
1 Neural Networks and Introduction to Deep Learning

Neural Networks and Introduction to
Deep Learning

1 Introduction
Deep learning is a set of learning methods attempting to model data with

complex architectures combining different non-linear transformations. The el-
ementary bricks of deep learning are the neural networks, that are combined to
form the deep neural networks.

These techniques have enabled significant progress in the fields of sound
and image processing, including facial recognition, speech recognition, com-
puter vision, automated language processing, text classification (for example
spam recognition). Potential applications are very numerous. A spectacularly
example is the AlphaGo program, which learned to play the go game by the
deep learning method, and beated the world champion in 2016.

There exist several types of architectures for neural networks :

• The multilayer perceptrons, that are the oldest and simplest ones

• The Convolutional Neural Networks (CNN), particularly adapted for im-
age processing

• The recurrent neural networks, used for sequential data such as text or
times series.

They are based on deep cascade of layers. They need clever stochastic op-
timization algorithms, and initialization, and also a clever choice of the struc-
ture. They lead to very impressive results, although very few theoretical fon-
dations are available till now.

The main references for this course are :

• Ian Goodfellow, Yoshua Bengio and Aaron Courville :
http://www.deeplearningbook.org/

• Bishop (1995) : Neural networks for pattern recognition, Oxford Univer-
sity Press.

• The elements of Statistical Learning by T. Hastie et al [3].

• Hugo Larochelle (Sherbrooke): http ://www.dmi.usherb.ca/ larocheh/

• Christopher Olah’s blog : http://colah.github.io/posts/2015-08-
Understanding-LSTMs/

• Deep learning course, Charles Ollion et Olivier Grisel :
https://github.com/m2dsupsdlclass/lectures-labs

2 Neural networks
An artificial neural network is an application, non linear with respect to its

parameters θ that associates to an entry x an output y = f(x, θ). For the
sake of simplicity, we assume that y is unidimensional, but it could also be
multidimensional. This application f has a particular form that we will precise.
The neural networks can be use for regression or classification. As usual in
statistical learning, the parameters θ are estimated from a learning sample. The
function to minimize is not convex, leading to local minimizers. The success
of the method came from a universal approximation theorem due to Cybenko
(1989) and Hornik (1991). Moreover, Le Cun (1986) proposed an efficient
way to compute the gradient of a neural network, called backpropagation of
the gradient, that allows to obtain a local minimizer of the quadratic criterion
easily.

2.1 Artificial Neuron

An artificial neuron is a function fj of the input x = (x1, . . . , xd) weighted
by a vector of connection weights wj = (wj,1, . . . , wj,d), completed by a
neuron bias bj , and associated to an activation function φ, namely

yj = fj(x) = φ(〈wj , x〉+ bj).

Several activation functions can be considered.

• The identity function
φ(x) = x.

http://wikistat.fr

2 Neural Networks and Introduction to Deep Learning

• The sigmoid function (or logistic)

φ(x) =
1

1 + exp(−x)
.

• The hyperbolic tangent function ("tanh")

φ(x) =
exp(x)− exp(−x)

exp(x) + exp(−x)
=

exp(2x)− 1

exp(2x) + 1
.

• The hard threshold function

φβ(x) = 1x≥β .

• The Rectified Linear Unit (ReLU) activation function

φ(x) = max(0, x).

Here is a schematic representation of an artificial neuron where Σ = 〈wj , x〉+
bj .

Figure 1: source: andrewjames turner.co.uk

The Figure 2 represents the activation function described above.

Figure 2: Activation functions

Historically, the sigmoid was the mostly used activation function since it is
differentiable and allows to keep values in the interval [0, 1]. Nevertheless, it
is problematic since its gradient is very close to 0 when |x| is not close to 0.
The Figure 3 represents the Sigmoid function and its derivative.

With neural networks with a high number of layers (which is the case for deep
learning), this causes troubles for the backpropagation algorithm to estimate
the parameter (backpropagation is explained in the following). This is why the
sigmoid function was supplanted by the rectified linear function. This function
is not differentiable in 0 but in practice this is not really a problem since the
probability to have an entry equal to 0 is generally null. The ReLU function
also has a sparsification effect. The ReLU function and its derivative are equal
to 0 for negative values, and no information can be obtain in this case for such a

http://wikistat.fr

3 Neural Networks and Introduction to Deep Learning

Figure 3: Sigmoid function (in black) and its derivatives (in red)

unit, this is why it is advised to add a small positive bias to ensure that each unit
is active. Several variations of the ReLU function are considered to make sure
that all units have a non vanishing gradient and that for x < 0 the derivative is
not equal to 0. Namely

φ(x) = max(x, 0) + αmin(x, 0)

where α is either a fixed parameter set to a small positive value, or a parameter
to estimate.

2.2 Multilayer perceptron

A multilayer perceptron (or neural network) is a structure composed by sev-
eral hidden layers of neurons where the output of a neuron of a layer becomes
the input of a neuron of the next layer. Moreover, the output of a neuron can
also be the input of a neuron of the same layer or of neuron of previous layers

(this is the case for recurrent neural networks). On last layer, called output
layer, we may apply a different activation function as for the hidden layers de-
pending on the type of problems we have at hand : regression or classification.
The Figure 4 represents a neural network with three input variables, one output
variable, and two hidden layers.

