if the
phenomenon to model is regular. More regular algorithms, such as the MARS
procedure have been developed (see Hastie and al [19]).

5 Application to Ozone data

5.1 Regression tree

A regression tree is estimated to predict ozone concentration. The package
rpart of the software R uses a pruning procedure by cross-validation to op-
timize the penalty parameter. The tree (see Figure 7.5) recovers the important
variables involved in the prediction, but due to the tree structure, this list is not
quite similar to the one obtained in a linear model. We see in particular here the
complexity of the interaction between the deterministic prediction MOCAGE
and the important effect of the temperature in various situations. The residu-
als on the test sample of the regression tree have a particular structure (Figure
7.7) since the same prediction value is obtained for observation falling in the
same terminal node. This is why we observe a column per leaf. The predic-
tion accuracy may be degraded (R2 = 0, 68) but this model is less sensitive to

Figure 7.5: Ozone: regression tree pruned by cross-validation (R).
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Figure 7.6: Ozone: classification tree pruned by cross-validation (R).
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Figure 7.7: Ozone: observed values and residuals of the test sample.

heteroscedasticity than a linear model.

5.2 Classification tree

A classification tree is estimated (see Figure 7.6) in order to predict a thresh-
old overflow. It is of comparable complexity with the regression tree, but the
variables do not play the same role. The temperature appears here as the "most
important" instead of MOCAGE in the regression tree. Confusion matrices
exhibit the same biases as regression models by omitting a large number of
exceedances.

6 Conclusion
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Trees have nice properties : they are easy to interpret, efficient algorithms
exist to prune them, they are tolerant to missing data. All these properties
made the success of CART for practical applications. Nevertheless, CART
algorithm has also important drawbacks : it is highly instable, being not robust
to the learning sample and it also suffers from the curse of dimensionality. The
selected tree only depends on few explanatory variables, which is nice for the
interpretation but trees are often (wrongly) interpreted as a variable selection
procedure, due to their high instability. Moreover, prediction accuracy of a
tree is often poor compared to other procedures. This is why more robust
procedures, based on the aggregation of trees leading to Random Forests have
been proposed . They also have better prediction accuracy. This is the topic of
Chapter 8.
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Chapter 8

Aggregation and Random Forests

1 Introduction
We present in this chapter algorithms based on a random construction of a

family of models: bagging for bootstrap aggregating (Breiman 1996) [7] and
the random forests of Breiman (2001) [8] which proposes an improvement of
bagging specific to models defined by binary trees (CART).

The principle of bagging applies to any modeling method (regression,
CART, neural networks..) but are mostly interesting, and significantly reduces
the prediction error, only in the case of unstable models. Thus, the use of this
algorithm makes little sense with linear regression or discriminant analysis. It
is mainly implemented in association with binary trees as a basic models. In
fact, the already underlined instability of trees appears as a property favoring
the reduction of variance by aggregation of these models.

2 Bagging

2.1 Principle and algorithm

Let Y be a quantitative or qualitative variable, X1, . . . , Xp the explanatory
variables and f̂(x) a predictor, with x = {x1, . . . , xp} ∈ Rp. We denote by n
the number of observations and

Z = {(X1, Y1), . . . , (Xn, Yn)}

a sample with distribution F .

Considering B independent samples denoted {Zb}b=1,B , a predictor by
model aggregation is defined below in the case where the variable to explain
Y is:

• quantitative : f̂B(.) = 1
B

∑B
b=1 f̂Zb(.) ,

• qualitative : f̂B(.) = arg maxj card
{
b | f̂Zb(.) = j

}
.

In the first case, it is a simple mean of the results obtained for the models
associated with each sample, in the second case, a majority vote. In the latter
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case, if the model returns probabilities associated with each modality as in the
logistic regression model, it is simple to calculate these probabilities.

The principle is elementary, averaging the predictions of several indepen-
dent models allows to reduce the variance and therefore to reduce the predic-
tion error.

However, it is unrealistic to consider B independent samples. This would
require too much data. These samples are therefore replaced by B bootstrap
samples each obtained by n draws with replacement according to the empirical
measure F̂n. This leads to the following algorithm.

Algorithm 4 Bagging
Let x0 and
Z = {(X1, Y1), . . . , (Xn, Yn)} a learning sample.
for b = 1 to B do

Draw a bootstrap sample of size n with replacement zb.
Estimate f̂zb(x0) with the bootstrap sample.

end for
Compute the mean f̂B(x0) = 1

B

∑B
b=1 f̂zb(x0) or the result of a majority

vote.

Figure 8.1 presents two bootstrap samples and the corresponding models
built with CART algorithm.

However, the B boostrap samples are built on the same learning sam-
ple Z = {(X1, Y1), . . . , (Xn, Yn)} and therefore the estimators f̂zb(x0) are
not independent. Let us assume that, for all b, E(f̂zb(x0)) = f(x0),
Var(f̂zb(x0)) = V (x0) and for all b 6= b′, Corr(f̂zb(x0), f̂zb′ (x0)) = ρ(x0).
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Figure 8.1: Two Bootstrap samples and the two corresponding models built
with CART. The point size is proportional to the number of replicates.
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Then, in the regression case, we obtain

E(f̂B(x0)) = f(x0)

Var(f̂B(x0)) = ρ(x0)Var(f̂b(x0)) +
(1− ρ(x0))

B
Var(f̂b(x0))

→ ρ(x0)Var(f̂b(x0)) as B → +∞

Hence, if the correlation term ρ(x0) is small, the variance of the aggregated
predictor f̂B(x0) is much smaller than the one of a single predictor. This
underlines the importance of finding low correlated predictors (f̂b(x0))1≤b≤B ,
which is at the core of the Random forests algorithm.

3 Random Forests

3.1 Motivation

In the specific case of binary decision tree models (CART), Breiman (2001)
[8] proposes an improvement of the bagging by adding a random component.
The objective is to make the aggregated trees more independent by adding
randomness in the choice of the variables which are involved in the prediction.
Since the initial publication of the algorithm, this method has been widely
tested and compared with other procedures see Fernandez-Delgado et al. 2014
[16], Caruana et al. 2008 [10]. It becomes in many machine learning articles
the method to beat in terms of prediction accuracy. Theoretical convergence
properties, difficult to study, have been published quite recently (Scornet et
al. 2015) [34]. However, it can also lead to bad results, especially when the
underlying problem is linear.

3.2 Algorithm

The bagging is applied to binary decision trees by adding a random selection
of m explanatory variables among the p variables.

Algorithm 5 Random Forests
Let x0 and
Z = {(X1, Y1), . . . , (Xn, Yn)} a learning sample
for b = 1 to B do

Take a bootstrap sample zb
Estimate a tree on this sample with randomization of the variables :

the search for each optimal division is preceded by a random selection of a
subset of m predictors.
end for
Calculate the mean estimate f̂B(x0) = 1

B

∑B
b=1 f̂zb(x0) or the result of a

majority vote.

Parameters of the algorithm

The pruning strategy can, in the case of random forests, be quite elementary.
Indeed, pruned trees may be strongly correlated because they may involve the
same variables appearing to be the most explanatory. In the default strategy of
the algorithm, it is simply the minimum number of observations per leaf which
limits the size of the tree, it is set to 5 by default. We therefore aggregate rather
complete trees, which are considered of low bias but of high variance.

The random selection of a reduced number of m potential predictors at each
stage of the construction of the trees significantly increases the variability by
highlighting other variables. Each tree is obviously less efficient, sub-optimal,
but, united being strength, aggregation ultimately leads to good results. The
number m of variables drawn randomly can, according to the examples, be a
sensitive parameter with default choices are not always optimal :

• m =
√
p in a classification problem,

• m = p/3 in a regression problem.

http://wikistat.fr
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Figure 8.2: 500 bootstrap samples (grey), corresp. predictions with tree, and
their average (bold line). The function to be estimated in dotted blue line.

The iterative evaluation of the out-of-bag error makes it possible to control the
number B of trees in the forest as well as to optimize the choice of m. It is
nevertheless a cross-validation procedure which is preferably used to optimize
m. The Figure 8.2 presents an example of Random Forest regression predictor,
built with B = 500 bootstrap samples.

3.3 Variables importance

Random forests generally have a good accuracy, they are easily imple-
mentable, parallelisable but not easy to interpret like any model built by ag-
gregation, leading to a black-box model. To favor interpretation, indexes of
importance for each explanatory variable have been introduced. This is obvi-

ously all the more useful as the variables are very numerous. Two criteria have
been proposed to evaluate the importance of the variable Xj .

• The first one Mean Decrease Accuracy (MDA) is based on a random per-
mutation of the values of this variable. The more the quality of the pre-
diction, estimated by an out-of-bag error, is degraded by the permutation
of this variable, the more the variable is important. Once the bth tree has
been constructed, the out-of-bag sample is predicted for this tree and the
estimated error is recorded. The values of the jth variable are then ran-
domly permuted in the out-of-bag data sample and the error is computed
again. The decrease in prediction accuracy is averaged over all the trees
and used to assess the importance of the variable Xj in the forest. It is
therefore a global but indirect measure of the influence of a variable on
the quality of forecasts. More formally,

– Consider a variable Xj and denote by Db,n the out-of-bag data set
of the b-th tree and Djb,n the same data set where the values of Xj

have been randomly permuted.

– Denote by f̂zb the b-th tree estimate and

Rn[f̂zb ,D] =
1

|D|
∑

i,(Xi,Yi)∈D

(Yi − f̂zb(Xi))
2.

– The MDA is defined by

MDA(Xj) =
1

B

B∑
b=1

{Rn[f̂zb ,D
j
b,n]−Rn[f̂zb ,Db,n]}.

• The second variable importance criterion is the Mean Decrease Impurity
(MDI). It is a is local criterion, based on the average of the decrease of

http://wikistat.fr
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heterogeneity each time the variable Xj is chosen as a split at some node.
More formally, with previous notations, the MDI of the variable Xj is
defined by

MDI(Xj) =
1

B

B∑
b=1

∑
κ∈Tb,j?κ=j

[Dκ − (DκL(t?κ, j
?
κ) +DκR(t?κ, j

?
κ))],

– {Tb, 1 ≤ b ≤ B} is the collection of trees in the forest,
– (t?κ, j

?
κ) the split retained at node κ :

* j?κ corresponds to the optimal variable selected for the split

* t?κ corresponds to the optimal threshold along the j?κ variable.

Example on ozone data :

Details (from R help file of function importance)
“The first measure [%IncMSE] is computed from permuting OOB data : For

each tree, the prediction error on the out-of-bag portion of the data is recorded
(error rate for classification, MSE for regression). Then the same is done
after permuting each predictor variable. The difference between the two are
then averaged over all trees, and normalized by the standard deviation of the
differences.
The second measure [IncNodePurity] is the total decrease in node impurities

from splitting on the variable, averaged over all trees. For classification, the
node impurity is measured by the Gini index. For regression, it is measured
by residual sum of squares.”

3.4 Implementation

• The randomForest library of R interfaces the original program devel-
oped in Fortran77 by Leo Breiman and Adele Cutler which maintains the
site dedicated to this algorithm.
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Figure 8.3: Variable importance plot, returned by the R function
importance. MDA on the left and MDI on the right.
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• An alternative in R, more efficient in computing time especially with a
large volume of data, consists in using the ranger library.

• The software site Weka developed at Waikato University in New Zealand
offers a version in Java.

• A very efficient and close version of the original algorithm is available in
the Scikit-learn library of Python.

• Another version suitable for big data is available in the MLlib li-
brary of Spark, a technology developed to interface different hardware/-
software architectures with distributed data file management systems
(Hadoop). In addition to the usual parameters : number of trees, max-
imum depth of trees, and number of variables drawn at random to build
a subdivision at each node, this implementation adds two parameters :
subsamplingRate and maxBins, which have a default value. These
parameters play an important role, certainly in drastically reducing the
computation time, but, on the other hand, in restricting the precision of
the estimate. They regulate the balance between computation time and
precision of the estimate as a subsampling in the data would do.

– subsamplingRate =1.0 subsamples as its name suggests before
building each tree. With the default value, it is the classic version of
random forests with B Bootstrap samples of size n but if this rate is
less than 1, smaller samples are drawn. The sample are then more
distinct (or independent) for each tree. The variance is therefore re-
duced (more independent trees) but the bias increases because each
tree is built with a smaller data set.

– maxBins = 32 is the maximum number of categories that are con-
sidered for a qualitative variable or the number of possible values for
a quantitative variable. Only the most frequent modalities of a qual-
itative variable are taken into account, the others are automatically

grouped into a other modality. As previously, the time to deter-
mine a better division is obviously largely influenced by the number
of modalities or even the number of possible values of a quantitative
variable. Reducing the number of possible values is finally another
way of reducing the computation time but it would be appropriate
to guide the groupings of the modalities to avoid misinterpretations.

4 Conclusion
Having become the Swiss Army Knife of learning, Random Forests are used

for different purposes (see the dedicated site) :

• Similarity or proximity between observations : after building each tree,
increment by 1 the similarity or proximity of two observations that are in
the same leaf. Sum on the trees of the forest, normalize by the number of
trees. A multidimensional positioning can represent these similarities or
the matrix of dissimilarities that results from them.

• Detection of multidimensional atypical observations : outliers or novel-
ties that correspond to observations which do not belong to known classes.
A criterion of "abnormality" with respect to a class is based on the pre-
vious notion of proximities of an observation to the other observations of
its class.

• Another algorithm, inspired by Random Forests has been developed for
anomaly detection, it is called isolation forest.

• Random forests are used for the Imputation of missing data.

• Adaptations to take into account censored data to model survival times
correspond to the survival forest algorithm.

http://wikistat.fr
http://www.cs.waikato.ac.nz/ml/weka/
https://spark.apache.org/mllib/
https://math.usu.edu/~adele/forests/
http://wikistat.fr/pdf/st-m-explo-mds.pdf
http://wikistat.fr/pdf/st-m-app-idm.pdf


Chapter 9

Neural Networks and Introduction to Deep Learning

1 Introduction
Deep learning is a set of learning methods attempting to model data with

complex architectures combining different non-linear transformations. The el-
ementary bricks of deep learning are the neural networks, that are combined to
form the deep neural networks.

These techniques have enabled significant progress in the fields of sound
and image processing, including facial recognition, speech recognition, com-
puter vision, automated language processing, text classification (for example
spam recognition). Potential applications are very numerous. A spectacularly
example is the AlphaGo program, which learned to play the go game by the
deep learning method, and beated the world champion in 2016.

There exist several types of architectures for neural networks:

• The multilayer perceptrons, that are the oldest and simplest ones

• The Convolutional Neural Networks (CNN), particularly adapted for im-
age processing

• The recurrent neural networks, used for sequential data such as text or
times series.

They are based on deep cascade of layers. They need clever stochastic op-
timization algorithms, and initialization, and also a clever choice of the struc-
ture. They lead to very impressive results, although very few theoretical fon-
dations are available till now.

2 Neural networks
An artificial neural network is an application, non linear with respect to its

parameters θ that associates to an entry x an output y = f(x, θ). For the
sake of simplicity, we assume that y is unidimensional, but it could also be
multidimensional. This application f has a particular form that we will precise.
The neural networks can be use for regression or classification. As usual in
statistical learning, the parameters θ are estimated from a learning sample. The
function to minimize is not convex, leading to local minimizers. The success
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of the method came from a universal approximation theorem due to Cybenko
(1989) and Hornik (1991). Moreover, Le Cun (1986) proposed an efficient
way to compute the gradient of a neural network, called backpropagation of
the gradient, that allows to obtain a local minimizer of the quadratic criterion
easily.

2.1 Artificial Neuron

An artificial neuron is a function fj of the input x = (x1, . . . , xd) weighted
by a vector of connection weights wj = (wj,1, . . . , wj,d), completed by a
neuron bias bj , and associated to an activation function φ, namely

yj = fj(x) = φ(〈wj , x〉+ bj).

Several activation functions can be considered.

• The identity function
φ(x) = x.

• The sigmoid function (or logistic)

φ(x) =
1

1 + exp(−x)
.

• The hyperbolic tangent function ("tanh")

φ(x) =
exp(x)− exp(−x)

exp(x) + exp(−x)
=

exp(2x)− 1

exp(2x) + 1
.

• The hard threshold function

φβ(x) = 1x≥β .

• The Rectified Linear Unit (ReLU) activation function

φ(x) = max(0, x).

Here is a schematic representation of an artificial neuron where Σ = 〈wj , x〉+
bj . The Figure 9.2 represents the activation function described above. His-

Figure 9.1: source: andrewjames turner.co.uk

torically, the sigmoid was the mostly used activation function since it is dif-
ferentiable and allows to keep values in the interval [0, 1]. Nevertheless, it is
problematic since its gradient is very close to 0 when |x| is not close to 0.
The Figure 9.3 represents the Sigmoid function and its derivative. With neural
networks with a high number of layers (which is the case for deep learning),
this causes troubles for the backpropagation algorithm to estimate the param-
eter (backpropagation is explained in the following). This is why the sigmoid
function was supplanted by the rectified linear function. This function is not
differentiable in 0 but in practice this is not really a problem since the proba-
bility to have an entry equal to 0 is generally null. The ReLU function also has
a sparsification effect. The ReLU function and its derivative are equal to 0 for

http://wikistat.fr
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Figure 9.2: Activation functions

negative values, and no information can be obtain in this case for such a unit,
this is why it is advised to add a small positive bias to ensure that each unit is
active. Several variations of the ReLU function are considered to make sure
that all units have a non vanishing gradient and that for x < 0 the derivative is
not equal to 0. Namely

φ(x) = max(x, 0) + αmin(x, 0)

where α is either a fixed parameter set to a small positive value, or a parameter
to estimate.

Figure 9.3: Sigmoid function (in black) and its derivatives (in red)

2.2 Multilayer perceptron

A multilayer perceptron (or neural network) is a structure composed by sev-
eral hidden layers of neurons where the output of a neuron of a layer becomes
the input of a neuron of the next layer. Moreover, the output of a neuron can
also be the input of a neuron of the same layer or of neuron of previous layers
(this is the case for recurrent neural networks). On last layer, called output
layer, we may apply a different activation function as for the hidden layers
depending on the type of problems we have at hand: regression or classifica-
tion. The Figure 9.4 represents a neural network with three input variables, one
output variable, and two hidden layers. Multilayers perceptrons have a basic

http://wikistat.fr
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Figure 9.4: A basic neural network. Source: http://blog.christianperone.com

architecture since each unit (or neuron) of a layer is linked to all the units of the
next layer but has no link with the neurons of the same layer. The parameters of
the architecture are the number of hidden layers and of neurons in each layer.
The activation functions are also to choose by the user. For the output layer,
as mentioned previously, the activation function is generally different from the
one used on the hidden layers. In the case of regression, we apply no activa-
tion function on the output layer. For binary classification, the output gives
a prediction of P(Y = 1/X) since this value is in [0, 1], the sigmoid activa-
tion function is generally considered. For multi-class classification, the output
layer contains one neuron per class i, giving a prediction of P(Y = i/X). The
sum of all these values has to be equal to 1. The multidimensional function
softmax is generally used

softmax(z)i =
exp(zi)∑
j exp(zj)

.

Let us summarize the mathematical formulation of a multilayer perceptron
with L hidden layers.
We set h(0)(x) = x.

For k = 1, . . . , L (hidden layers),

a(k)(x) = b(k) +W (k)h(k−1)(x)

h(k)(x) = φ(a(k)(x))

For k = L+ 1 (output layer),

a(L+1)(x) = b(L+1) +W (L+1)h(L)(x)

h(L+1)(x) = ψ(a(L+1)(x)) := f(x, θ).

where φ is the activation function and ψ is the output layer activation function
(for example softmax for multiclass classification). At each step, W (k) is a
matrix with number of rows the number of neurons in the layer k and number
of columns the number of neurons in the layer k − 1.

2.3 Universal approximation theorem

Hornik (1991) showed that any bounded and regular function Rd → R can
be approximated at any given precision by a neural network with one hidden
layer containing a finite number of neurons, having the same activation func-
tion, and one linear output neuron. This result was earlier proved by Cybenko
(1989) in the particular case of the sigmoid activation function. More precisely,
Hornik’s theorem can be stated as follows.

THEOREM 6. — Let φ be a bounded, continuous and non decreasing (ac-
tivation) function. Let Kd be some compact set in Rd and C(Kd) the set of
continuous functions on Kd. Let f ∈ C(Kd). Then for all ε > 0, there exists
N ∈ N, real numbers vi, bi and Rd-vectors wi such that, if we define

F (x) =

N∑
i=1

viφ(〈wi, x〉+ bi)

then we have
∀x ∈ Kd, |F (x)− f(x)| ≤ ε.

http://wikistat.fr
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This theorem is interesting from a theoretical point of view. From a practical
point of view, this is not really useful since the number of neurons in the hidden
layer may be very large. The strength of deep learning lies in the deep (number
of hidden layers) of the networks.

3 Estimation of the parameters
Once the architecture of the network has been chosen, the parameters (the

weights wj and biases bj) have to be estimated from a learning sample. As
usual, the estimation is obtained by minimizing a loss function with a gradient
descent algorithm. We first have to choose the loss function.

Loss functions

It is classical to estimate the parameters by maximizing the likelihood (or
equivalently the logarithm of the likelihood). This corresponds to the mini-
mization of the loss function which is the opposite of the log likelihood. De-
noting θ the vector of parameters to estimate, we consider the expected loss
function

L(θ) = −E(X,Y )∼P (log(pθ(Y/X)).

If the model is Gaussian, namely if pθ(Y/X = x) ∼ N (f(x, θ), I), maximiz-
ing the likelihood is equivalent to minimize the quadratic loss, hence

L(θ) = E(X,Y )∼P (‖Y − f(X, θ)‖2).

For binary classification, with Y ∈ {0, 1}, maximizing the log-likelihood cor-
responds to the minimization of the cross-entropy.
Setting f(X, θ) = Pθ(Y = 1/X), the cross-entropy loss is

`(y, f(x, θ)) = −[y log(f(x, θ)) + (1− y) log(1− f(x, θ))]

and the corresponding expected loss is

L(θ) = −E(X,Y )∼P [Y log(f(X, θ)) + (1− Y ) log(1− f(X, θ))].

This loss function is well adapted with the sigmoid activation function since
the use of the logarithm avoids to have too small values for the gradient.
Finally, for a multi-class classification problem, we consider a generalization
of the previous loss function to k classes

L(θ) = −E(X,Y )∼P [

k∑
j=1

1Y=j log pθ(Y = j/X)].

Ideally we would like to minimize the classification error, but it is not smooth,
this is why we consider the cross-entropy (or eventually a convex surrogate).

3.1 Penalized empirical risk

The expected loss can be written as L(θ) = E(X,Y )∼P [`(Y, f(X, θ))] and it
is associated to a loss function `.
In order to estimate the parameters θ, we use a training sample (Xi, Yi)1≤i≤n
and we minimize the empirical loss

L̃n(θ) =
1

n

n∑
i=1

`(Yi, f(Xi, θ))

eventually we add a regularization term. This leads to minimize the penalized
empirical risk

Ln(θ) =
1

n

n∑
i=1

`(Yi, f(Xi, θ)) + λΩ(θ).

We can consider L2 regularization. Using the same notations as in Section 2.2,

Ω(θ) =
∑
k

∑
i

∑
j

(W
(k)
i,j )2

=
∑
k

‖W (k)‖2F

http://wikistat.fr
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where ‖W‖F denotes the Frobenius norm of the matrix W . Note that only the
weights are penalized, the biases are not penalized. It is easy to compute the
gradient of Ω(θ):

5W (k)Ω(θ) = 2W (k).

One can also consider L1 regularization, leading to parcimonious solutions:

Ω(θ) =
∑
k

∑
i

∑
j

|W (k)
i,j |.

In order to minimize the criterion Ln(θ), a stochastic gradient descent al-
gorithm is used. In order to compute the gradient, a clever method, called
Backpropagation algorithm is considered. It has been introduced by Rumel-
hart et al. (1988), it is still crucial for deep learning.
The stochastic gradient descent algorithm performs at follows:

• Initialization of θ = (W (1), b(1), . . . ,W (L+1), b(L+1)).

• For N iterations:

– For each training data (Xi, Yi),

θ = θ − ε 1

m

∑
i∈B

[5θ`(f(Xi, θ), Yi) + λ5θ Ω(θ)].

Note that, in the previous algorithm, we do not compute the gradient for the
loss function at each step of the algorithm but only on a subset B of cardinal-
ity m (called a batch). This is what is classically done for big data sets (and
for deep learning) or for sequential data. B is taken at random without re-
placement. An iteration over all the training examples is called an epoch. The
numbers of epochs to consider is a parameter of the deep learning algorithms.
The total number of iterations equals the number of epochs times the sample
size n divided by m, the size of a batch. This procedure is called batch learn-
ing, sometimes, one also takes batches of size 1, reduced to a single training
example (Xi, Yi).

4 Backpropagation algorithm for classifica-
tion with the cross entropy

We consider here a K class classification problem. The output of the MLP

is f(x) =


P(Y = 1/x)

.

.
P(Y = K/x)

. We assume that the output activation function is

the softmax function.

softmax(x1, . . . , xK) =
1∑K

k=1 e
xi

(ex1 , . . . , exK ).

Let us make some useful computations to compute the gradient.

∂softmax(x)i
∂xj

= softmax(x)i(1− softmax(x)i) if i = j

= −softmax(x)isoftmax(x)j if i 6= j

We introduce the notation

(f(x))y =

K∑
k=1

1y=k(f(x))k,

where (f(x))k is the kth component of f(x): (f(x))k = P(Y = k/x). Then
we have

− log(f(x))y = −
K∑
k=1

1y=k log(f(x))k = `(f(x), y),

http://wikistat.fr
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for the loss function ` associated to the cross-entropy.
Using the notations of Section 2.2, we want to compute the gradients

Output weights
∂`(f(x), y)

∂W
(L+1)
i,j

Output biases∂`(f(x),y)

∂b
(L+1)
i

Hidden weights
∂`(f(x), y)

∂W
(h)
i,j

Hidden biases∂`(f(x),y)

∂b
(h)
i

for 1 ≤ h ≤ L. We use the chain-rule: if z(x) = φ(a1(x), . . . , aJ(x)), then

∂z

∂xi
=
∑
j

∂z

∂aj

∂aj
∂xi

= 〈5φ, ∂a
∂xi
〉.

Hence we have

∂`(f(x), y)

∂(a(L+1)(x))i
=
∑
j

∂`(f(x), y)

∂f(x)j

∂f(x)j
∂(a(L+1)(x))i

.

∂`(f(x), y)

∂f(x)j
=
−1y=j

(f(x))y
.

∂`(f(x), y)

∂(a(L+1)(x))i
= −

∑
j

1y=j

(f(x))y

∂softmax(a(L+1)(x))j
∂(a(L+1)(x))i

= − 1

(f(x))y

∂softmax(a(L+1)(x))y
∂(a(L+1)(x))i

= − 1

(f(x))y
softmax(a(L+1)(x))y(1− softmax(a(L+1)(x))y)1y = i

+
1

(f(x))y
softmax(a(L+1)(x))isoftmax(a(L+1)(x))y1y 6=i

∂`(f(x), y)

∂(a(L+1)(x))i
= (−1 + f(x)y)1y = i+ f(x)i1y 6= i.

Hence we obtain

5a(L+1)(x)`(f(x), y) = f(x)− e(y),

where, for y ∈ {1, 2, . . . ,K}, e(y) is the RK vector with i th component 1i=y .
We now obtain easily the partial derivative of the loss function with respect to
the output bias. Since

∂((a(L+1)(x)))j
∂(b(L+1))i

= 1i=j ,

5b(L+1) `(f(x), y) = f(x)− e(y), (9.1)

Let us now compute the partial derivative of the loss function with respect to
the output weights.

∂`(f(x), y)

∂W
(L+1)
i,j

=
∑
k

∂`(f(x), y)

∂(a(L+1)(x))k

∂(a(L+1)(x))k

∂W
(L+1)
i,j

and
∂(a(L+1)(x))k

∂W
(L+1)
i,j

= h(L)(x))j1i=k.

Hence
5W (L+1) `(f(x), y) = (f(x)− e(y))(h(L)(x))′. (9.2)

Let us now compute the gradient of the loss function at hidden layers. We use
the chain rule

∂`(f(x), y)

∂(h(k)(x))j
=
∑
i

∂`(f(x), y)

∂(a(k+1)(x))i

∂(a(k+1)(x))i
∂(h(k)(x))j
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We recall that

(a(k+1)(x))i = b
(k+1)
i +

∑
j

W
(k+1)
i,j (h(k)(x))j .

Hence
∂`(f(x), y)

∂h(k)(x)j
=
∑
i

∂`(f(x), y)

∂a(k+1)(x)i
W

(k+1)
i,j

5h(k)(x)`(f(x), y) = (W (k+1))′ 5a(k+1)(x) `(f(x), y).

Recalling that h(k)(x)j = φ(a(k)(x)j),

∂`(f(x), y)

∂a(k)(x)j
=
∂`(f(x), y)

∂h(k)(x)j
φ′(a(k)(x)j).

Hence,

5a(k)(x)`(f(x), y) = 5h(k)(x)`(f(x), y)�(φ′(a(k)(x)1), . . . , φ′(a(k)(x)j), . . .)
′

where � denotes the element-wise product. This leads to

∂`(f(x), y)

∂W
(k)
i,j

=
∂`(f(x), y)

∂a(k)(x)i

∂a(k)(x)i

∂W
(k)
i,j

=
∂`(f(x), y)

∂a(k)(x)i
h

(k−1)
j (x)

Finally, the gradient of the loss function with respect to hidden weights is

5W (k) `(f(x), y) = 5a(k)(x)`(f(x), y)h(k−1)(x)′. (9.3)

The last step is to compute the gradient with respect to the hidden biases. We
simply have

∂`(f(x), y)

∂b
(k)
i

=
∂`(f(x), y)

∂a(k)(x)i

and
5b(k) `(f(x), y) = 5a(k)(x)`(f(x), y). (9.4)

We can now summarize the backpropagation algorithm.

• Forward pass: we fix the value of the current weights θ(r) =
(W (1,r), b(1,r), . . . ,W (L+1,r), b(L+1,r)), and we compute the predicted
values f(Xi, θ

(r)) and all the intermediate values (a(k)(Xi), h
(k)(Xi) =

φ(a(k)(Xi)))1≤k≤L+1 that are stored.

• Backpropagation algorithm:

– Compute the output gradient5a(L+1)(x)`(f(x), y) = f(x)− e(y).

– For k = L+ 1 to 1

* Compute the gradient at the hidden layer k

5W (k)`(f(x), y) = 5a(k)(x)`(f(x), y)h(k−1)(x)′

5b(k)`(f(x), y) = 5a(k)(x)`(f(x), y)

* Compute the gradient at the previous layer

5h(k−1)(x)`(f(x), y) = (W (k))′ 5a(k)(x) `(f(x), y)

and

5a(k−1)(x)`(f(x), y) = 5h(k−1)(x)`(f(x), y)

�(. . . , φ′(a(k−1)(x)j), . . . )
′

4.1 Optimization algorithms

Many algorithms can be used to minimize the loss function, all of them have
hyperparameters, that have to be calibrated, and have an important impact on
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the convergence of the algorithms. The elementary tool of all these algorithms
is the Stochastic Gradient Descent (SGD) algorithm. It is the most simple one:

θnewi = θoldi − ε
∂L

∂θi
(θoldi ),

where ε is the learning rate , and its calibration is very important for the con-
vergence of the algorithm. If it is too small, the convergence is very slow and
the optimization can be blocked on a local minimum. If the learning rate is too
large, the network will oscillate around an optimum without stabilizing and
converging. A classical way to proceed is to adapt the learning rate during the
training: it is recommended to begin with a "large " value of ε, (for example
0.1) and to reduce its value during the successive iterations. However, there is
no general rule on how to adjust the learning rate, and this is more the expe-
rience of the engineer concerning the observation of the evolution of the loss
function that will give indications on the way to proceed.
The stochasticity of the SGD algorithm lies in the computation of the gradi-
ent. Indeed, we consider batch learning: at each step, m training examples
are randomly chosen without replacement and the mean of the m correspond-
ing gradients is used to update the parameters. An epoch corresponds to a pass
through all the learning data, for example if the batch sizem is 1/100 times the
sample size n, an epoch corresponds to 100 batches. We iterate the process on
a certain number nb of epochs that is fixed in advance. If the algorithm did not
converge after nb epochs, we have to continue for nb′ more epochs. Another
stopping rule, called early stopping is also used: it consists in considering a
validation sample, and stop learning when the loss function for this validation
sample stops to decrease. Batch learning is used for computational reasons,
indeed, as we have seen, the backpropagation algorithm needs to store all the
intermediate values computed at the forward step, to compute the gradient dur-
ing the backward pass, and for big data sets, such as millions of images, this is
not feasible, all the more that the deep networks have millions of parameters to
calibrate. The batch sizem is also a parameter to calibrate. Small batches gen-

erally lead to better generalization properties. The particular case of batches
of size 1 is called On-line Gradient Descent. The disadvantage of this proce-
dure is the very long computation time. Let us summarize the classical SGD
algorithm.