Figure 4: A basic neural network. Source : http://blog.christianperone.com

Multilayers perceptrons have a basic architecture since each unit (or neuron)
of a layer is linked to all the units of the next layer but has no link with the
neurons of the same layer. The parameters of the architecture are the number
of hidden layers and of neurons in each layer. The activation functions are also
to choose by the user. For the output layer, as mentioned previously, the acti-
vation function is generally different from the one used on the hidden layers.
In the case of regression, we apply no activation function on the output layer.
For binary classification, the output gives a prediction of P(Y = 1/X) since
this value is in [0, 1], the sigmoid activation function is generally considered.
For multi-class classification, the output layer contains one neuron per class
i, giving a prediction of P(Y = i/X). The sum of all these values has to be
equal to 1. The multidimensional function softmax is generally used

softmax(z)i =
exp(zi)∑
j exp(zj)

.

Let us summarize the mathematical formulation of a multilayer perceptron
with L hidden layers.
We set h(0)(x) = x.

http://wikistat.fr

4 Neural Networks and Introduction to Deep Learning

For k = 1, . . . , L (hidden layers),

a(k)(x) = b(k) +W (k)h(k−1)(x)

h(k)(x) = φ(a(k)(x))

For k = L+ 1 (output layer),

a(L+1)(x) = b(L+1) +W (L+1)h(L)(x)

h(L+1)(x) = ψ(a(L+1)(x)) := f(x, θ).

where φ is the activation function and ψ is the output layer activation function
(for example softmax for multiclass classification). At each step, W (k) is a
matrix with number of rows the number of neurons in the layer k and number
of columns the number of neurons in the layer k − 1.

2.3 Universal approximation theorem

Hornik (1991) showed that any bounded and regular function Rd → R can
be approximated at any given precision by a neural network with one hidden
layer containing a finite number of neurons, having the same activation func-
tion, and one linear output neuron. This result was earlier proved by Cybenko
(1989) in the particular case of the sigmoid activation function. More precisely,
Hornik’s theorem can be stated as follows.

THEOREM 1. — Let φ be a bounded, continuous and non decreasing (ac-
tivation) function. Let Kd be some compact set in Rd and C(Kd) the set of
continuous functions on Kd. Let f ∈ C(Kd). Then for all ε > 0, there exists
N ∈ N, real numbers vi, bi and Rd-vectors wi such that, if we define

F (x) =

N∑
i=1

viφ(〈wi, x〉+ bi)

then we have
∀x ∈ Kd, |F (x)− f(x)| ≤ ε.

This theorem is interesting from a theoretical point of view. From a practical
point of view, this is not really useful since the number of neurons in the hidden
layer may be very large. The strength of deep learning lies in the deep (number
of hidden layers) of the networks.

2.4 Estimation of the parameters

Once the architecture of the network has been chosen, the parameters (the
weights wj and biases bj) have to be estimated from a learning sample. As
usual, the estimation is obtained by minimizing a loss function with a gradient
descent algorithm. We first have to choose the loss function.

2.4.1 Loss functions

It is classical to estimate the parameters by maximizing the likelihood (or
equivalently the logarithm of the likelihood). This corresponds to the mini-
mization of the loss function which is the opposite of the log likelihood. De-
noting θ the vector of parameters to estimate, we consider the expected loss
function

L(θ) = −E(X,Y)∼P (log(pθ(Y/X)).

If the model is Gaussian, namely if pθ(Y/X = x) ∼ N (f(x, θ), I), maximiz-
ing the likelihood is equivalent to minimize the quadratic loss

L(θ) = E(X,Y)∼P (‖Y − f(X, θ)‖2).

For binary classification, with Y ∈ {0, 1}, maximizing the log likelihood cor-
responds to the minimization of the cross-entropy. Setting f(X, θ)) = pθ(Y =
1/X),

L(θ) = −E(X,Y)∼P [Y log(f(X, θ)) + (1− Y) log(1− f(X, θ))].

This loss function is well adapted with the sigmoid activation function since
the use of the logarithm avoids to have too small values for the gradient.
Finally, for a multi-class classification problem, we consider a generalization
of the previous loss function to k classes

L(θ) = −E(X,Y)∼P [

k∑
j=1

1Y=j log pθ(Y = j/X)].

Ideally we would like to minimize the classification error, but it is not smooth,
this is why we consider the cross-entropy (or eventually a convex surrogate).

http://wikistat.fr

5 Neural Networks and Introduction to Deep Learning

2.4.2 Penalized empirical risk

The expected loss can be written as

L(θ) = E(X,Y)∼P [`(f(X, θ), Y)]

and it is associated to a loss function `.
In order to estimate the parameters θ, we use a training sample (Xi, Yi)1≤i≤n
and we minimize the empirical loss

L̃n(θ) =
1

n

n∑
i=1

`(f(Xi, θ), Yi)

eventually we add a regularization term. This leads to minimize the penalized
empirical risk

Ln(θ) =
1

n

n∑
i=1

`(f(Xi, θ), Yi) + λΩ(θ).