Algorithm 6 Stochastic Gradient Descent algorithm
Fix the parameters ε : learning rate, m : batch size, nb : number of epochs.
Choose the initial parameter θ
for k = 1 to nb epochs do

for l = 1 to n/m do
Take a random batch of size m without replacement in the learning

sample: (Xi, Yi)i∈Bl
Compute the gradients with the backpropagation algorithm

5̃θ =
1

m

∑
i∈Bl

5θ`(f(Xi, θ), Yi).

Update the parameters : θ ← θ − ε5̃θ.
end for

end for

Since the choice of the learning rate is delicate and very influent on the
convergence of the SGD algorithm, variations of the algorithm have been pro-
posed. They are less sensitive to the learning rate. The principle is to add a
correction when we update the gradient, called momentum. The method is
due to Polyak (1964) [29]. The idea is to accumulate an exponentially decay-
ing moving average of past negative gradients and to continue to move in their
direction.The momentum algorithm introduces a variable ν, that plays the role
of a velocity. An hyperparameter α ∈ [0, 1[ determines how fast the contribu-
tion of previous gradients exponentially decay. The method is summarized in
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Algorithm 7.

Algorithm 7 Stochastic Gradient Descent algorithm with momentum
Fix the parameters ε : learning rate, m: batch size, nb : number of epochs,
momentum parameter α ∈ [0, 1[.
Choose the initial parameter θ and the initial velocity ν.
for k = 1 to nb epochs do

for l = 1 to n/m do
Sample a minibach B of size m from the learning sample.
Compute the gradient estimate : g ← 1

m

∑
i∈B5θ`(f(Xi, θ), Yi).

Update the velocity : ν ← αν − εg.
Update the parameter : θ ← θ + ν.

5̃θ =
1

m

∑
i∈Bl

5θ`(f(Xi, θ), Yi).

end for
end for

This method allows to attenuate the oscillations of the gradient.
In practice, a more recent version of the momentum due to Nesterov (1983)
[28] and Sutskever et al. (2013) [35] is considered, it is called Nesterov ac-
celerated gradient. The variants lye in the updates of the parameter and the
velocity :

ν ← αν − ε 1

m

∑
i∈B
5θ`(f(Xi, θ + αν), Yi)

θ ← θ + ν.

The learning rate ε is a difficult parameter to calibrate because it significantly
affects the performances of the neural network. This is why new algorithms

have been introduced, to be less sensitive to this learning rate : the RMSProp
algorithm, due to Hinton (2012) [20] and Adam (for Adaptive Moments)
algorithm, see Kingma and Ba (2014) [22].

The idea of the RMSProp algorithm is to use a different learning rate for
each parameter (components of θ) and to automatically adapt this learning rate
during the training. It is described in Algorithm 8.

Algorithm 8 RMSProp algorithm
Fix the parameters ε : learning rate, m: batch size, nb : number of epochs,
decay rate ρ in [0, 1[
Choose the initial parameter θ
Choose a small constant δ, usually 10−6 (to avoid division by 0)
Initialize accumulation variable r = 0.
for k = 1 to nb epochs do

for l = 1 to n/m do
Sample a minibach B of size m from the learning sample.
Compute the gradient estimate : g ← 1

m

∑
i∈B5θ`(f(Xi, θ), Yi).

Accumulate squared gradient r ← ρr + (1− ρ)g � g
Update the parameter : θ ← θ − ε√

δ+r
� g ( 1√

δ+r
is computed

element-wise).
end for

end for

Adam algorithm (Kingma and Ba, 2014) is also an adaptive learning rate op-
timization algorithm. "Adam" means "Adaptive moments". It can be viewed as
a variant of RMSProp algorithm with momentum. It also includes a bias cor-
rection of the first order moment (momentum term) and second order moment.
It is described in Algorithm 9.

We have presented the most popular optimization algorithms for deep
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Algorithm 9 Adam algorithm
Fix the parameters ε : learning rate, m: batch size, nb : number of epochs,
decay rate for moment estimates ρ1 and ρ2 in [0, 1[
Choose the initial parameter θ
Choose a small constant δ, usually 10−6 (to avoid division by 0)
Initialize 1st and 2nd moment variables variable s = 0, r = 0.
Initial time step t = 0.
for k = 1 to nb epochs do

for l = 1 to n/m do
Sample a minibach B of size m from the learning sample.
Compute the gradient estimate : g ← 1

m

∑
i∈B5θ`(f(Xi, θ), Yi).

t← t+ 1
Update first moment estimate s← ρ1s+ (1− ρ1)g
Update second moment estimate r ← ρ2r + (1− ρ2)g � g
Correct biases : ŝ← s/(1− ρt1), r̂ ← r/(1− ρt2)
Update the parameter : θ ← θ − ε√

r̂+δ
� ŝ

end for
end for

learning. There is actually no theoretical foundation on the performances of
these algorithms, even for convex functions (which is not the case in deep
learning problems !). Numerical studies have been performed to compare a
large number of optimization algorithms for various learning problems (Schaul
et al. (2014)). There is no algorithms that outperforms the other ones. The
algorithms with adaptive learning seem more robust to the hyperparameters.

The choice of the initialization of the parameter θ is also an important point.
Here are some recommendations : the input data have to be normalized to
have approximately the same range. The biases can be initialized to 0. The
weights cannot be initialized to 0 since for the tanh activation function, the
derivative at 0 is 0, this is a saddle point. They also cannot be initialized with
the same values, otherwise, all the neurons of a hidden layer would have the
same behaviour. We generally initialize the weights at random: the values
W

(k)
i,j are i.i.d. Uniform on [−c, c] with possibly c =

√
6

Nk+Nk−1
where Nk is

the size of the hidden layer k. We also sometimes initialize the weights with a
normal distribution N (0, 0.01) (see Goodfellow et al. (2016) [17]).

5 Regularization
To conclude, let us say a few words about regularization. We have already

mentioned L2 or L1 penalization; we have also mentioned early stopping. For
deep learning, the mostly used method is the dropout. It was introduced by
Hinton et al. (2012), [20]. With a certain probability p, and independently of
the others, each unit of the network is set to 0. The probability p is another
hyperparameter. It is classical to set it to 0.5 for units in the hidden layers,
and to 0.2 for the entry layer. The computational cost is weak since we just
have to set to 0 some weights with probability p. This method improves sig-
nificantly the generalization properties of deep neural networks and is now the
most popular regularization method in this context. The disadvantage is that
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training is much slower (it needs to increase the number of epochs). Ensem-
bling models (aggregate several models) can also be used. It is also classical
to use data augmentation or Adversarial examples. In the course High Dimen-

Figure 9.5: Dropout - source: http://blog.christianperone.com/

sional and Deep Learning next year, we will see the convolutional neural
networks, which are particularly adapted for image classification.

6 Conclusion
We have presented in this course the feedforward neural networks, and

explained how the parameters of these models can be estimated. The choice
of the architecture of the network is also a crucial point. Several models
can be compared by using a cross validation method to select the "best" model.

The perceptrons are defined for vectors. They are not well adapted for some
types of data such as images. By transforming an image into a vector, we

loose spatial information, such as forms.

The convolutional neural networks (CNN) introduced by Le Cun (1998)
[23] have revolutionized image processing. CNN act directly on matrices, or
even on tensors for images with three RGB color channels. They are also based
on the methods presented in this course to estimate their parameters (backprop-
agation equations, optimization algorithms ..) The presentation of the convo-
lutional neural networks will studied next year in the High Dimensional and
Deep Learning course.
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Chapter 10

Imputation of missing data

1 Introduction
Despite the increasing amount of available data and the emergence of the Big

Data, missing data issues remain a common statistical problem and require a
special approach. Ignoring missing data can lead not only to a loss of precision,
but also to strong biases in analysis models.

Data are composed of p quantitative or qualitative variables (Y1, . . . , Yp)
observed on a sample of n individuals. There are missing data represented by
the M matrix called indication of missing values [31] whose form depends on
the type of missing data.

The main points treated in this chapter are the definition of the different
types of missing data and the illustration of their possible distributions, the de-
scription of the main strategies for managing missing data by data deletion or
completion. The problem is vast and we do not claim to deal with it exhaus-
tively.

2 Types of missing data
In order to properly address the imputation of missing data, it is necessary

to distinguish the causes of missing data, especially if they are not simply the
result of hazard. A typology has been developed by Little & Rubin (1987),
dividing them into 3 categories:

MCAR (missing completely at random). A data is MCAR if the probability
of absence is the same for all observations. This probability therefore
depends only on external parameters independent of this variable. For
example: if each participant in a survey decides to answer the income
question by rolling a die and refusing to answer if face 6 appears [1].
Note that if the amount of MCAR data is not too large, ignoring obser-
vations with missing data will not bias the analysis. However, a loss of
precision in the results will probably occur since the model is built with
less observations.

MAR (Missing at random). The case of MAR data occurs when the data are
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not missing completely randomly. Namely, if the probability of missing
data is related to one or more other observed variables, it is referred to as
"Missing at Random" (MAR). Appropriate statistical methods are avail-
able to avoid bias in the analysis (see Section 4).

MNAR (Missing not at random) Data is missing not at random (MNAR) if
the probability of absence depends on the variable where a missing value
occurs. A common example [1][25] is when people with a large income
refuse to give their income. MNAR data induce a loss of precision (inher-
ent to any case of missing data) but also a bias that requires the use of a
sensitivity analysis.

2.1 Distribution of missing data

Let Y = (yij) ∈ Rn×p be the rectangular matrix of data for p variables
Y1, . . . , Yp and n observations. Let us consider M = (mij) the matrix of
indication of the missing values [31], which will define the distribution of the
missing data. We will then consider 3 types of distribution :

1. Univariate missing values. Missing values occur only for one variable Yk.
If an observation yki is missing, then there will be no more observations
of this variable, the observations ykl for l ≥ i are missing. An illustration
is given in Figure 10.1 (case a)).

2. Missing values are said to be monotones if Yj missing for an individual
i implies that all the following variables {Yk}k>j are missing for this
individual (Figure 10.1, case b)). The missing data indicator M is then an
integer M ∈ {1, 2, . . . , p} for each individual, indicating the largest j for
which Yj is observed.

3. The missing values are not monotonic (or arbitrary), as shown in Figure
10.1, case c). In this case, the matrix of missing values is defined by
M = (mij) with mij = 1 if yij is missing and zero otherwise.

Figure 10.1: Distribution of missing data. (a) univariate, (b) monotonous, (c)
arbitrary/non-monotonous

In the case of longitudinal data (see figure 10.2), the monotonic distribution
corresponds to a right censoring.

Figure 10.2: Distributions of missing data for longitudinal variables. (a) full
set, (b) arbitrary/non-monotonic and (c) monotonic

2.2 Probability of absence

The probability of absence according to the type of missing data (MCAR,
MAR, MNAR) can be expressed in terms of the matrix M [31]. The data are
divided in two according to the M matrix of missing data. Therefore, Yobs =
Y 1{M=0} is defined as observed data and Ymis = Y 1{M=1} as missing data.
Finally Y = {Yobs, Ymis}. The missing data mechanism is characterized by
the conditional distribution p(M |Y ).

• In the case of MCAR data, the absence of data does not depend on Y
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values so
p(M |Y ) = p(M) for all Y.

• In the case of MAR, the absence of data depends only on Yobs :

p(M |Y ) = p(M |Yobs) for all Ymis.

• Finally, the data are MNAR if the distribution of M also depends on Ymis.

Example for a univariate sample

Let Y = (y1, . . . , yn)> where yi is the observation of a random variable for
the individual i, and M = (M1, . . . ,Mn) where Mi = 0 for observed data
and Mi = 1 for missing data. It is also assumed that the joint distribution is
independent of the individuals. So

p(Y,M) = p(Y )p(M |Y ) =

n∏
i=1

p(yi)

n∏
i=1

p(Mi|yi)

where p(yi) is the density of yi and p(Mi|yi) is the density of a Bernoulli
distribution with the probability P(Mi = 1|yi) that yi is missing.

If P(Mi = 1|yi) = α with α a constant that does not depend on yi then it is
a MCAR (or in this case also MAR) case. If P(Mi = 1|yi) depends on yi then
the missing data mechanism is MNAR.

3 Analysis without completion

3.1 Methods with data deletion

In some cases, analysis is possible without imputing missing data. In gen-
eral, two classical methods are used :

• Analysis of complete cases, which consists in considering only those
individuals for whom all the data are available, i.e. by delet-
ing lines with missing values. This is done automatically with R
(na.action=na.omit). This method, as can be seen in 10.3, may
delete too much data and hence greatly increase the loss of precision. In
addition, if the data are not MCAR, removing observations will bias the
analysis since the subsample of cases represented by the complete data
may not be representative of the original sample.

Figure 10.3: Distribution of missing data. (a) original data with arbitrary miss-
ing values, (b) remaining observations in complete case analysis

• Analysis of available cases. In order to avoid deleting too much data, it
is possible to do available-case analysis. Different aspects of the prob-
lem are then studied with different sub-samples. However, the different
analyses will not necessarily be compatible with each other. For example,
if a variable Y1 is available for all individuals and a variable Y2 only for
80% of the individuals, we may estimate the distribution of Y1 with all the
individuals and the distribution of Y2 with 80% of the individuals. The
available-case analysis also refers to the case where a variable is removed
from the dataset because it has too many missing values.
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3.2 Methods tolerant to missing data

While most methods automatically remove missing data, some tolerate
them. This is the case for example of trees (CART) which consider surro-
gate splits : At each node splitting, several optimal pairs variable/threshold are
considered and memorized. To compute a prediction, if the data is missing for
an observation, it is not the best division that is used but the one just after.

4 Imputation Methods
This section provides a non-exhaustive overview of the most common com-

pletion methods. A dataset consists of p quantitative or qualitative variables
(Y1, . . . , Yp) observed for a sample of n individuals; M refers to the matrix
indicating missing values by mij = 1{yij .missing}

4.1 Stationary completion

There are several possible stationary completions : the most frequently rep-
resented value (Concept Most Common Attribute Value Fitting, CMCF [39])
or simply the last known value (Last observation carried forward, LOCF).
This method may seem too naive but is often used to lay the foundation for a
comparison between completion methods.

4.2 Completion by a linear combination of observa-
tions

Another common technique is to replace all missing values with a linear
combination of observations. Let us mention the imputation by the mean : the
missing value Yij is replaced by the mean Ȳj over all observed values of the
variable Yj . This case is generalized to any weighted linear combination of the
observations. The median of Yj can also be considered.

Instead of using all available values, it is possible to restrict oneself to meth-

ods that select the most influential values by local aggregation or regression or
even by combining different aspects.

4.3 Nearest Neighbor Method (KNN)

The completion by k-nearest neighbors or KNN consists in running the fol-
lowing algorithm that models and predicts the missing data. Assume that the
values Yi?,J are missing, where J is the subset of variables not observed for
the individual i?.

Algorithm 10 Algorithm of k-nearest neighbors (k-nn)
Choice of an integer 1 ≤ k ≤ n.
Computation of the distances d(Yi? , Yi) , i = 1, . . . , n (using only the
observed variables for Yi? to compute the distances).
Retrieve the k observations Y(i1), . . . , Y(ik) for which these distances are the
smallest.
Assign to the missing values the average of the values of the k-nearest neigh-
bors :

∀j? ∈ J, Yi?j? =
1

k

(
Y(i1),j? + . . .+ Y(ik),j?

)

The nearest neighbors method requires the choice of the parameter k by
optimization of a criterion. Moreover, the notion of distance between indi-
viduals must be chosen carefully. One generally considers the Euclidean or
Mahalanobis distance.

4.4 Local regression

The LOcal regrESSion : LOESS [40] also allows to impute missing data.
For this, a polynomial with small degree is fitted around the missing data by
weighted least squares, giving more weight to values close to the missing data.
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Let Yi? be an observation with q (among p) missing values. These missing
values are imputed by local regression following the algorithm below :

Algorithm 11 Algorithm LOESS
Getting the k nearest neighbors Y(i1), . . . , Y(ik).
Creation of matrices A ∈ Rk×(p−q), B ∈ Rk×q and w ∈ R(p−q)×1 such
that :

- Lines ofA correspond to the k nearest neighbors deprived of the values
at the indices of the missing variables for Yi? .

- The columns of B correspond to the values of the neighbors for the
indices of the missing variables for Yi? .

- The vector w = (Yi?)obs corresponds to the (p − q) observed values
of Yi? .

Solving the Least Square Problem

x? = argminx∈Rk ‖ A>x− w ‖

where ‖ · ‖ is the quadratic standard of Rk.
The vector of missing data is then predicted by

(Yi?)mis = B>x?.

4.5 By singular value decomposition (SVD)

Cases where there is sufficiently observed data

If there are much more observed data than missing ones, the dataset Y is
separated into two groups : on one side Y c with the complete observations
and on the other side Y m including the individuals for which some data are

missing. We then consider the truncated singular value decomposition (SVD)
of the complete set Y c (see [15]) :

ŶJ
c

= UJDJV
>
J

where DJ is the diagonal matrix including the J first singular values of Y c.
Note that VJ ∈Mp,J(R). The missing values are then imputed by regression.
More precisely, let (Yi?)obs ∈ Rp−q the set of observed values for Yi? , let V ?J
be the truncated version of VJ , i.e. for which the lines corresponding to the q
missing variables for Yi? have been deleted. Hence V ?J ∈ Mp−q,J(R). Then
the prediction of the q missing data for the individual i?, (Yi?)mis is given by

(Yi?)mis = V
(?)
J β̂,

where V (?)
J ∈Mq,J(R) is the complement of V ?J in VJ and

β̂ = (V ?>J V ?J )−1V ?>J (Yi?)obs.

As for KNN, this method requires the choice of the parameter J .

Cases with too many missing data

If there are too many missing data, this will induce a significant bias in the
calculation of the SVD decomposition. In addition, there may be at least one
missing data for all observations. In this case, the following problem must be
solved :

min
UJ ,VJ ,DJ

‖ Y −m− UJDJV
>
J ‖? (10.1)

where ‖ · ‖? sums the squares of the elements of the matrix, ignoring the
missing values and m is the vector of the means of the observations. The
resolution of this problem follows the following algorithm :
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Algorithm 12 Algorithm of Completion by SVD
Create a matrix Y 0 for which the missing values are completed by the mean.
Calculate the SVD solution of the problem (10.1) for the completed matrix
Y k. We thus create Y k+1 by replacing the missing values of Y by those of
the regression.
Iterate the previous step until ‖ Y k − Y k+1 ‖ / ‖ Y k ‖< ε, arbitrary
threshold (often at 10−6).

4.6 Use of Random Forests

Stekhoven and Bühlmann (2011)[12] have proposed a completion method
based on random forests called missForest. An R library of the same name
is associated with it. This method requires a first naive imputation, by default
a completion by the mean, in order to obtain a complete learning sample. Then
a series of random forests are adjusted until the first degradation of the model.

To formalize this, the initial dataset is separated into four parts. For each
variable Y s, s = 1, . . . , p whose missing values are indexed by ismis ⊆
{1, . . . , n}, one defines

1. ysobs the observed values for Y s.

2. ysmis the missing values for Y s.

3. Xs = Y \ Y s the set of regressors of Y s among which we consider

(a) xsobs the observed regressors for isobs = {i, . . . , n} \ ismis
(b) xsmis all the regressors (observed and missing) for ismis

The method then follows the following algorithm :

MissForest Algorithm

1. First "naive" completion of missing values.

2. Let K be the vector of column indices of Y sorted by increasing amount
of missing values;

3. while γ is not reached do

(a) Y oldimp = previously imputed matrix

(b) for s in K do

i. Adjust y(s)
obs ∼ x

(s)
obs by a random forest

ii. Predict y(s)
mis with the regressors x(s)

mis.

iii. Y newimp is the new matrix completed by the predicted values y(s)
mis

(c) end for
(d) update the γ criterion

(e) end while

4. return the imputed matrix Yimp.

The stopping criterion γ is reached as soon as the difference between the
newly imputed matrix and the previous one increases for the first time. The
difference of the set of continuous variables is defined as

∆N =

∑
j∈N

(
Y newimp − Y oldimp

)2∑
j∈N

(
Y newimp

)2

http://wikistat.fr
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For the set of qualitative variables F , the difference is defined by

∆F =

∑
j∈F

∑n
i=1 1Y newimp 6=Y oldimp

#NA

where #NA is the number of missing values in the categorical variables.

4.7 Bayesian Inference

Let θ be the realization of a random variable and let p(θ) be its distribution
a priori. The distribution a posteriori is thus given by:

p(θ|Yobs) ∝ p(θ)f(Yobs/θ)

Tanner and Wong’s (1987) data augmentation method iteratively simulates
random samples of missing values and model parameters, taking into account
the observed data at each iteration, consisting of an imputation step (I) and a
"posterior" step (P).

Let θ(0) be an initial draw obtained from an approximation of the posterior
distribution of θ. For a value of θ(t) of θ at an instant t

• Imputation (I) : simulate Y (t)
mis with a density p(Ymis|Yobs, θ(t)).

• Posterior (P) : simulate θ(t+1) with a density p(θ|Yobs, Y (t)
mis)

This iterative procedure converges to a draw of the joint distribution of
(Ymis, θ|Yobs) when t→ +∞.

4.8 Multiple Imputation

Multiple imputation consists, as its name suggests, of imputing missing val-
ues several times in order to combine the results to reduce the error due to the

imputation [11]. It also allows to define a measure of the uncertainty induced
by the completion.

Maintaining the original variability of the data is done by creating imputed
values that are based on variables correlated with missing data and causes of
absence. Uncertainty is taken into account by creating different versions of
missing data and observing the variability between imputed data sets.

Amelia II

Amelia II is a multiple imputation program developed by James Honaker
et al (2011) [21]. The model is based on an assumption of normality : Y ∼
Nk(µ,Σ), and thus sometimes requires prior transformations of the data.

Let M be the matrix indicating the missing data and θ = (µ,Σ) the param-
eters of the model. Another hypothesis is that the data are MAR so

p(M |Y ) = p(M |Yobs)

The likelihood p(Yobs|θ) is then written as follows

p(Yobs,M |θ) = p(M |Yobs)p(Yobs|θ)

So
p(θ|Yobs) ∝ p(Yobs|θ)

Using the iterative property of the expectation,

p(Yobs|θ) =

∫
p(Y |θ)dYmis

We thus obtain the a posteriori distribution

p(θ|Yobs) ∝ p(Yobs|θ) =

∫
p(Y |θ)dYmis

http://wikistat.fr
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Amelia II’s EMB algorithm combines the classical EM algorithm (for max-
imum likelihood) with a bootstrap approach. For each run, the data are esti-
mated by bootstrap to simulate the uncertainty then the EM algorithm is run to
find the a posteriori estimator θ̂MAP for the bootstrap data. Imputations are
then created by drawing Ymis according to its conditional distribution on Yobs
and simulations of θ.

5 Examples

5.1 Gas consumption frauds

The different completion methods were tested and compared on an example
of gas consumption fraud detection. Let Y ∈ Rn×12 such that yij is the indi-
vidual’s gas consumption for individual i in month j. The distribution of the
missing data is non-monotonic and we assume MAR data. After a log transfor-
mation in order to approach normality, completion was performed. The results
were compared with a test sample of 10% of the data, previously removed from
the set.

This actual data set had at least one missing value per individual, and a total
of 50.4% of the data was missing. If we consider only the individual monthly
consumption, we obtain the error distribution of each method shown in Figure
10.4.

5.2 Parisian stock market outstanding (EBP)

We are interested in the prices of stock market assets on the Paris market
from 2000 to 2009. We consider 252 prices of companies or indexes regu-
larly quoted over this period. By limiting ourselves to the MCAR case, we
artificially create more and more missing data to impute. For 10% of missing
data, a comparison of imputation methods is given Figure 10.5. Three methods
outperform the others : SVD, missForest and Amelia II.

Figure 10.4: Fraud - Completion errors on a test sample

Figure 10.5: EBP - Completion errors on a 10%
test sample

http://wikistat.fr
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The robustness of these methods was tested by gradually increasing the
amount of missing data. The results are given Figure 10.6 for Amelia II and
Figure 10.7 for missForest.

Figure 10.6: EBP - Completion errors on a test sample by Amelia II when the
amount of missing values increases

5.3 Coronary Heart Disease (CHD)

Most imputation methods are defined only for quantitative variables.
However, some of the methods presented above can be used to impute
qualitative or even heterogeneous data. This is the case of LOCF, KNN
and missForest, which were therefore tested on a reference data set on
completion problems [27]. The data were acquired by Detranao et al (1989)
[30] and made available by Bache and Lichman (2013)[4]. They are in the
form of a matrix of medical observations Y ∈ Rn×14 of 14 heterogeneous
variables for n patients. The dataset thus contains quantitative (age,
pressure, cholesterol, maximum heart rate, oldpeak)
and qualitative variables (sex, pain, sugar, cardio, angina,

Figure 10.7: EBP - Completion errors on a test sample by missForest when the
amount of missing values increases

peak slope, number of heart vessels, thalassemia,
absence/presence of heart disease).

By always limiting oneself to the MCAR case, one artificially creates more
and more missing data to be imputed. The adequacy of the imputation is given
by the mean of the error in absolute value in the case of quantitative data and
by the Hamming distance in the case of qualitative data. The results are shown
in Figure 10.8.

http://wikistat.fr
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Figure 10.8: CHD - Completion errors on a test sample by LOCF (black), KNN
(red) and missForest (green) when the amount of missing values increases, for
a qualitative (above) and quantitative (below) variable

.

http://wikistat.fr


Chapter 11

Anticiper les Risques Juridiques des Systèmes d’IA

Résumé

Faisant suite au déploiement du RGPD, la Commission Européenne
a publié, en février 2020 un livre blanc pour une approche de l’IA
basée sur l’excellence et la confiance et dont les recommandations
sont largement issues du guide pour une IA digne de confiance
rédigé en 2019 par un groupe d’experts européens. Au delà des ques-
tions prioritaires de protection des données au cœur des missions de
la CNIL, ce livre blanc soulève avec insistance d’autres questions
relatives aux risques des impacts des algorithmes d’apprentissage
automatique sur notre société: qualité, reproductibilité de déci-
sions algorithmiques, opacité des algorithmes et explicabilité des
décisions, biais et risques de discrimination. En nous basant sur
l’exemple bien connu du score de crédit, nous décrivons quels outils,
procédures, indicateurs (cf. tutoriel), pourraient participer à la con-
struction d’un DIA ou Discrimination Impact Assessment souhaité
par le rapport Villani (2018) et cohérent avec la liste d’évaluation
du groupe des experts européens. Les exemples traités montrent les

difficultés et même l’impossibilité d’un audit ex post d’un système
d’IA sur la base d’algorithmes d’apprentissage. Nous concluons sur
la nécessité de la mise en place d’audits sur la base de documenta-
tions précises et exhaustives ex ante d’un système d’IA.

1 Introduction

1.1 Battage médiatique

L’intelligence artificielle (IA) dite faible, opposée à une IA forte supposée
disposer d’une conscience de soi et que nous laisserons à la science fic-
tion, recouvre une grande variété d’objets, méthodes et algorithmes suscepti-
bles d’imiter des comportements humains "intelligents": robots, véhicules au-
tonomes, systèmes experts, algorithmes d’apprentissage automatique... Depuis
2012 nous sommes soumis à une déferlante médiatique sans précédent sur les
applications des algorithmes d’IA associés à des succès retentissants : recon-
naissance d’images et diagnostic automatique, véhicules autonomes, victoire
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au go, traduction automatique... Ce battage médiatique fait suite à celui sur
l’avènement du stockage tous azimuts de données massives ou big data et
leur utilisation pour alimenter les nouveaux algorithmes d’IA exécutés dans
des environnements technologiques en constante progression. Cette conver-
gence entre données massives, algorithmes performants et puissance de calcul
est à l’origine de l’expansion exceptionnelle des usages de l’IA dans tous les
domaines de nos quotidiens. Les principaux acteurs technologiques comme
Google, Facebook, Amazon ou Microsoft, ont tout intérêt à sur-médiatiser
ces succès puisque des revenus considérables proviennent de la vente de
l’application de ces technologies à notre profilage publicitaire. Ils se doivent
donc d’en promouvoir l’efficacité, même si ses succès diffèrent largement en
fonction du domaine d’application et si elle peut s’avérer anxiogène dans ses
conséquences sociétales, tant sur la destruction d’emplois même qualifiés, que
sur la déresponsabilisation des acteurs humains ou encore l’exposition des don-
nées de la vie privée.

1.2 Confiance et acceptabilité

Une composante importante de la publicité excessive autour de l’IA con-
cerne son acceptabilité, comme celle de toute nouvelle technologie pénétrant
ou plutôt envahissant nos quotidiens. Le principal enjeu est de cultiver ou
conquérir la confiance des utilisateurs, qu’ils soient consommateurs, clients,
patients, contribuables, justiciables ou citoyens, pour une IA acceptable. En
première ligne, les entreprises privées spécialistes des réseaux sociaux et tech-
nologies numériques, rejoints ensuite par plus de 90 partenaires, se sont em-
pressées, dès 2015, de signer une charte de partenariat pour une IA au bénéfice
du peuple et de la société. Dès lors, tous les acteurs publics institutionnels
ont rejoint le mouvement ; citons parmi les plus récents la partie 5 du rapport
Villani pour donner un sens à l’IA (Villani et al. 2018), les lignes directrices
pour une IA digne de confiance des hauts experts désignés par la Commis-
sion Européenne (High Level Expert Group 2019), ou encore la déclaration

de Montréal pour le développement d’une IA responsable (2018). C’est plus
largement une avalanche de recommandations pour une IA éthique au service
de l’humanité dont Jobin et al. (2019) explore le paysage. Les enjeux sont
considérables car, en l’absence de confiance, les utilisateurs n’accepteront pas
l’IA. Sans acceptation sociale, les entreprises technologiques ne pourront plus
collecter toutes les données nécessaires et ne pourront pas développer une IA
pertinente, source de profits. Les conséquences de l’affaire Cambridge Ana-
lytica sur l’encours boursier de Facebook, en mars 2018, en furent une démon-
stration éclatante.

1.3 Éthique et protection juridique

Cette affaire qui peut être citée parmi d’autres : condamnations succes-
sives de Google pour entrave à la concurrence, fuites massives et répétées de
données personnelles, utilisations abusives de celles-ci... nous rappelle que
le but premier des entreprises commerciales ou de leurs dirigeants n’est pas
l’altruisme ou la philanthropie mais le montant des encours boursier ou celui
des dividendes distribués à leurs actionnaires. Ces profits nécessitent des pra-
tiques éthiques pour être acceptables mais la confiance des usagers sera nette-
ment plus franche et massive si elle repose sur une protection juridique, plutôt
que sur de bonnes intentions éthiques (ethical washing), aussi louables soient-
elles. En France, la première version de la loi Informatique et Liberté date
de 1978. Ce texte précurseur marqua une réelle anticipation des problèmes à
venir. En revanche, à l’heure actuelle, la loi peine à suivre les évolutions ou
disruptions technologiques.

L’entrée en vigueur du RGPD (Commission Européenne 2018), puis son in-
tégration dans les textes nationaux des États membres signe une avancée ma-
jeure pour la protection des données personnelles en Europe. Le principe de
sécurité et confidentialité, au cœur de l’action de la Commission Nationale de
l’Informatique et des Libertés (CNIL) en France, est en effet une priorité mais
d’autres aspects, tant juridiques qu’éthiques, sont à considérer pour instaurer

http://wikistat.fr
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ou restaurer la confiance des usagers envers ces nouvelles technologies. Ainsi,
l’article 22.1 du RGPD (Commission Européenne 2018) accorde aux person-
nes concernées le droit de ne pas faire l’objet d’une décision fondée exclusive-
ment sur un traitement automatisé, produisant des effets juridiques la concer-
nant ou l’affectant de manière significative. Repris dans les lois nationales des
États membres, cet article a pu servir de fondement en droit français pour re-
connaître un droit à l’explicabilité des décisions algorithmiques, dans le souci
de lutter contre les risques de discrimination. Ces préoccupations rejoignent
les exigences publiques exprimées dans un sondage réalisé au Royaume-Uni
(Vayena et al. 2018) au sujet des applications de l’IA en médecine.