We can consider L2 regularization. Using the same notations as in Section 2.2,

Ω(θ) =
∑
k

∑
i

∑
j

(W
(k)
i,j)2

=
∑
k

‖W (k)‖2F

where ‖W‖F denotes the Frobenius norm of the matrix W . Note that only the
weights are penalized, the biases are not penalized. It is easy to compute the
gradient of Ω(θ) :

5W (k)Ω(θ) = 2W (k).

One can also consider L1 regularization, leading to parcimonious solutions :

Ω(θ) =
∑
k

∑
i

∑
j

|W (k)
i,j |.

In order to minimize the criterion Ln(θ), a stochastic gradient descent
algorithm is used. In order to compute the gradient, a clever method,
called Backpropagation algorithm is considered. It has been introduced by

Rumelhart et al. (1988), it is still crucial for deep learning.

The stochastic gradient descent algorithm performs at follows :

• Initialization of θ = (W (1), b(1), . . . ,W (L+1), b(L+1)).

• For N iterations :

– For each training data (Xi, Yi),

θ = θ − ε 1

m

∑
i∈B

[5θ`(f(Xi, θ), Yi) + λ5θ Ω(θ)].

Note that, in the previous algorithm, we do not compute the gradient for the
loss function at each step of the algorithm but only on a subset B of cardinal-
ity m (called a batch). This is what is classically done for big data sets (and
for deep learning) or for sequential data. B is taken at random without re-
placement. An iteration over all the training examples is called an epoch. The
numbers of epochs to consider is a parameter of the deep learning algorithms.
The total number of iterations equals the number of epochs times the sample
size n divided by m, the size of a batch. This procedure is called batch learn-
ing, sometimes, one also takes batches of size 1, reduced to a single training
example (Xi, Yi).

2.4.3 Backpropagation algorithm for regression with the quadratic loss

We consider the regression case and explain in this section how to compute
the gradient of the empirical quadratic loss by the Backpropagation algorithm.
To simplify, we do not consider here the penalization term, that can easily be
added. Assuming that the output of the multilayer perceptron is of size K, and
using the notations of Section 2.2, the empirical quadratic loss is proportional
to

n∑
i=1

Ri(θ)

with

Ri(θ) =

K∑
k=1

(Yi,k − fk(Xi, θ))
2.

http://wikistat.fr

6 Neural Networks and Introduction to Deep Learning

In a regression model, the output activation function ψ is generally the identity
function, to be more general, we assume that

ψ(a1, . . . , aK) = (g1(a1), . . . , gK(aK))

where g1, . . . , gK are functions from R to R. Let us compute the partial deriva-
tives of Ri with respect to the weights of the output layer. Recalling that

a(L+1)(x) = b(L+1) +W (L+1)h(L)(x),

we get

∂Ri

∂W
(L+1)
k,m

= −2(Yi,k − fk(Xi, θ))g
′
k(a

(L+1)
k (Xi))h

(L)
m (Xi).

Differentiating now with respect to the weights of the previous layer

∂Ri

∂W
(L)
m,l

= −2

K∑
k=1

(Yi,k − fk(Xi, θ))g
′
k(a

(L+1)
k (Xi))

∂a
(L+1)
k (Xi)

∂W
(L)
m,l

.

with

a
(L+1)
k (x) =

∑
j

W
(L+1)
k,j h

(L)
j (x),

h
(L)
j (x) = φ

(
b
(L)
j + 〈W (L)

j , h(L−1)(x)〉
)
.

This leads to

∂a
(L+1)
k (x)

∂W
(L)
m,l

= W
(L+1)
k,m φ′

(
b(L)m + 〈W (L)

m , h(L−1)(x)〉
)
h
(L−1)
l (x).

Let us introduce the notations

δk,i = −2(Yi,k − fk(Xi, θ))g
′
k(a

(L+1)
k (Xi))

sm,i = φ′
(
a(L)m (Xi)

) K∑
k=1

W
(L+1)
k,m δk,i.

Then we have

∂Ri

∂W
(L+1)
k,m

= δk,ih
(L)
m (Xi) (1)

∂Ri

∂W
(L)
m,l

= sm,ih
(L−1)
l (Xi), (2)

known as the backpropagation equations. The values of the gradient are used
to update the parameters in the gradient descent algorithm. At step r + 1, we
have :

W
(L+1,r+1)
k,m = W

(L+1,r)
k,m − εr

∑
i∈B

∂Ri

∂W
(L+1,r)
k,m

W
(L,r+1)
m,l = W

(L,r)
m,l − εr

∑
i∈B

∂Ri

∂W
(L,r)
m,l

where B is a batch (either the n training sample or a subsample, eventually
of size 1) and εr > 0 is the learning rate that satisfies εr → 0,

∑
r εr = ∞,∑

r ε
2
r <∞, for example εr = 1/r.