Un large consensus est donc établi sur la nécessité de pratiques en IA re-
spectueuses de l’éthique. Néanmoins, compte tenu des pressions financières,
un cadre juridique s’avère indispensable. Il est un préalable à des pratiques
vertueuses génératrices de confiance. Tel est bien l’objectif de la Commission
Européenne (CE) qui propose les éléments clefs d’un futur cadre réglemen-
taire dans le livre blanc (Commission Européenne 2020) pour une IA basée
sur l’excellence et la confiance fondée sur les droits fondamentaux de la dig-
nité humaine et la protection de la vie privée. La rédaction de ce livre blanc
s’appuie sur les lignes directrices pour une IA de confiance (High Level Ex-
pert Group 2019) rédigées par un groupe d’experts et dont il est important
d’anticiper l’impact à venir. En résumé, les technologies de l’IA se dévelop-
pent à grande vitesse dans un contexte juridique très complexe mais insuffisant
à encadrer les risques sociaux susceptibles de se produire. Ce cadre légal est
appelé à évoluer, au moins en Europe, afin de minimiser les risques et créer les
conditions d’une acceptabilité sociale de l’IA.

La section deux, uqi peut être sautée par un lecteur déjà expert, précise de
quelle IA il est question, la troisième tente de résumer le cadre juridique actuel
et celui réglementaire européen à venir. Puis, chaque section aborde un risque
particulier: qualité des décisions algorithmiques, explicabilité ou opacité, avec
un focus particulier sur ceux de biais et discriminations avant de conclure sur

la nécessité d’une approche documentaire exhaustive ex ante d’un algorithme
en vue d’un audit.

2 De quelle IA est-il question?

2.1 IA du quotidien et apprentissage statistique

Nous n’aborderons pas les questions d’IA forte ou celles de science fiction:
transhumanisme, singularité technologie, lois d’Asimov. Nous n’évoquerons
pas non plus les questions sociologiques anxiogènes: destruction d’emplois
qualifiés, surveillance généralisée de la population. Ce chapitre s’intéresse
aux usages quotidiens des systèmes d’IA. Le choix d’un traitement médical,
d’une action commerciale, d’une action de maintenance préventive, d’accorder
ou non un crédit, de surveiller plus particulièrement un individu, de bloquer
un paiement... Toutes les décisions qui en découlent sont la conséquence
d’une prévision. La prévision du risque ou de la probabilité de diagnostic
d’une maladie, le risque de rupture d’un contrat par un client qui est le score
d’attrition (churn), le risque de défaillance d’un système mécanique, de défaut
de paiement d’un client, de radicalisation ou passage à l’acte d’un individu,
de fraude... Les exemples sont très nombreux et envahissent notre quotidien.
Ces prévisions de risques ou scores, par exemple de crédit, sont produits par
des algorithmes d’apprentissage statistique, après entraînement sur une base
de données.

De façon générale, un modèle est estimé ou un algorithme entraîné pour
rendre visibles des relations entre une variable Y cible (le risque, le diag-
nostic...) et un ensemble de variables ou caractéristiques (features) dites ex-
plicatives Xj=1,...,p : socio-économiques biologiques... Toutes ces variables
(Y,Xj) sont mesurées, observées, sur un ensemble i = 1, . . . , n d’individus
ou instances appelé échantillon d’apprentissage ou d’entraînement. Une fois
un modèle estimé ou un algorithme entraîné sur ces données, la connaissance

http://wikistat.fr
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d’un vecteur x0, contenant les observations des variables Xj pour un nouvel
individu, permet d’en déduire une prévision de la valeur ou de la classe y0 le
concernant. Le modèle ou l’algorithme calcule automatiquement cette valeur
y0 en combinant, en fonction de l’algorithme utilisé, celles yi observées sur les
individus présents dans la base d’apprentissage et proches de x0, en un certain
sens, au regard des valeurs xij . Autrement dit, la prévision d’une nouvelle
situation et donc la décision qui en découle, est construite automatiquement
à partir des situations lui ressemblant le plus dans la base d’apprentissage et
dont les décisions sont déjà connues. Le principe repose sur la stationnarité des
données: la loi apprise sur l’échantillon d’apprentissage est la même que celle
des données que l’on veut tester. En conséquence, l’apprentissage statistique
n’invente rien, il reproduit un modèle connu et le généralise aux nouvelles don-
nées, au mieux selon un critère spécifique d’ordre statistique à optimiser. Plus
on possède de données, meilleure sera la connaissance fournie par ce modèle.
Ceci souligne le rôle fondamental joué par les données et donc le succès des
grands acteurs d’internet et des réseaux sociaux qui bénéficient d’une situa-
tion de monopole sur des masses considérables de données comportementales
des internautes pour les traduire en profilage et donc en recettes publicitaires.
Transposé à d’autres domaines dont celui de la santé, où l’objectif est une prise
en compte toujours plus fine de la complexité du vivant, le premier enjeu est
l’accès à de grandes masses de données personnelles excessivement sensibles,
objet de toutes les convoitises.

2.2 Statistique inférentielle vs. apprentissage statis-
tique

Deux objectifs doivent être clairement distingués dans les applications, tant
de la statistique que de l’IA pour lever une ambiguïté trop répandue. Le pre-
mier objectif est celui explicatif de la statistique inférentielle, poursuivi par
la mise en œuvre de tests, afin de montrer l’influence d’un facteur en con-
trôlant le risque d’erreur, soit le risque de rejeter à tort une hypothèse dite H0

et donc de considérer que le facteur à un impact, alors qu’il n’en a pas. C’est le
cas typique des essais cliniques de phase III, durant lesquels une molécule est
prescrite en double aveugle à un groupe témoin, tandis que le groupe contrôle
reçoit un placebo. Pour beaucoup de disciplines académiques, le test statistique
constitue un outil de preuve scientifique même si son usage, parfois abusif, est
mis en cause voire controversé à cause du manque de reproductibilité de trop
nombreuses publications scientifiques (Ioannidis 2016).

Le deuxième objectif est prédictif, en utilisant des modèles statistiques clas-
siques ou les algorithmes d’apprentissage automatique plus récents et sophis-
tiqués. Deux sous-objectifs sont à considérer; le premier est une prévision avec
explication des résultats, de la façon dont les variables Xj influent sur la cible
ou variable réponse Y . Le deuxième est une prévision brute sans recherche ou
possibilité d’explication. Mais dans les deux cas, le data scientist sélectionne
le modèle ou algorithme minimisant une estimation ou mesure d’une erreur de
prévision qui contrôle le risque d’erreur de la décision qui en découle. In fine
l’erreur de prévision de l’algorithme sélectionné est estimée sur un échantillon
test indépendant, différent de l’échantillon d’apprentissage sur lequel il a été
entraîné; c’est aussi à la base de toute procédure de certification précédant sa
mise en exploitation.

Il y a donc, selon les objectifs, deux types de risque ou d’erreur. Celui de
se tromper en affirmant qu’un facteur est influent et celui de se tromper de
décision à cause d’une erreur de prévision. Laissons la question, largement
débattue par ailleurs (Ioannidis 2016), de la pertinence des tests statistiques
pour nous focaliser sur celle de la qualité de prévision plus spécifique à l’IA.
Il existe de très nombreux critères ou métriques pour évaluer une erreur de
prévision. Ce peut être un simple taux d’erreur pour la prévision d’une variable
binaire : tissus pathologique ou sain, une erreur quadratique moyenne pour
une variable Y quantitative. Dans beaucoup de publications du domaine de la
santé, il est fait référence à l’aire sous la courbe ROC (Area Under the Curve,
AUC) pour évaluer la qualité d’un algorithme pour une prévision binaire.

http://wikistat.fr
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2.3 Facteurs de qualité d’une prévision

Plus précisément, quels sont les composants d’un modèle statistique ou al-
gorithme d’apprentissage qui sont déterminants pour la qualité de prévision et
donc pour les risques d’erreur de la décision qui en découle?

Le point fondamental pour la qualité ou robustesse, voire la certification
d’un algorithme d’apprentissage statistique, est, en tout premier lieu, la qual-
ité des données disponibles, ainsi que leur représentativité du domaine d’étude
ou d’application concerné. Les données d’entraînement de l’algorithme sont-
elles bien représentatives de l’ensemble des situations ou cas de figure suscep-
tibles d’être, par la suite, rencontrés lors de l’exploitation de l’algorithme? Il
s’agit d’anticiper une capacité de généralisation de son usage. En effet si des
groupes ou des situations sont absents ou simplement sous-représentés c’est-
à-dire si les données sont, d’une façon ou d’une autre, biaisées, le modèle ou
l’algorithme qui en découle ne fait que reproduire les biais ou s’avère incapable
de produire des prévisions correctes de situations qu’il n’a pas suffisamment
apprises lors de son entraînement. Ce problème est très bien référencé dans
la littérature et souligné dans les rapports et guides éthiques. C’est même un
vieux problème déjà formalisé en statistique pour la constitution d’un échantil-
lon relativement à une population de référence en planification d’expérience ou
en théorie des sondages. Ce n’est pas parce que les données sont volumineuses,
déjà acquises, qu’il faut pour autant tout prendre en compte ou ne pas se préoc-
cuper d’en acquérir d’autres. Considérons l’exemple typique de la prévision
d’événements rares mais catastrophiques. Un algorithme naïf, pour ne pas dire
trivial, conduit à un très faible taux d’erreur, s’il ne prévoit aucune occurrence
de l’événement rare mais est inutile voire dangereux. L’expérience du data sci-
entist le conduit alors à sur-représenter (sur-échantillonnage) les événements
rares, ou sous-échantillonner ceux très fréquents ou encore à introduire des
pondérations dans le choix de la fonction objectif à optimiser. Ces pondéra-
tions dépendent de l’asymétrie des coûts, à évaluer par des experts métier, d’un
faux positif ou prévision à tort d’un événement exceptionnel, relativement au

coût induit par un faux négatif qui n’anticipe pas la catastrophe.

La précédente question concerne la représentativité des individus ou situ-
ations présentes dans la base d’entraînement relativement à une population
théorique de référence. La deuxième soulève celle du choix ou de la disponi-
bilité des caractéristiques (features) ou variables observées sur ces individus.
Elle peut se formuler de la façon suivante : les causes effectives de la cible ou
variable Y à modéliser, ou des variables qui lui seraient très corrélées, sont-
elles bien prises en compte dans les observations? Dans le même ordre d’idée
et avec les mêmes conséquences, des mesures peuvent être erronées, soumises
à du bruit. Ces questions ne sont pas plus faciles à résoudre que celles de
représentativité précédentes, car il n’est pas possible de palier une absence
d’information ou rectifier des erreurs de mesures ou de labellisations, mais il
est plus simple d’en circonscrire les conséquences en estimant précisément les
erreurs d’ajustement du modèle ou d’entraînement de l’algorithme puis celles
de prévision; elles resteront plus ou moins importantes mais évaluables, quel
que soit le nombre de variables pris en compte ou le volume des données ac-
cumulées.

Plus précisément, la taille de l’échantillon ou le nombre d’instances de la
base d’apprentissage intervient à deux niveaux sur la qualité de prévision. La
taille nécessaire dépend, d’une part, de la complexité de l’algorithme, du nom-
bre de paramètres ou de poids qui en définit la structure et, d’autre part, de
la variance du bruit résiduel ou erreur de mesure. Un algorithme est entraîné,
en moyenne, et la taille de l’échantillon doit être d’autant plus grande que la
variance de l’erreur de mesure est importante. Les réseaux de neurones pro-
fonds appliqués à des images de plusieurs millions de pixels sont composés de
dizaines de couches pouvant comporter des millions de paramètres ou poids à
estimer ; ils nécessitent des bases de données considérables.

Attention, lorsque n est très grand (big data) le modèle peut être bien estimé
car c’est une estimation en moyenne dont la précision s’améliore proportion-
nellement avec la racine de n. En revanche, une prévision individuelle est

http://wikistat.fr


112

toujours impactée par le bruit résiduel du modèle, sa variance, quelle que soit
la taille de l’échantillon. Aussi, même avec de très grands échantillons, la
prudence est de mise quant à la précision de la prévision d’un comportement
individuel surtout s’il est mal ou peu représenté dans la base: acte d’achat, acte
violent, défaut de paiement, occurrence d’une pathologie.

En résumé, les applications quotidiennes de l’IA sont l’exploitation
d’algorithmes d’apprentissage statistique, particulièrement sensibles à la qual-
ité des données d’entraînement. Leur quantité est importante mais ne suffit pas
à garantir la précision de prévisions individuelles qui doit être évaluée avec
soin, afin de garantir, certifier, l’usage d’un algorithme. Malgré les abus de
communication, l’IA ne se résume pas à l’utilisation de l’apprentissage pro-
fond. Le succès très médiatisé de certaines de ses applications ne doit pas
laisser croire que ces relativement bons résultats en reconnaissance d’images
ou traduction automatique sont transposables à tout type de problème.

Enfin, à l’exception des modèles statistiques élémentaires car linéaires ou
à celle des arbres binaires de décision, les algorithmes d’apprentissage statis-
tique sont opaques à une interprétation fine et directe de l’influence des car-
actéristiques d’entrée ou variables explicatives sur la prévision de la variable
cible Y . Ce point soulève des problèmes délicats lorsqu’il s’agit de fournir
l’explication intelligible d’une décision automatique.

Ce tout d’horizon met en évidence que l’usage de l’IA au quotidien soumet
la société à des impacts dont les risques sont maintenant bien identifiés (Besse
et al. 2017, Besse et al. 2019a) mais interdépendants et donc dans une situation
très complexe qui nécessite la recherche permanente d’un meilleur compromis.

1. Protection: propriété, confidentialité des données personnelles (RGPD,
CNIL);

2. Qualité, robustesse, résilience des prévisions donc des décisions;

3. Explicabilité vs. opacité des algorithmes;

4. Biais & Discrimination des décisions algorithmiques.

Plus un cinquième risque d’entrave à la concurrence de la part des navigateurs
ou des comparateurs de prix. Ces dernières pratiques font appel à d’autres
types d’algorithmes (ranking) qui ne seront pas pris en compte dans ce chapitre
mais dont les dérapages délictueux sont régulièrement condamnés par la jus-
tice.

3 Cadre juridique
Le cadre juridique français est composé d’un mille feuille de textes:

• Loi n°78-17 du 6/01/1978 relative à l’informatique aux fichiers et aux
libertés;

• Loi n°2015-912 du 24/07/2015 relative au renseignement;

• Loi n°2016-1321 du 7/10/2016 pour une République Numérique
(Lemaire);

• Décrets d’applications (2017);

• RGPD Règlement Général pour la Protection des Données 05-2018;

• Loi n°2018-493 du 20 juin 2018 informatique et libertés (LIL 3);

• Code pénal;

• Code des relations entre le public et les administrations;

• Code de la Santé publique;

• ...
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• Conseil Constitutionnel Décision n°2018-765 DC du 12 juin 2018.

dont il est fort complexe de tirer une synthèse globale. L’anlyse ci-dessous
reprend celle de Besse et al. (2019a).

3.1 Protection des données

La publication du RGPD (Règlement Général européen sur la Protection
des Données n°2016/679/UE) et son intégration dans les lois nationales ont
considérablement impacté la gestion des données dont celles impliquant des
personnes physiques avec l’introduction de la notion de Data Privacy Impact
Assessment (DPIA). Cette évaluation du bon usage des données est produite
par un outil développé par la CNIL sous la forme d’un logiciel d’Analyse
d’Impact relative à la Protection des données. Du point de vue juridique, il
s’agit d’un renversement de la charge de la preuve. Ce n’est pas à la CNIL ou
un usager d’apporter la preuve d’une fuite mais au DPO (data protection offi-
cer) d’une entreprise de montrer, en cas de contrôle, qu’il maîtrise la sécurité
des données personnelles dans toute la chaîne de traitement de l’acquisition
à la décision. La constatation de défaillances est l’occasion de très lourdes
sanctions financières : jusqu’à 20MC et majorée pour une entreprise à 4 % du
chiffre d’affaire annuel mondial

3.2 Qualité d’une décision

La question délicate de la qualité d’une décision algorithmique associée
à une estimation d’erreur de prévision n’est pas explicitement présente dans
RGPD ni les lois nationales qui en découlent. Notons néanmoins le consid-
érant 71 du RGPD qui recommande:

[...] Afin d’assurer un traitement équitable et transparent à l’égard
de la personne concernée, [...] le responsable du traitement devrait
utiliser des procédures mathématiques ou statistiques adéquates aux

fins du profilage, appliquer les mesures techniques et organisation-
nelles appropriées pour faire en sorte, en particulier, que les fac-
teurs qui entraînent des erreurs dans les données à caractère person-
nel soient corrigés et que le risque d’erreur soit réduit au minimum,
sécuriser les données à caractère personnel d’une manière qui tienne
compte des risques susceptibles de peser sur les intérêts et les droits
de la personne concernée, et prévenir, entre autres, les effets discrim-
inatoires [...]

Actuellement, la loi n’oblige pas de façon générale à communiquer les
risques d’erreur, comme c’est le cas pour un sondage d’opinion. En revanche
cet aspect est pris en charge dans chaque domaine d’application lorsqu’il est
question de certification ou, pour un dispositif de santé connecté (DSC), de sa
demande de remboursement. Il est traité dans la section 4 suivante.

3.3 Explication d’une décision

Le rapport Villani appelle à ouvrir les boîtes noires de l’IA car une grande
partie des questions éthiques soulevées tiennent de l’opacité de ces technolo-
gies. Compte tenu de leur place grandissante, pour ne pas dire envahissante, le
rapport considère qu’il s’agit d’un enjeu démocratique.

L’article 10 de la loi n°78-17 relative à l’informatique, aux fichiers et aux
libertés du 6 janvier 1978 prévoyait à l’origine que Aucune décision produisant
des effets juridiques à l’égard d’une personne ne peut être prise sur le seul
fondement d’un traitement automatisé de données destiné à définir le profil de
l’intéressé ou à évaluer certains aspects de sa personnalité. Autrement dit,
une évaluation automatisée des caractéristiques d’une personne conduisant à
une prise de décision ne peut être réalisée sur la seule base du traitement au-
tomatisé. Cela suppose donc que d’autres critères soient pris en compte ou
encore que d’autres moyens soient utilisés. En particulier, les personnes con-
cernées par la décision peuvent attendre que l’évaluation puisse être vérifiée
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par une intervention humaine. Si ce principe qui tend à contrôler les effets né-
gatifs du profilage est consacré depuis longtemps, son énoncé n’a pu empêcher
l’explosion de cette technique, parallèlement à l’émergence de la collecte mas-
sive des données sur internet. Beaucoup de techniques de profilage ont été
développées, sans nécessairement prévoir des garde-fous techniques ou hu-
mains. Cette règle est donc peu respectée et sa violation n’a pour l’instant pas
donné lieu à sanction.

Parallèlement, le RGPD, et avant lui la directive 95/46/CE, consacre un cer-
tain nombre de droits en cas de décision individuelle prise sur le fondement
d’un traitement automatisé de données:

1. Le droit d’accès et d’être informé de l’existence d’une prise de décision
automatisée (RGDP, art. 13-15h);

2. Le droit de ne pas faire l’objet d’un traitement automatisé produisant des
effets juridiques ou affectant la personne concernée de manière significa-
tive (RGDP, art. 22.1);

3. Le droit d’obtenir une intervention humaine de la part du responsable du
traitement (RGDP, art. 22.3);

4. Le droit d’exprimer son point de vue et de contester la décision (RGDP,
art. 22.3); Les données sensibles doivent en principe être exclues des
traitements exclusivement automatisés (art. 22.4), sauf en cas de con-
sentement explicite ou pour des raisons d’intérêt public. Cependant, des
exceptions sont aussi prévues (art. 22.2), lorsque la décision:

• a) est nécessaire à la conclusion ou à l’exécution d’un contrat entre
la personne concernée et un responsable du traitement ;

• b) est autorisée par le droit de l’Union ou le droit de L’État mem-
bre auquel le responsable du traitement est soumis et qui prévoit

également des mesures appropriées pour la sauvegarde des droits et
libertés et des intérêts légitimes de la personne concernée ;

• c) est fondée sur le consentement explicite de la personne concernée.

Cette série d’exceptions est loin d’être anodine et appauvrit substantiellement
la règle. S’agissant des activités économiques du numérique, de nombreux
traitements automatisés peuvent en effet se prévaloir d’un fondement con-
tractuel, dès lors que l’utilisation par les internautes des services des sites de
e-commerce ou plateformes de mise en relation, telles celles des réseaux so-
ciaux, est de fait considérée comme une acceptation des conditions générales
d’utilisation et manifestant l’acceptation de l’offre contractuelle. Par ailleurs,
en dehors des activités du numériques, les hypothèses précédemment citées
d’accès à un crédit, un logement, à des biens ou services, reposent le plus
souvent sur la conclusion d’un contrat.

En outre, le point c) du paragraphe précédent prévoit l’hypothèse d’un con-
sentement explicite de la personne concernée. Si un consentement peut ef-
fectivement être assez aisément recueilli en sa forme, on peut toutefois douter
au fond de son caractère éclairé, tant l’accessibilité intellectuelle aux procédés
de traitement automatisé est douteuse à l’endroit des profanes composant la
grande majorité des personnes concernées, spécialement lorsque ce consente-
ment est recueilli en ligne.

Ces dispositions ont été intégrées au droit français avec l’adoption récente
de la loi n°2018-493 du 20 juin 2018 qui vient modifier la loi n°78-17 dite in-
formatique et libertés du 6 janvier 1978. L’article 21 modifie l’article 10 de la
loi du 6 janvier 1978 afin d’étendre les cas dans lesquels, par exception, une dé-
cision produisant des effets juridiques à l’égard d’une personne ou l’affectant
de manière significative peut être prise sur le seul fondement d’un traitement
automatisé de données à caractère personnel. L’article 10 alinéa 1er de la loi
n°78-17 dispose désormais que Aucune décision de justice impliquant une ap-
préciation sur le comportement d’une personne ne peut avoir pour fondement
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un traitement automatisé de données à caractère personnel destiné à évaluer
certains aspects de la personnalité de cette personne.

L’alinéa 2 ajoute que Aucune décision produisant des effets juridiques à
l’égard d’une personne ou l’affectant de manière significative ne peut être
prise sur le seul fondement d’un traitement automatisé de données à carac-
tère personnel, y compris le profilage. À ce principe, deux exceptions sont
prévues.

La première se réfère aux exceptions du RGPD, c’est-à-dire les cas men-
tionnés aux a et c du 2 de l’article 22 précité, sous les réserves mentionnées
au 3 de ce même article et à condition que les règles définissant le traitement
ainsi que les principales caractéristiques de sa mise en œuvre soient commu-
niquées, à l’exception des secrets protégés par la loi, par le responsable de
traitement à l’intéressé s’il en fait la demande. Outre les garanties prévues
par le texte européen à l’article 22.3 (droit d’obtenir une intervention humaine
de la part du responsable du traitement, droit d’exprimer son point de vue et
de contester la décision), le législateur français a ajouté l’obligation de com-
muniquer les règles définissant le traitement, ainsi que les principales carac-
téristiques de sa mise en œuvre à la demande de la personne concernée. Cette
garantie n’a plus cours si ces règles font l’objet de secrets protégés par la loi.
Cette réserve vient ici aussi substantiellement affaiblir le principe, alors même
qu’une communication des règles préservant le respect des secrets pourrait
aisément s’envisager.

Quant à la deuxième exception prévue à l’article 10 al. 2 de la loi n° 78-
17 modifiée, elle s’appuie sur le point b) de l’article 22.2 du RGPD, selon
lequel chaque État membre peut prévoir librement des exceptions, dès lors
qu’elles sont légalement prévues et respectent certaines garanties. Le légis-
lateur français a posé une exception pour les décisions administratives indi-
viduelles, à condition que le traitement ne porte pas sur des données sensibles,
que des recours administratifs sont possibles et qu’une information est délivrée
sur l’usage de l’algorithme. Cette exception ici précisée était déjà consacrée à

l’article 4 de la loi n°2016-1321 pour une république numérique du 7 octobre
2016, codifiée à l’article L. 311-3-1 du CRPA, selon lequel une décision ad-
ministrative individuelle prise sur le fondement d’un traitement algorithmique
doit comporter une mention explicite en informant l’intéressé. L’article 1er du
décret n°2017-330 du 14 mars 2017, codifiée à l’article R. 311-3-1-1 CRPA,
précise que la mention explicite doit indiquer la finalité poursuivie par le traite-
ment algorithmique. Elle rappelle le droit d’obtenir la communication des rè-
gles définissant ce traitement et des principales caractéristiques de sa mise en
œuvre, ainsi que les modalités d’exercice de ce droit à communication et de
saisine, le cas échéant, de la commission d’accès aux documents administrat-
ifs. La loi n°2018-493 du 20 juin 2018 est venue préciser que la mention
explicite précitée est exigée à peine de nullité. La sanction de la violation de
cette obligation d’information est donc explicitement prévue.

Depuis l’adoption de la loi pour une république numérique le 7 octobre
2016, l’article L. 311-3-1 prévoit par ailleurs que les règles définissant ce
traitement ainsi que les principales caractéristiques de sa mise en œuvre sont
communiquées par l’administration à l’intéressé s’il en fait la demande. Le
décret n°2017-330, codifié à l’article R. 311-3-1-2, précise les informations à
fournir sous une forme intelligible et sous réserve de ne pas porter atteinte à
des secrets protégés par la loi:

1. Le degré et le mode de contribution du traitement algorithmique à la prise
de décision;

2. Les données traitées et leurs sources;

3. Les paramètres de traitement et, le cas échéant, leur pondération, ap-
pliqués à la situation de l’intéressé ;

4. Les opérations effectuées par le traitement.

http://wikistat.fr


116

On constate qu’est maintenue la dérogation en cas de secrets protégés par la
loi.

La loi n°2018-493 va plus loin quant à l’utilisation d’un système de traite-
ment automatisé pour la prise de décision administrative et prévoit désormais
une obligation d’explication. Elle dispose ainsi que le responsable de traite-
ment s’assure de la maîtrise du traitement algorithmique et de ses évolutions
afin de pouvoir expliquer, en détail et sous une forme intelligible, à la personne
concernée la manière dont le traitement a été mis en œuvre à son égard. Un
fameux droit à explication est explicitement consacré par la loi française, alors
que le RGPD n’y fait clairement référence que dans le considérant 71. Les
articles 13 à 15 se contentent de prévoir un droit d’information et d’accès sur
l’utilisation d’un dispositif automatisé et la logique sous-jacente, ce qui con-
stitue une approche très générale, déconnectée des situations individuelles des
personnes concernées.

Ajoutons que la loi n°2018-493 a fait l’objet d’une décision du Conseil con-
stitutionnel n°2018-765 DC le 12 juin 2018. Notons seulement le point 71:
... Il en résulte que ne peuvent être utilisés, comme fondement exclusif d’une
décision administrative individuelle, des algorithmes susceptibles de réviser
eux-mêmes les règles qu’ils appliquent, sans le contrôle et la validation du
responsable du traitement remettant ainsi en cause l’utilisation administrative
d’algorithme d’apprentissage par renforcement.

Différentes situations peuvent être schématiquement considérées pour
l’application de ces règles. Dans le cas d’un algorithme procédural de type
ParcoursSup, les règles de fonctionnement doivent être clairement explicitées
; le Ministère concerné s’y est préparé à la suite des difficultés rencontrées
par le prédécesseur APB. En effet, le code de l’algorithme Parcoursup est
certes rendu public mais, source d’un débat ou controverse car les règles de
délibérations locales à un établissement peuvent rester confidentielles rendant
finalement opaque et éventuellement discriminatoire le processus. Enfin, la loi
n°2018-493 prévoit que, s’agissant plus particulièrement des décisions prises

en matière éducative dans le cadre de ParcoursSup, le comité éthique et sci-
entifique mentionné à l’article L.612-3 du code de l’éducation remet chaque
année, à l’issue de la procédure nationale de préinscription et avant le 1er
décembre, un rapport au Parlement portant sur le déroulement de cette procé-
dure et sur les modalités d’examen des candidatures par les établissements
d’enseignement supérieur. Le comité peut formuler à cette occasion toute
proposition afin d’améliorer la transparence de cette procédure.

Actuellement, L’obligation d’explicabilité, impose au mieux une interven-
tion humaine pour assumer une décision et n’est contraignante que pour les
décisions administratives françaises. Plus ou moins adaptée à des algorithmes
procéduraux de type Parcousup, elle semble (décret n°2017-330) inapplicable
à des algorithmes complexes (opaques) d’apprentissage statistique et interdit
l’usage d’algorithmes auto-apprenants sans contrôle ou validation humaine,
comme ce peut être le cas de ventes de publicités en ligne.

3.4 Biais et discrimination d’une décision

Selon l’article 225-1 du code pénal: Constitue une discrimination toute dis-
tinction opérée entre les personnes physiques sur le fondement de leur orig-
ine, de leur sexe, de leur situation de famille, de leur grossesse, de leur
apparence physique, de la particulière vulnérabilité résultant de leur situa-
tion économique, apparente ou connue de son auteur, de leur patronyme, de
leur lieu de résidence, de leur état de santé, de leur perte d’autonomie, de
leur handicap, de leurs caractéristiques génétiques, de leurs mœurs, de leur
orientation sexuelle, de leur identité de genre, de leur âge, de leurs opin-
ions politiques, de leurs activités syndicales, de leur capacité à s’exprimer
dans une langue autre que le français, de leur appartenance ou de leur non-
appartenance, vraie ou supposée, à une ethnie, une Nation, une prétendue race
ou une religion déterminée.

Concernant les groupes, l’alinéa 2, art. 1er de la loi n°2008-496 du 27 mai
2008 portant diverses dispositions d’adaptation au droit communautaire dans
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le domaine de la lutte contre les discriminations prévoit: Constitue une dis-
crimination indirecte une disposition, un critère ou une pratique neutre en ap-
parence, mais susceptible d’entraîner, pour l’un des motifs mentionnés au pre-
mier alinéa (critères de la discrimination que l’on retrouve aussi dans le code
pénal), un désavantage particulier pour des personnes par rapport à d’autres
personnes, à moins que cette disposition, ce critère ou cette pratique ne soit
objectivement justifié par un but légitime et que les moyens pour réaliser ce
but ne soient nécessaires et appropriés.

Apparaît aussi la notion de discrimination systémique qui serait: un pro-
cessus qui met en jeu un système d’acteurs dans lequel personne ne mani-
feste directement d’intention discriminatoire, mais dont le résultat sera de pro-
duire une situation de discrimination. Les discriminations systémiques ne sont
pas intentionnelles, elles proviennent de la somme de plusieurs représenta-
tions qui, cumulées, forment un contexte discriminant. Ce concept découle
de la reconnaissance de l’existence de déséquilibres socio-économiques ou
d’inégalités sociales qui sont historiquement constitués: Les discriminations
systémiques sont donc constituées par les processus qui produisent et repro-
duisent les places sociales inégalitaires en fonction de l’appartenance à une
classe, une "race" ou un sexe, cette appartenance pouvant être réelle ou sup-
posée.

L’article 225-2 ajoute que : La discrimination définie aux articles 225-1 à
225-1-2, commise à l’égard d’une personne physique ou morale, est punie de
trois ans d’emprisonnement et de 45 000 euros d’amende lorsqu’elle consiste
à:

1. refuser la fourniture d’un bien ou d’un service;

2. entraver l’exercice normal d’une activité économique quelconque;

3. refuser d’embaucher, à sanctionner ou à licencier une personne.

La loi française insiste plus particulièrement sur une approche individuelle
de la notion du risque de discrimination même si la notion de discrimination
envers un groupe ou discrimination indirecte y est citée. La définition ou carac-
térisation de cette dernière n’est pas explicitée dans la loi tandis que le rapport
Villani insiste sur la nécessité de définir un outil d’évaluation afin d’en faciliter
la preuve et en permettre la sanction. Il évoque le Discrimination Impact As-
sessment (DIA) en complément du Data Protection Impact Assessment (DPIA)
prévu par le RGPD et qui protège les données personnelles des individus et non
des groupes. Ce n’est pas du tout évoqué dans le rapport Villani mais il existe
une littérature abondante sur ce sujet sous l’appellation de disparate impact
(effet disproportionné) depuis les années soixante-dix aux USA.

De son côté, le règlement européen encadre strictement la collecte de don-
nées personnelles sensibles (orientation religieuse, politique, sexuelle, origine
ethnique...) et interdit aux responsables de décisions algorithmiques de les
prendre en compte dans les traitements automatisés (art. 22.4), sous réserve du
consentement explicite de la personne ou d’un intérêt public substantiel. Par
opposition à discriminatoire, une décision est dite loyale équitable (fair) si elle
ne se base pas sur l’appartenance d’une personne à une minorité protégée ou
la connaissance explicite ou implicite d’une donnée personnelle sensible.