We use the Backpropagation equations to compute the gradient by a two
pass algorithm. In the forward pass, we fix the value of the current weights
θ(r) = (W (1,r), b(1,r), . . . ,W (L+1,r), b(L+1,r)), and we compute the predicted
values f(Xi, θ

(r)) and all the intermediate values (a(k)(Xi), h
(k)(Xi) =

φ(a(k)(Xi)))1≤k≤L+1 that are stored.
Using these values, we compute during the backward pass the quantities δk,i
and sm,i and the partial derivatives given in Equations 1 and 2. We have com-
puted the partial derivatives ofRi only with respect to the weights of the output
layer and the previous ones, but we can go on to compute the partial derivatives
of Ri with respect to the weights of the previous hidden layers. In the back
propagation algorithm, each hidden layer gives and receives informations from
the neurons it is connected with. Hence, the algorithm is adapted for parallel
computations. The computations of the partial derivatives involve the func-
tion φ′, where φ is the activation functions. φ′ can generally be expressed in a
simple way for classical activations functions. Indeed for the sigmoid function

φ(x) =
1

1 + exp(−x)
, φ′(x) = φ(x)(1− φ(x)).

http://wikistat.fr

7 Neural Networks and Introduction to Deep Learning

For the hyperbolic tangent function ("tanh")

φ(x) =
exp(x)− exp(−x)

exp(x) + exp(−x)
, φ′(x) = 1− φ2(x).

The backpropagation algorithm is also used for classification with the cross
entropy as explained in the next section.

2.4.4 Backpropagation algorithm for classification with the cross en-
tropy

We consider here a K class classification problem. The output of the MLP

is f(x) =

P(Y = 1/x)

.

.
P(Y = K/x)

. We assume that the output activation function is

the softmax function.

softmax(x1, . . . , xK) =
1∑K

k=1 e
xi

(ex1 , . . . , exK).

Let us make some useful computations to compute the gradient.

∂softmax(x)i
∂xj

= softmax(x)i(1− softmax(x)i) if i = j

= −softmax(x)isoftmax(x)j if i 6= j

We introduce the notation

(f(x))y =

K∑
k=1

1y=k(f(x))k,

where (f(x))k is the kth component of f(x) : (f(x))k = P(Y = k/x). Then
we have

− log(f(x))y = −
K∑
k=1

1y=k log(f(x))k = `(f(x), y),

for the loss function ` associated to the cross-entropy.
Using the notations of Section 2.2, we want to compute the gradients

Output weights
∂`(f(x), y)

∂W
(L+1)
i,j

Output biases∂`(f(x),y)
∂b

(L+1)
i

Hidden weights
∂`(f(x), y)

∂W
(h)
i,j

Hidden biases∂`(f(x),y)
∂b

(h)
i

for 1 ≤ h ≤ L. We use the chain-rule : if z(x) = φ(a1(x), . . . , aJ(x)), then

∂z

∂xi
=
∑
j

∂z

∂aj

∂aj
∂xi

= 〈5φ, ∂a
∂xi
〉.

Hence we have

∂`(f(x), y)

∂(a(L+1)(x))i
=
∑
j

∂`(f(x), y)

∂f(x)j

∂f(x)j
∂(a(L+1)(x))i

.

∂`(f(x), y)

∂f(x)j
=
−1y=j
(f(x))y

.

∂`(f(x), y)

∂(a(L+1)(x))i
= −

∑
j

1y=j
(f(x))y

∂softmax(a(L+1)(x))j
∂(a(L+1)(x))i

= − 1

(f(x))y

∂softmax(a(L+1)(x))y
∂(a(L+1)(x))i

= − 1

(f(x))y
softmax(a(L+1)(x))y(1− softmax(a(L+1)(x))y)1y = i

+
1

(f(x))y
softmax(a(L+1)(x))isoftmax(a(L+1)(x))y1y 6=i

∂`(f(x), y)

∂(a(L+1)(x))i
= (−1 + f(x)y)1y = i+ f(x)i1y 6= i.

Hence we obtain

5a(L+1)(x)`(f(x), y) = f(x)− e(y),

http://wikistat.fr

8 Neural Networks and Introduction to Deep Learning

where, for y ∈ {1, 2, . . . ,K}, e(y) is the RK vector with i th component 1i=y .
We now obtain easily the partial derivative of the loss function with respect to
the output bias. Since

∂((a(L+1)(x)))j
∂(b(L+1))i

= 1i=j ,

5b(L+1) `(f(x), y) = f(x)− e(y), (3)

Let us now compute the partial derivative of the loss function with respect to
the output weights.

∂`(f(x), y)

∂W
(L+1)
i,j

=
∑
k

∂`(f(x), y)

∂(a(L+1)(x))k

∂(a(L+1)(x))k

∂W
(L+1)
i,j

and
∂(a(L+1)(x))k

∂W
(L+1)
i,j

= a(L)(x))j1i=k.

Hence
5W (L+1) `(f(x), y) = (f(x)− e(y))(a(L)(x))′. (4)

Let us now compute the gradient of the loss function at hidden layers. We use
the chain rule

∂`(f(x), y)

∂(h(k)(x))j
=
∑
i

∂`(f(x), y)

∂(a(k+1)(x))i

∂(a(k+1)(x))i
∂(h(k)(x))j

We recall that

(a(k+1)(x))i = b
(k+1)
i +

∑
j

W
(k+1)
i,j (h(k)(x))j .