Actuellement et contrairement aux risques évoqués précédemment (qualité,
explicabilité), les lois européenne et nationales condamnent très explicitement
les risques discriminatoires. Le problème, à peine évoqué dans le rapport Vil-
lani est le manque d’élément qui permettrait de qualifier une situation discrim-
inatoire, individuelle ou de groupe et plus avant donc d’en apporter la preuve.
Ce point est développé dans la section 4 suivante.

3.5 Futur cadre réglementaire européen de l’IA

Les risques provoqués par les impacts dus aux erreurs des décisions, à
l’opacité, aux biais algorithmiques (considérant 71 du RGPD) n’ont finalement
pas ou peu été pris en compte dans une réglementation européenne visant en
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priorité la protection des données. Ils ont été en revanche largement commen-
tés dans de très nombreuses déclarations, chartes pour une IA éthique au ser-
vice de l’humanité. Pour remédier à ces lacunes, la Commission Européenne
(CE) a réuni un groupe d’experts indépendants de haut niveau sur l’IA qui
ont rédigé un guide sous la forme de lignes directrices en matière d’éthique
pour une IA digne de confiance (2019) qui s’achève sur la proposition d’une
liste d’évaluation sur le principe de celle sur la protection des données. Ces
recommandations ont ensuite donné lui à la rédaction et la publication d’un
livre blanc sur l’Intelligence Artificielle: une approche européenne axée sur
l’excellence et la confiance (2020).

Ce livre souligne l’importance prise par l’IA, qui combine données, algo-
rithmes et puissance de calcul, dans tous les aspects de la vie des citoyens,
en liste les bénéfices attendus, mais met également en exergue les risques
potentiels, tels que l’opacité de la prise de décisions, la discrimination, qui
accompagnent son développement et sa mise en œuvre. C’est un enjeu ma-
jeur car l’acceptabilité de l’IA et donc son adoption par les citoyens ne seront
possibles que si celle-ci est digne de confiance. La CE, qui ambitionne de
faire de l’Europe un acteur mondial de premier plan en matière d’innovation
dans l’économie fondée sur les données et dans ses applications, insiste sur la
nécessité de cette confiance fondée sur les droits fondamentaux de la dignité
humaine et la protection de la vie privée.

Il s’agit donc pour la CE de proposer les éléments clefs d’un futur cadre
réglementaire basé sur un écosystème de confiance en prenant en compte les
lignes directrices en matière d’éthique élaborées par le groupe d’experts et dont
la liste d’évaluation servirait de base pour un programme indicatif destiné aux
développeurs de l’IA et une ressource mise à la disposition des établissements
de formation. La CE insiste sur la liste des exigences énumérées par le groupe
d’experts en remarquant que si certaines sont prises en compte par les régimes
législatifs ou réglementaires existants, d’autres (e.g. transparence, contrôle hu-
main) ne sont pas couvertes ou qu’il est de toute façon difficile de déceler et

de prouver d’éventuelles infractions à la législation, notamment aux disposi-
tions juridiques qui protègent les droits fondamentaux, à cause de l’opacité des
algorithmes d’IA.

Par ailleurs, suivant en cela le groupe d’experts, la CE insiste tout parti-
culièrement sur la classe de systèmes d’intelligence artificielle basés sur des
algorithmes d’apprentissage automatique et donc sur le rôle fondamental des
données utilisées pour leur entraînement.

Remarque: algorithmes déterministes ou procéduraux ou encore d’IA sym-
bolique. Ce chapitre laisse apparemment de côté cette classe d’algorithmes dé-
cisionnels (e.g. calcul de taxes, impôts, allocations ou prestations sociales,...
basés sur un ensemble de règles de décision déterministes qui peuvent tout
autant présenter des impacts de désavantage ou risques de discrimination in-
directe malgré une apparente neutralité. La détection de ces risques relève
de l’analyse experte des règles de décisions codées dans l’algorithme. Néan-
moins, la complexité de l’algorithme peut être telle (cf. Parcoursup) qu’une
l’analyse experte ex post ne sera pas en mesure d’évaluer l’étendue des risques.
En conséquence, l’algorithme déterministe peut être traité avec le même niveau
d’opacité et les mêmes outils qu’un algorithme d’apprentissage statistique.

En résumé Les lois actuelles listées dans cette section ne sont pas con-
traignantes ou finalement inapplicables à des décisions complexes issues d’un
algorithme d’apprentissage. Néanmoins et compte tenu du temps nécessaire au
déploiement d’un système d’IA, de l’acquisition des données à a mise en ex-
ploitation, il est urgent pour les responsables d’un système d’IA d’anticiper sur
le cadre réglementaire européen à venir qui se présentera sous la forme d’une
procédure d’évaluation (version pilote)des points fondamentaux identifiées par
les experts européens.

1. Action humaine et contrôle humain;

2. Robustesse technique et sécurité (résilience, précision...);

http://wikistat.fr
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3. Respect de la vie privée et gouvernance des données (qualité...);

4. Transparence (explicabilité, communication...);

5. Diversité, non-discrimination et équité;

6. Bien-être sociétal et environnemental (durabilité, interactions...), Utilité;

7. Responsabilité (auditabilité, recours...).

Voici à titre illustratif quelques unes des lignes directrices rédigées par les
experts de la CE, première ébauche d’une base probable à l’évaluation de la
confiance d’un système d’IA:

• (52) Si les biais injustes peuvent être évités, les systèmes d’IA pourraient
même améliorer le caractère équitable de la société.

• (53) L’explicabilité est essentielle... les décisions – dans la mesure du
possible – doivent pouvoir être expliquées.

• (69) Il est important que le système puisse indiquer le niveau de proba-
bilité de ces erreurs.

• (80) Absence de biais injustes, La persistance de ces biais pourrait être
source de discrimination et de préjudice (in)directs. Dans la mesure
du possible, les biais détectables et discriminatoires devraient être sup-
primés lors de la phase de collecte.

• (106) (107) besoin de normalisation (IEEE, ANSI, AFNOR...).

Comme pour la sécurité des données, ce ne sera plus à un individu d’apporter
la preuve d’un manquement à la loi mais bien au responsable d’un SIA de mon-
trer qu’il a pris toutes les mesures nécessaires pour que celle-ci soit respectée.

En conséquence, nous proposons dans les sections suivantes, non pas une
liste exhaustive des questions auxquelles, il sera important de chercher des
réponses mais une sélection illustrative de celles-ci en attendant une version
plus aboutie de normes souhaitées. Notons que cette anticipation est déjà
une réalité dans le domaine de la santé à la demande des organismes respons-
ables de la certification (FDA aux USA) ou de l’autorisation de remboursement
(HAS 2020) en France.

4 Qualité, précision et robustesse

4.1 Évaluation réglementaire

Comme expliqué section 2, l’évaluation des erreurs de prévision qui con-
ditionnent directement la qualité de décision et donc son niveau de confiance,
est essentielles lors de la mise au point d’un système d’IA. Elle est même par-
tie intégrante de la procédure d’entraînement. Elle doit être menée avec une
grande rigueur notamment dans la constitution de l’échantillon test indépen-
dant et représentatif du domaine d’exploitation de l’algorithme. Actuellement
un grand flou est entretenu en faisant valoir et même en communiquant ex-
agérément sur les très bonnes performances de certains systèmes d’IA en re-
connaissance d’image afin de masquer les piètres performances d’autres sys-
tèmes dédiés à la prévision de comportements individuels humains. Rappelons
que les taux d’erreur de prévision de la récidive d’un détenu varient entre 30 et
40%, pas beaucoup mieux qu’un tire à pile ou face de même que les prévisions
de passage à un acte d’achat lors de publicités ciblées en ligne.

L’intérêt commercial des principaux acteurs de ce dernier secteur induit une
stratégie bien identifiée de lobbying (Ethical washing) qui consiste à afficher
des principes éthiques afin de freiner toute tentative de réglementation certes
contraignante mais éclairante sur leurs pratiques et les performances effec-
tives des algorithmes de recommandation en ligne principale source de leurs

http://wikistat.fr
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revenus.

D’un point de vue éthique il n’y a pas d’obligation de moyen, sauf dans le
cadre explicite d’une norme industrielle de certification. Il y a en revanche une
obligation de transparence qu’il importe de rendre obligatoire.

Ceci est pris explicitement en compte dans les questions de la liste
d’évaluation des experts de la CE:

• Avez-vous évalué le niveau de précision et la définition de la précision
nécessaires dans le contexte du système d’IA et du cas d’utilisation con-
cerné?

• Avez-vous réfléchi à la manière dont la précision est mesurée et assurée?

• Avez-vous mis en place des mesures pour veiller à ce que les données
utilisées soient exhaustives et à jour?

• Avez-vous mis en place des mesures pour évaluer si des données sup-
plémentaires sont nécessaires, par exemple pour améliorer la précision et
éliminer les biais?

4.2 Éléments de réponse

Les mesures de précision de la prévision d’un système d’IA sont bien con-
nues et maîtrisées, même si l’éventail des possibles. Le choix, précisément
justifié, doit être adapté au domaine, au type de problème traité aux risques
spécifiques encourus.

• Régression: variable cible Y quantitative
Fonction perte L2 (quadratique) ou L1 (valeur absolue)

• Classification binaire
Taux d’erreur, AUC (area under the ROC Curve), score Fβ , entropie...

• Multiclasse
Taux d’erreur moyen, Fβ moyen...

L’évaluation de la robutesse est lié aux procédures de contrôle mises en
place pour détecter des valeurs atypiques (outliers)ou anomalies dans la base
d’apprentissage et au choix de la fonction perte de la procédure d’entraînement
de l’algorithme. Impérativement, surtout dans las d’applications sensibles pou-
vant entraîner des risques élevés en cas d’erreur, la détection d’anomalie doit
également être intégrée en exploitation afin de ne pas chercher à proposer des
décisions correspondant à des situations inconnues de l’apprentissage.

Enfin, la résilience d’un système d’IA est essentielle pour les dispositifs cri-
tiques (dispositifs de santé connecté, aide au pilotage). Il concerne par exemple
la prise en compte de données manquantes lors de l’apprentissage comme en
exploitation. Il s’agit d’évaluer la capacité d’un système d’IA à assurer des
fonctions pouvant s’avérer vitales en cas, par exemple, de panne ou de fonc-
tionnement erratique d’un capteur: choix d’un algorithme tolérant aux données
manquantes, imputation de celles-ci, fonctionnement en mode dégradé.

5 Explicabilité

5.1 Évaluation réglementaire

Ce point est le plus complexe à traiter. Il est un domaine de recherche
extrêmement actif notamment pour les applications industrielles de systèmes
d’IA embarqués dans un véhicule autonome ou un avion à un seul pilote et
qui nécessiteront des procédures de certification particulièrement exigeantes.
Barredo Arrieta et al. (2020) proposent une revue de cette recherche en cours
tentant une synthèse de plus de 400 références bibliographiques.

Exemples de questions posés par les experts dans la liste d’évaluation:

• Avez-vous évalué la mesure dans laquelle les décisions prises, et donc les

http://wikistat.fr
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résultats obtenus, par le système d’IA peuvent être compris?

• Avez-vous veillé à ce qu’une explication de la raison pour laquelle un sys-
tème a procédé à un certain choix entraînant un certain résultat puisse être
rendue compréhensible pour l’ensemble des utilisateurs qui pourraient
souhaiter obtenir une explication?

5.2 Éléments de réponse

Il est encore beaucoup trop tôt pour tenter un résumé opérationnel de ce
thème. Il faut pour cela attendre que la recherche progresse et qu’une "sélec-
tion naturelle" en extrait les procédures les plus pertinentes. Tentons de décrire
les premiers embranchements d’un arbre de décision en répondant à quelques
questions rudimentaires qu’il faudrait en plus adapter au domaine d’application
car le type de réponse à apporter n’est évidemment pas le même s’il s’agit
d’expliquer le refus d’un prêt ou les conséquences d’une aide automatisée au
diagnostic d’un cancer.

L’explication peut concerner:

1. Le fonctionnement général de l’algorithme

• dans le cas d’un modèle "transparent": modèles linéaires, arbres de
décision, l’explication est possible à condition que le nombre de
variables, d’interactions reste raisonnable,

• dans le cas d’un algorithme complexe opaque:

– chercher une approximation: linéaire, arbre, règles de décision
déterministes;

– chercher les variables importantes par randomisation des
valeurs ou stress de l’algorithme (Bachoc et al. 2020).

2. Une décision spécifique pour:

• le concepteur: expliquer une erreur, y remédier (ré-apprentissage);
• la personne concernée: client, patient, justiciable:

– modèle interprétable: linéaire, arbre de décision,
– approximation locale: LIME, contre-exemple, règles,...
– explication a minima du risque d’erreur.

Quelques démonstrations de procédures explicatives sont proposées sur des
sites collaboratifs. Citons:

• https://www.gems-ai.com/

• https://aix360.mybluemix.net/

• https://github.com/MAIF/shapash

Ne pas perdre de vue que l’impossibilité ou simplement la difficulté à for-
muler une explication provient de l’utilisation d’algorithmes opaques mais
dont la nécessité est inhérente à la complexité même du réel. Un réel com-
plexe (e.g. les fonctions du vivant) impliquant de nombreuses variables, des
interactions, voire des boucles de contre-réaction, est nécessairement modélisé
par un algorithme complexe afin d’éviter des simplifications abusives pouvant
gravement nuire à ses performances. C’est tout d’abord le réel qui peut s’avérer
complexe à expliquer.

6 Biais et risques de discrimination

6.1 Évaluation réglementaire

La liste d’évaluation du groupe d’experts, base de réflexion de la CE, réserve
la section 5 Diversité, non-discrimination et équité aux questions de discrimi-
nation. Relevons seulement trois questions de cette longue liste adressées aux
concepteurs d’un système d’IA:

http://wikistat.fr
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• Avez-vous prévu une définition appropriée de l’équité que vous appliquez
dans la conception des systèmes d’IA?

• Avez-vous mis en place des processus pour tester et contrôler les bi-
ais éventuels au cours de la phase de mise au point, de déploiement et
d’utilisation du système?

• Avez-vous prévu une analyse quantitative ou des indicateurs pour mesurer
et tester la définition appliquée de l’équité?

Il s’agit d’exemples typiques de questions auxquelles il est difficile de répon-
dre sans définition claire, en termes juridiques, des concepts employés. Ainsi,
le cadre juridique ne fournit aucune définition de l’équité mais condamne ex-
plicitement la discrimination. Corrélativement, l’équité d’une décision algo-
rithmique devient l’absence de risque discriminatoire donc de biais.

6.2 Détecter une discrimination

Avant de s’intéresser à la détection d’une discrimination algorithmique, il
est opportun d’évaluer les capacités de détecter une discrimination humaine.
Prenons l’exemple critique de l’embauche identifié à haut risque par la CE.

Testing

La détection et même la preuve d’une discrimination directe envers une per-
sonne peut être obtenue par testing. Cette pratique consiste à adresser à des
dates distinctes deux dossiers, par exemple de candidature à un emploi. A
l’exception de la caractéristique discriminatoire à tester: genre, origine eth-
nique, tranche d’âge, quartier d’habitation... les dossiers sont strictement sim-
ilaires tout en introduisant des différences mineures afin d’éviter d’éventer le
procédé. Son usage à été élargi (cf. Riach et Rich 2002) avec le déploiement
d’enquêtes systématiques afin de viser l’objectif d’une mesure statistique de
la discrimination indirecte envers un groupe. Les communautés académiques

en Sociologie et Économie ont produit une vaste bibliographie à ce sujet (Rich
2014). En France, c’est la doctrine officielle diffusée par le Comité National
de l’Information Statistique et déployée périodiquement par la DARES (Direc-
tion de l’Animation, des Études, de la Recherche et des Statistiques) lorsqu’il
s’agit d’étudier les risques de discrimination à l’embauche. D’autres enquêtes
par testing se ont également ciblé l’accès à l’assurance, au crédit ou encore au
logement (cf. les rapports de recherche du TEPP).

Effet disproportionné

Aux USA, une approche très différente est développée avec la notion
d’adverse ou disparate impact (effet disproportionné). L’évaluation de l’effet
disproportionné consiste à estimer le rapport de deux probabilités: probabil-
ité d’une décision favorable pour une personne du groupe sensible au sens de
la loi sur la même probabilité pour une personne de l’autre groupe. Elle est
appliquée depuis 1971 (Barocas et Selbst 2017) pour mesurer des discrimi-
nations indirectes dans l’accès à l’emploi, le logement, et a donné lieu à une
réglementation officielle de son usage notamment pour l’accès à l’emploi:

Civil Rights act & Code of Federal Regulations
TITLE 29 - LABOR: PART 1607—UNIFORM GUIDELINES ON
EMPLOYEE SELECTION PROCEDURES (1978)

• D. Adverse impact and the “four-fifths rule.” A selection rate
for any race, sex, or ethnic group which is less than four-fifths
(4/5) (or eighty percent) of the rate for the group with the high-
est rate will generally be regarded by the Federal enforcement
agencies as evidence of adverse impact, while a greater than
four-fifths rate will generally not be regarded by Federal en-
forcement agencies as evidence of adverse impact. Smaller
differences in selection rate may nevertheless constitute ad-
verse impact, where they are significant in both statistical and
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practical terms or where a user’s actions have discouraged ap-
plicants disproportionately on grounds of race, sex, or ethnic
group. Greater differences in selection rate may not consti-
tute adverse impact where the differences are based on small
numbers and are not statistically significant, or where special
recruiting or other programs cause the pool of minority or fe-
male candidates to be atypical of the normal pool of applicants
from that group.

L’estimation de ce rapport de probabilités (odds ratio) est donc comparée à une
valeur arbitraire 0, 8, jugée suffisamment faible pour signifier un effet impor-
tant malgré un aléa statistique de son estimation. Une valeur inférieure n’induit
pas nécessairement à des poursuites juridiques mais oblige une entreprise à
justifier, pour des raisons économiques, les raisons de ce déséquilibre.

Remarques

Les éléments de ces approches statistiques sont également présents dans un
guide publié par le Défenseur des Droits et la CNIL (2012). Il décrit une ap-
proche méthodologique à l’intention des acteurs de l’emploi pour mesurer et
progresser dans l’égalité des chances sans volonté coercitive ni obligation ju-
ridique. En préalable, ce guide pose la question de l’opportunité de construire
des statistiques ethniques alors que, contrairement aux USA, l’origine des per-
sonnes ne peut être enregistrée dans une base de données. Cette apparente
protection des droits des personnes soulève un problème lorsqu’il est question
d’évaluer une possible discrimination. La difficulté peut être contournée en
adoptant une identification de l’origine par le patronyme au prix d’une perte
sans doute mineure mais à évaluer de précision. Ce guide évoque la pratique
du testing mais incite également les services de ressources humaines d’une en-
treprise à produire des tableaux statistiques (tables de contingence) desquels il
serait facile d’extraire une évaluation quantitative de l’effet disproportionné.

Chacune des approches: testing vs. disparate impact présente des avan-
tages mais également des défauts, biais ou difficultés de mise en œuvre. Le
testing met bien en évidence une discrimination directe, intentionnelle, et peut
conduire à une action en justice lorsqu’une personne est concernée. En re-
vanche, utilisée lors d’une enquête systématique, il déploie des dossiers fictifs,
fournis des résultats indicatifs, qui ne sont pas représentatifs de la politique
d’embauche effective d’une entreprise sur l’ensemble des ses postes. Les en-
quêtes menées par la DARES ne conduisent pas à des actions en justice et
la récente stratégie name and shame du gouvernement stigmatisant certaines
entreprises a suscité de vives polémiques en janvier 2020.

Les enquêtes par testing ne nécessitent pas une participation des entreprises
concernées mais sont d’un coût élevé et soulèvent de lourdes difficultés pour
tenter d’approcher la réalité des embauches. En revanche, l’évaluation de
l’effet disproportionné est de coût très faible mais implique une contribution
loyale des services de ressources humaines ou une obligation réglementaire
comme aux USA. Il est éventuellement biaisé puisque les dossiers ne sont pas
identiques et nécessite donc une analyse ou la recherche d’autres explications
possibles mais confondues des écarts observés.

6.3 Détecter une discrimination algorithmique

Une décision algorithmique ajoute une couche d’opacité sur une situation
déjà complexe.

Indicateurs statistiques de discrimination

Le problème émergeant de la discrimination algorithmique s’exprime sim-
plement: si un algorithme est entraîné sur des données biaisées, il reproduit très
fidèlement ces biais systémiques ou de société; plus grave, il risque même de
les renforcer. Très prolixe, le monde académique a proposé quelques dizaines
d’indicateurs (Zliobaitė 2017) afin d’évaluer des biais potentiels. Néanmoins,
beaucoup de ces indicateurs s’avèrent très corrélés ou redondants (Friedler et
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al. 2019). Empiriquement, trois niveaux de biais discriminatoires doivent être
pris en compte en priorité:

1. L’effet disproportionné reflet du biais social ou de population par lequel
un groupe est historiquement (e.g. revenu des femmes) désavantagé. La
mise en évidence de ce biais soulève des questions techniques, politiques
évidentes. Renforcer algorithmiquement ce biais serait ouvertement dis-
criminatoire, il importe de détecter, éliminer, un tel risque. Serait-il poli-
tiquement opportun d’introduire automatiquement une part de discrimi-
nation positive afin d’atténuer la discrimination sociale? C’est technique-
ment l’objet d’une vaste littérature académique nommée apprentissage
équitable (fair learning) et évoqué dans le travail des experts (ligne direc-
trice 52) pour améliorer le caractère équitable de la société.

2. Les taux d’erreur de prévision et donc les risques d’erreur de décisions
sont-ils les mêmes pour chaque groupe? Ainsi, si un groupe est sous-
représenté dans la base d’apprentissage, il est très probable que les dé-
cisions le concernant seront moins fiables. C’est typiquement le cas en
reconnaissance faciale et ce risque est également présent dans les appli-
cations de l’IA en santé (Besse et al. 2019b).

3. Même si les deux critères précédents sont trouvés équitables et surtout si
les taux d’erreur identiques sont relativement importants, les erreurs peu-
vent être dissymétriques (plus de faux positifs, moins de faux négatifs) au
détriment d’un groupe. Cet indicateur (comparaison des rapports de cote
ou odds ratio) est ainsi au cœur de la controverse concernant l’évaluation
COMPAS du risque de récidive aux USA (Larson et al. 2016).

Difficultés d’évaluation

Contrairement à des prises de position très naïves des entreprises proposant
des algorithmes de prérecrutement, des décisions algorithmiques ne sont pas

plus objectives que des décisions humaines. Il est même facile de montrer
sur des exemples (numériques ci-après, De Arteaga et al. 2019) que les biais
humains sont fidèlement reproduits voire amplifiés même si la variable sensible
(genre, origine, âge...) est absente de la base de données car cette information
est présente, d’une façon ou d’une autre, dans les autres variables jouant le rôle
de variables de substitution ou proxy. Autre conséquence importante de cette
situation, le testing est complètement inopérant (cf. sous section suivante) pour
détecter une discrimination face à un algorithme.

En conséquence, les biais, risques de discrimination, doivent être soigneuse-
ment évalués très en amont lors de la constitution des bases de données et lors
de la procédure d’apprentissage afin de les corriger ou les atténuer: fairness by
design, au risque de ne plus être à même de pouvoir les détecter.

6.4 Exemple numérique de discrimination algorith-
mique

Nous proposons d’illustrer sur un exemple numérique élémentaire les diffi-
cultés rencontrées pour la détection et l’évaluation de ces risques fondamen-
taux.

Données

Les données publiques utilisées imitent le contexte du calcul d’un score de
crédit. Elles sont extraites (échantillon de 45 000 personnes) d’un recensement
de 1994 aux USA et décrivent l’âge, le type d’emploi, le niveau d’éducation, le
statut marital, l’origine ethnique, le nombre d’heures travaillées par semaine,
la présence ou non d’un enfant, les revenus ou pertes financières, le genre et le
niveau de revenu bas ou élevé. Elles servent de référence ou bac à sable pour
tous les développements d’algorithmes d’apprentissage automatique équitable.
Il s’agit de prévoir si le revenu annuel d’une personne est supérieur ou inférieur
à 50k$ et donc de prévoir, d’une certaine façon, sa solvabilité connaissant ses
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Figure 11.1: Précision de la prévision (accuracy) et effet disproportionné es-
timé par un intervalle de confiance sur un échantillon test (taille 9000) pour
différents modèles ou algorithmes d’apprentissage.

autres caractéristiques socio-économiques. L’étude complète et les codes de
calcul sont disponibles mais l’illustration est limitée à un résumé succinct de
l’analyse de la discrimination selon le sexe.

Résultats

Les données ont été aléatoirement réparties en deux échantillons
d’apprentissage (36 000), destinés à l’estimation des modèles ou entraînement
des algorithmes, et de test (9000) pour évaluer les différents indicateurs. Les
résultats sont regroupés dans la figure 11.1.

Ils mettent en évidence un biais de société important: seulement 11, 6%
des femmes ont un revenu élevé contre 31, 5% des hommes. Le rapport
DI = 0, 38 est donc très disproportionné. Il est comparé avec celui de la

prévision de niveau de revenu par un modèle classique linéaire de régression
logistique linLogit: DI = 0, 25. Significativement moins élevé (inter-
valles de confiance disjoints), il montre que ce modèle renforce le biais et
donc discrimine nettement les femmes dans sa prévision. La procédure naïve
(linLogit-w-s) qui consiste à éliminer la variable dite sensible (genre)
du modèle ne supprime en rien (DI = 0, 27) le biais discriminatoire car le
genre est de toute façon présent à travers les valeurs prises par les autres vari-
ables (effet proxy). Une autre conséquence de cette dépendance est que le
testing (changement de genre toutes choses égales par ailleurs) ne détecte plus
(DI = 0.90) aucune discrimination!

Un algorithme non linéaire plus sophistiqué (random forest) est très fidèle
au biais des données avec un indicateur (DI = 0, 36) pas significativement
différent de celui du biais de société et fournit une meilleure précision: 0, 86
au lieu de 0, 84 pour la régression logistique. Cet algorithme ne discrimine
pas plus mais c’est au prix de l’interprétabilité du modèle. Opaque comme
un réseau de neurones, il ne permet pas d’expliquer une décision à partir de
ses paramètres comme cela est facile avec le modèle de régression. Enfin,
la dernière ligne propose une façon simple, parmi une littérature très volu-
mineuse, de corriger le biais pour plus de justice sociale. Deux algorithmes
sont entraînés, un par genre et le seuil de décision (revenu élevé ou pas, ac-
cord ou non de crédit...) est abaissé pour les femmes : 0, 3 au lieu de celui
par défaut de 0, 5 pour les hommes. C’est une façon, parmi beaucoup d’autres,
d’introduire une part de discrimination positive et d’atténuer le biais pour une
société plus équitable.

Les autres types de biais sont également à considérer. Par principe, la préci-
sion de la prévision pour un groupe dépend de sa représentativité. Si ce dernier
est sous-représenté, l’erreur est plus importante; c’est typiquement le cas en re-
connaissance faciale mais pas dans l’exemple traité. Alors qu’elles sont deux
fois moins nombreuses dans l’échantillon, le taux d’erreur de prévision est de
l’ordre de 7, 9% pour les femmes et de 17% pour les hommes. Il faut donc con-
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sidérer le troisième type de biais pour se rendre compte que c’est finalement à
leur désavantage. Le taux de faux positifs est plus important pour les hommes
(0, 08) que pour les femmes (0, 02). Ceci avantage les hommes qui bénéfi-
cient plus largement d’une décision favorable même à tort. En revanche, le
taux de faux négatifs est plus important pour les femmes (0, 41), à leur désa-
vantage, que pour les hommes (0, 38). Noter que la procédure élémentaire
d’atténuation du biais en entraînant deux algorithmes, un pour chaque genre,
conduit à une légère augmentation du taux d’erreur pour les femmes, qui se
rapproche un peu de celui des hommes, et surtout produit un taux de faux posi-
tifs plus élevés pour les femmes. Aussi, sur cet exemple, l’introduction d’une
dose de discrimination positive intervient sur les trois types de biais pour en
réduire l’importance.

Discussion

Nous pouvons tirer quelques enseignements de cet exemple rudimentaire
imitant le calcul d’un score d’attribution de crédit bancaire.

• Sans précaution, si un biais est présent dans les données, il est reproduit
et même renforcé par un modèle linéaire élémentaire.

• Un algorithme plus sophistiqué, non linéaire et impliquant les interactions
entre les variables, ne fait que reproduire le biais mais, opaque, ne permet
plus de justification des décisions si l’effet disproportionné est juridique-
ment attaquable (DI < 0, 8).

• La procédure de testing, déjà peut convaincante pour évaluer une discrim-
ination indirecte ex post, est complètement inadaptée face à une procédure
algorithmique.

• Actuellement en Europe, une ou un data scientist est libre de produire ce
qu’il peut ou veut, en fonction de ses compétences et de sa déontologie

personnelle: de l’algorithme élémentaire interprétable mais discrimina-
toire à celui incluant une part arbitraire de discrimination positive. Au-
cune procédure de contrôle que ce soit ex ante ou ex post, n’est en vigueur
à ce jour pour le remettre en cause.

• La recherche d’une moins mauvaise solution sera l’affaire d’un compro-
mis entre les trois exigences de base pour une IA de confiance: contrôle
de la discrimination, qualité (robustesse réplicabilité) d’une décision et
explicabilité de cette décision. En effet, le meilleur algorithme en ter-
mes de précision est opaque, ininterprétable, et donc inadapté pour éviter
aux USA, une procédure judiciaire si l’effet disproportionné est trop im-
portant. De plus, la correction ou l’atténuation de l’effet disproportionné
entraîne une dégradation de la qualité de la prévision. Les récents travaux
de recherche en apprentissage équitable (Fairness, Accountability, and
Transparency conferences) visent cette recherche de meilleur compromis.

En résumé, la détection d’un risque algorithmique de discrimination indi-
recte vis à vis d’un groupe est une question complexe basée sur l’estimation
d’un choix d’indicateurs statistiques impliquant également les autres exigences
de qualité et explicabilité. Cette estimation est de plus soumise à l’accès à
l’information sensible dont l’enregistrement (e.g. origine ethnique) peut être
interdite par le RGPD; interdiction contournable par des procédés (e.g. analyse
du patronyme) pouvant nuire à la précision.

En conséquence et malgré un bagage de recherches anciennes et bien doc-
umentées, apporter des réponses aux simples questions de la liste d’évaluation
n’est pas immédiat!

Conclusion
Une chose est à retenir de cette rapide présentation et de l’exemple

numérique proposé. Sans documentation précise et exhaustive sur le processus
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qui a conduit à la mise en exploitation d’un système d’IA, du recueil des don-
nées à sa mise en exploitation, un audit ex post est impossible. Pour évaluer par
exemple une discrimination, les enquêtes classiques par testing sont hors-jeu et
tester un système sur des données réalistes, nécessiterait une immersion com-
plète dans la complexité du domaine d’application concerné. Le risque serait
évidemment de ne tester que certains aspects du système, certaines situations
ou types de données. La question principale reste donc la représentativité de
ces tests par rapport à l’usage réel qui est fait du système. Cette question est
de facto un préalable indispensable à la création d’un système d’IA : quelles
données pour quel objectif? Si elle n’a pas été posée explicitement et docu-
mentée ex ante, une analyse ex post ne peut conduire qu’à une remise en cause
de la fiabilité du système, en termes de qualité de décision ou de biais, devant
l’impossibilité d’en définir précisément le domaine d’usage.

La mise en place de cette documentation ex ante sera la conséquence de
l’exécution de la liste d’évaluation du groupe des experts européens reprise
par le livre blanc de la CE. Elle suit le même principe et la même logique
que l’analyse d’impact relatif à la confidentialité des données (privacy impact
assessment) et devrait être formalisée dans une réglementation à venir.

Des capacités et des compétences, à la fois techniques (statistique, appren-
tissage automatique) et juridiques de la part des régulateurs ou de sociétés ad
hoc, sont indispensables pour auditer a minima une telle documentation. Il
s’agira en tout premier lieu, de s’assurer que la vérification ex ante de concep-
tion d’un système d’IA a été mise en place très en amont dans un souci de con-
trôle exigeant de la qualité à toutes les étapes: représentativité statistique des
données d’entraînement en fonction de l’objectif, procédure d’apprentissage et
évaluation des erreurs, des biais, validation, éventuelle qualification et mise en
exploitation. Le cahier des charges doit également intégrer une surveillance du
bon fonctionnement du système d’IA afin d’en contrôler tout risque de dérive
et d’identifier les causes et responsabilités humaines en cas d’erreurs. Ce pro-
cessus qualité peut imposer de devoir ré-entraîner périodiquement l’algorithme

afin d’y intégrer des situations ou cas de figures initialement omis de la base
de données.
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