Hence
∂`(f(x), y)

∂h(k)(x)j
=
∑
i

∂`(f(x), y)

∂a(k+1)(x)i
W

(k+1)
i,j

5h(k)(x)`(f(x), y) = (W (k+1))′ 5a(k+1)(x) `(f(x), y).

Recalling that h(k)(x)j = φ(a(k)(x)j),

∂`(f(x), y)

∂a(k)(x)j
=
∂`(f(x), y)

∂h(k)(x)j
φ′(a(k)(x)j).

Hence,

5a(k)(x)`(f(x), y) = 5h(k)(x)`(f(x), y)�(φ′(a(k)(x)1), . . . , φ′(a(k)(x)j), . . .)
′

where � denotes the element-wise product. This leads to

∂`(f(x), y)

∂W
(k)
i,j

=
∂`(f(x), y)

∂a(k)(x)i

∂a(k)(x)i

∂W
(k)
i,j

=
∂`(f(x), y)

∂a(k)(x)i
h
(k−1)
j (x)

Finally, the gradient of the loss function with respect to hidden weights is

5W (k) `(f(x), y) = 5a(k)(x)`(f(x), y)h(k−1)(x)′. (5)

The last step is to compute the gradient with respect to the hidden biases. We
simply have

∂`(f(x), y)

∂b
(k)
i

=
∂`(f(x), y)

∂a(k)(x)i

and
5b(k) `(f(x), y) = 5a(k)(x)`(f(x), y). (6)

We can now summarize the backpropagation algorithm.

• Forward pass: we fix the value of the current weights θ(r) =
(W (1,r), b(1,r), . . . ,W (L+1,r), b(L+1,r)), and we compute the predicted
values f(Xi, θ

(r)) and all the intermediate values (a(k)(Xi), h
(k)(Xi) =

φ(a(k)(Xi)))1≤k≤L+1 that are stored.

• Backpropagation algorithm:

– Compute the output gradient5a(L+1)(x)`(f(x), y) = f(x)− e(y).

– For k = L+ 1 to 1

http://wikistat.fr

9 Neural Networks and Introduction to Deep Learning

* Compute the gradient at the hidden layer k

5W (k)`(f(x), y) = 5a(k)(x)`(f(x), y)h(k−1)(x)′

5b(k)`(f(x), y) = 5a(k)(x)`(f(x), y)

* Compute the gradient at the previous layer

5h(k−1)(x)`(f(x), y) = (W (k))′ 5a(k)(x) `(f(x), y)

and

5a(k−1)(x)`(f(x), y) = 5h(k−1)(x)`(f(x), y)

�(. . . , φ′(a(k−1)(x)j), . . .)
′

2.4.5 Initialization

The input data have to be normalized to have approximately the same range.
The biases can be initialized to 0. The weights cannot be initialized to 0 since
for the tanh activation function, the derivative at 0 is 0, this is a saddle point.
They also cannot be initialized with the same values, otherwise, all the neurons
of a hidden layer would have the same behaviour. We generally initialize the
weights at random : the valuesW (k)

i,j are i.i.d. Uniform on [−c, c] with possibly

c =
√
6

Nk+Nk−1
where Nk is the size of the hidden layer k. We also sometimes

initialize the weights with a normal distribution N (0, 0.01) (see Gloriot and
Bengio, 2010).

2.4.6 Optimization algorithms

Many algorithms can be used to minimize the loss function, all of them have
hyperparameters, that have to be calibrated, and have an important impact on
the convergence of the algorithms. The elementary tool of all these algorithms
is the Stochastic Gradient Descent (SGD) algorithm. It is the most simple one:

θnewi = θoldi − ε
∂L

∂θi
(θoldi),

where ε is the learning rate , and its calibration is very important for the con-
vergence of the algorithm. If it is too small, the convergence is very slow and

the optimization can be blocked on a local minimum. If the learning rate is too
large, the network will oscillate around an optimum without stabilizing and
converging. A classical way to proceed is to adapt the learning rate during the
training : it is recommended to begin with a "large " value of ε, (for example
0.1) and to reduce its value during the successive iterations. However, there is
no general rule on how to adjust the learning rate, and this is more the expe-
rience of the engineer concerning the observation of the evolution of the loss
function that will give indications on the way to proceed.
The stochasticity of the SGD algorithm lies in the computation of the gradi-
ent. Indeed, we consider batch learning : at each step, m training examples
are randomly chosen without replacement and the mean of the m correspond-
ing gradients is used to update the parameters. An epoch corresponds to a pass
through all the learning data, for example if the batch sizem is 1/100 times the
sample size n, an epoch corresponds to 100 batches. We iterate the process on
a certain number nb of epochs that is fixed in advance. If the algorithm did not
converge after nb epochs, we have to continue for nb′ more epochs. Another
stopping rule, called early stopping is also used : it consists in considering a
validation sample, and stop learning when the loss function for this validation
sample stops to decrease. Batch learning is used for computational reasons,
indeed, as we have seen, the backpropagation algorithm needs to store all the
intermediate values computed at the forward step, to compute the gradient dur-
ing the backward pass, and for big data sets, such as millions of images, this is
not feasible, all the more that the deep networks have millions of parameters to
calibrate. The batch sizem is also a parameter to calibrate. Small batches gen-
erally lead to better generalization properties. The particular case of batches
of size 1 is called On-line Gradient Descent. The disadvantage of this proce-
dure is the very long computation time. Let us summarize the classical SGD
algorithm.

ALGORITHM 1 Stochastic Gradient Descent algorithm

• Fix the parameters ε : learning rate, m : batch size, nb : number of
epochs.

• For l = 1 to nb epochs

• For l = 1 to n/m,

http://wikistat.fr

10 Neural Networks and Introduction to Deep Learning

– Take a random batch of size m without replacement in the learning
sample : (Xi, Yi)i∈Bl

– Compute the gradients with the backpropagation algorithm

5̃θ =
1

m

∑
i∈Bl

5θ`(f(Xi, θ), Yi).

– Update the parameters

θnew = θold − ε5̃θ.

Since the choice of the learning rate is delicate and very influent on the
convergence of the SGD algorithm, variations of the algorithm have been pro-
posed. They are less sensitive to the learning rate. The principle is to add a
correction when we update the gradient, called momentum. The method is
due to Polyak (1964) [9].

(5̃θ)(r) = γ(5̃θ)(r−1) +
ε

m

∑
i∈Bl

5θ`(f(Xi, θ
(r−1)), Yi).

θ(r) = θ(r−1) − (5̃θ)(r).

This method allows to attenuate the oscillations of the gradient.
In practice, a more recent version of the momentum due to Nesterov (1983) [8]
and Sutskever et al. (2013) [11] is considered, it is called Nesterov accelerated
gradient :

(5̃θ)(r) = γ(5̃θ)(r−1) +
ε

m

∑
i∈Bl

5θ`(f(Xi, θ
(r−1) − γ(5̃θ)(r−1)), Yi).

θ(r) = θ(r−1) − (5̃θ)(r).

There exist also more sophisticated algorithms, called adaptive algorithms.
One of the most famous is the RMSProp algorithm, due to Hinton (2012) [2]
or Adam (for Adaptive Moments) algorithm, see Kingma and Ba (2014) [5].
To conclude, let us say a few words about regularization. We have already
mentioned L2 or L1 penalization; we have also mentioned early stopping. For

deep learning, the mostly used method is the dropout. It was introduced by
Hinton et al. (2012), [2]. With a certain probability p, and independently of
the others, each unit of the network is set to 0. The probability p is another
hyperparameter. It is classical to set it to 0.5 for units in the hidden layers, and
to 0.2 for the entry layer. The computational cost is weak since we just have to
set to 0 some weights with probability p. This method improves significantly
the generalization properties of deep neural networks and is now the most pop-
ular regularization method in this context. The disadvantage is that training is
much slower (it needs to increase the number of epochs). Ensembling models
(aggregate several models) can also be used. It is also classical to use data
augmentation or Adversarial examples.

Figure 5: Dropout - source: http://blog.christianperone.com/

3 Convolutional neural networks
For some types of data, especially for images, multilayer perceptrons are not

well adapted. Indeed, they are defined for vectors as input data, hence, to apply
them to images, we should transform the images into vectors, loosing by the
way the spatial informations contained in the images, such as forms. Before
the development of deep learning for computer vision, learning was based on
the extraction of variables of interest, called features, but these methods need
a lot of experience for image processing. The convolutional neural networks
(CNN) introduced by LeCun [13] have revolutionized image processing, and

http://wikistat.fr

11 Neural Networks and Introduction to Deep Learning

removed the manual extraction of features. CNN act directly on matrices,
or even on tensors for images with three RGB color chanels. CNN are now
widely used for image classification, image segmentation, object recognition,
face recognition ..

Figure 6: Image annotation. Source : http://danielnouri.org/media/deep-
learning-whales-krizhevsky-lsvrc-2012-predictions.jpg

Figure 7: Image Segmentation. Source : http://static.open-
open.com/lib/uploadImg/20160114/20160114205542-482.png

3.0.7 Layers in a CNN

A Convolutional Neural Network is composed by several kinds of layers,
that are described in this section : convolutional layers, pooling layers and
fully connected layers.

3.0.8 Convolution layer

The discrete convolution between two functions f and g is defined as

(f ∗ g)(x) =
∑
t

f(t)g(x+ t).

For 2-dimensional signals such as images, we consider the 2D-convolutions

(K ∗ I)(i, j) =
∑
m,n

K(m,n)I(i+ n, j +m).

K is a convolution kernel applied to a 2D signal (or image) I .

As shown in Figure 8, the principle of 2D convolution is to drag a convo-
lution kernel on the image. At each position, we get the convolution between
the kernel and the part of the image that is currently treated. Then, the kernel
moves by a number s of pixels, s is called the stride. When the stride is small,
we get redondant information. Sometimes, we also add a zero padding, which
is a margin of size p containing zero values around the image in order to control
the size of the output. Assume that we apply C0 kernels (also called filters),
each of size k× k on an image. If the size of the input image is Wi×Hi×Ci
(Wi denotes the width,Hi the height, andCi the number of channels, typically
Ci = 3), the volume of the output is W0 ×H0 ×C0, where C0 corresponds to
the number of kernels that we consider, and

W0 =
Wi − k + 2p

s
+ 1

H0 =
Hi − k + 2p

s
+ 1.

If the image has 3 channels and if Kl (l = 1, . . . , C0) denote 5× 5× 3 ker-
nels (where 3 corresponds to the number of channels of the input image), the

http://wikistat.fr

12 Neural Networks and Introduction to Deep Learning

Figure 8: 2D convolution. Source :https://i2.wp.com/khshim.files.
wordpress.com/2016/10/2d-convolution-example.png

convolution with the image I with the kernel Kl corresponds to the formula:

Kl ∗ I(i, j) =

2∑
c=0

4∑
n=0

4∑
m=0

Kl(n,m, c)I(i+ n− 2, i+m− 2, c).

More generally, for images with Ci channels, the shape of the kernel is
(k, k, Ci, C0) where C0 is the number of output channels (number of kernels)
that we consider. This is (5, 5, 3, 2) in Figure 10. The number of parameter
associated with a kernel of shape (k, k, Ci, C0) is (k × k × Ci + 1)× C0.

The convolution operations are combined with an activation function φ (gen-
erally the Relu activation function) : if we consider a kernel K of size k×k, if
x is a k × k patch of the image, the activation is obtained by sliding the k × k
window and computing z(x) = φ(K ∗ x+ b), where b is a bias.

Figure 9: 2D convolution - Units corresponding to the same
position but at various depths : each unit applies a dif-
ferent kernel on the same patch of the image. Source :
https://upload.wikimedia.org/wikipedia/commons/thumb/6/68/Conv-
layer.png/ 231px-Conv-layer.png

This is in the convolution layer that we find the strength of the CNN, indeed,
the CNN will learn the filters (or kernels) that are the most useful for the task
that we have to do (such as classification). Another advantage is that several
convolution layers can be considered : the output of a convolution becomes the
input of the next one.

3.0.9 Pooling layer

CNN also have pooling layers, which allow to reduce the dimension, also
referred as subsampling, by taking the mean or the maximum on patches of
the image (mean-pooling or max-pooling). Like the convolutional layers,
pooling layers acts on small patches of the image, we also have a stride. If
we consider 2 × 2 patches, over which we take the maximum value to define
the output layer, and a stride s = 2, we divide by 2 the width and height of
the image. Of course, it is also possible to reduce the dimension with the
convolutional layer, by taking a stride larger than 1, and without zero padding

http://wikistat.fr

13 Neural Networks and Introduction to Deep Learning

Figure 10: Source :http://image.slidesharecdn.com/

but another advantage of the pooling is that it makes the network less sensitive
to small translations of the input images.

Figure 11: Maxpooling and effect on the dimension - Source :
http://www.wildml.com/wp-content/uploads/2015/11/Screen-Shot-2015-
11-05-at-2.18.38-PM.png

3.0.10 Fully connected layers

After several convolution and pooling layers, the CNN generally ends with
several fully connected layers. The tensor that we have at the output of these
layers is transformed into a vector and then we add several perceptron layers.

3.1 Architectures

We have described the different types of layers composing a CNN. We now
present how this layers are combined to form the architecture of the network.
Choosing an architecture is very complex and this is more engineering that
an exact science. It is therefore important to study the architectures that have
proved to be effective and to draw inspiration from these famous examples. In
the most classical CNN, we chain several times a convolution layer followed
by a pooling layer and we add at the end fully connected layers. The LeNet
network, proposed by the inventor of the CNN, Yann LeCun [12] is of this
type, as shown in Figure 12. This network was devoted to digit recognition. It
is composed only on few layers and few filters, due to the computer limitations
at that time.

Figure 12: Architecture of the network Le Net. LeCun, Y., Bottou, L., Bengio,
Y. and Haffner, P. (1998)

http://wikistat.fr

14 Neural Networks and Introduction to Deep Learning

A few years later, with the appearance of GPU (Graphical Processor Unit)
cards, much more complex architectures for CNN have been proposed, like the
network AlexNet (see [6]) that won the ImageNet competition and for which
a simplified version is presented in Figure 13. This competition was devoted
to the classification of one million of color images onto 1000 classes. The
resolution of images was 224 × 224. AlexNet is composed of 5 convolution
layers, 3 max-pooling 2 × 2 layers and fully connected layers. As showed if
Figure 13, the kernel shape of the first convolution layer is (11, 11, 3, 96) with
a stride of s = 4, and the first output shape is (55, 55, 96).

Figure 13: Architecture of the network AlexNet. Krizhevsky, A. et al (2012).
Source : https://kratzert.github.io/

We detail in the following tabular the architecture of the network :

Input 227 * 227 * 3
Conv 1 55*55*96 96 11 *11 filters at stride 4, pad 0
Max Pool 1 27*27*96 3 *3 filters at stride 2
Conv 2 27*27*256 256 5*5 filters at stride 1, pad 2
Max Pool 2 13*13*256 3 *3 filters at stride 2
Conv 3 13*13*384 384 3*3 filters at stride 1, pad 1
Conv 4 13*13*384 384 3*3 filters at stride 1, pad 1
Conv 5 13*13*256 256 3*3 filters at stride 1, pad 1
Max Pool 3 6*6*256 3 *3 filters at stride 2
FC1 4096 4096 neurons
FC2 4096 4096 neurons
FC3 1000 1000 neurons (softmax logits)

Figure 14 presents another example.

Figure 14: Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition (2014). Source :
http://www.cs.toronto.edu/ frossard/post/vgg16/vgg16.png

The network that won the competition in 2014 is the network GoogLeNet
[1], which is a new kind of CNN, not only composed on successive convolution
and pooling layers, but also on new modules called Inception, which are some
kind of network in the network. An example is represented in Figure 15.

The most recent innovations concern the ResNet networks (see [1]). The
originality of the ResNets is to add a connection linking the input of a layer (or
a set of layers) with its output. In order to reduce the number of parameters, the
ResNets do not have fully connected layers. GoogleNet and ResNet are much
deeper than the previous CNN, but contain much less parameters. They are
nevertheless much costly in memory than more classical CNN such as VGG
or AlexNet.

Figure 17 shows a comparison of the deepth and of the performances of the
different networks, on the ImageNet challenge.

http://wikistat.fr

15 Neural Networks and Introduction to Deep Learning

Figure 15: Inception modules, Szegedy et al. (2016)

Figure 16: Inception-v4, Inception-resnet (Szegedy, C. et al. , 2016 [1])

4 Recurrent neural networks
In order to infer sequential data such as text or time series, Recurrent Neu-

ral Networks (RNN) are considered. The most simple recurrent networks

Figure 17: Evolution of the deepth of the CNN and the test error

were developed in the 1980’s, a hidden layer at time t depends on the entry at
time t, xt but also on the same hidden layer at time t−1 or on the output at time
t− 1. We therefore have a loop from a hidden layer to itself or from the output
to the hidden layer as shown in Figure 18. RNN may seem, at the first glance,

Figure 18: Diagram of a RNN. Source : Understanding LSTM Networks
by Christopher Olah - http://colah.github.io/posts/2015-08-Understanding-
LSTMs/

very different from classical neural network. In fact, this is not the case. RNN

http://wikistat.fr

16 Neural Networks and Introduction to Deep Learning

can be seem as multiple copies of the same network (As in Figure 18 and 19),
each passing information to its successor. This is the unrolled representation
of RNN, shown in Figure 19.

Figure 19: Unrolled representation of a RNN. Source : Understanding
LSTM Networks by Christopher Olah - http://colah.github.io/posts/2015-08-
Understanding-LSTMs/

Let us mention the historical Simple Recurrent Networks introduced by El-
man (1990) [4] and Jordan (1990) [7]. The recurrent network considered by
Elman is a MLP with one unit layer looped back on itself. If we denote by x(t)
the input at time t, ŷ(t) the output at time t and ẑ(t) the hidden layer at time t,
the model writes for the kth component of the output

ŷ(k)(t) =

I∑
i=1

W
(k)
i ẑi(t) + b(k)

ẑi(t) = σ

 J∑
j=1

wi,jxj(t) +

I∑
l=1

w̃i,lẑl(t− 1) + bi

where σ is an activation function. The neurons of the hidden layer that are
looped to themselves are called context units. In the model introduced by Jor-
dan, ẑl(t − 1) is replaced in the last equation by ŷl(t − 1). In this case, the
context units are the output neurons. These models have been introduced in
linguistic analysis. They are widely used in natural language processing. Nev-
ertheless, the basic version of recurrent neural networks falls to learn long time
dependancies. New architectures have been introduced to tackle this problem.

4.1 Long Short-Term Memory

In the last years, RNN have been successfully used again for various
applications such as speech recognition, translation, image captioning .. This
success is mostly due to the performances of LSTMs : Long Short-Term
Memorys, which is a special kind of recurrent neural networks. Long Short-
Term Memory (LSTM) cells were introduced by Hochreiter and Schmidhuber
(1997) [10] and were created in order to be able to learn long time depen-
dancies. A LSTM cell comprises at time t , a state Ct and an output ht. As
input, this cell at time t comprises xt, Ct−1 and ht−1. Inside the LSTM,
the computations are defined by doors that allow or not the transmission of
information. These computations are governed by the following equations
described in [10] .

ut = σ(Wuht−1 + Iuxt + bu) Update gate H

ft = σ(W fht−1 + Ifxt + bf) Forget gate H

C̃t = tanh(W cht−1 + Icxt + bc) Cell candidate H

Ct = ft � Ct−1 + ut � C̃t Cell output H

ot = σ(W oht−1 + Ioxt + bo) Output gate H

ht = ot � tanh(Ct) Hidden output H

yt = softmax(Wht + b) Output K

Wu,W f ,W c,W o Recurrent weights H ×H

Iu, If , Ic, Io Input weights N ×H

bu, bf , bc, bo Biases H
Figure 20 reveals the main difference between a classical RNN and an

LSTM. For a standard RNN, the repeated module A is very simple, it con-
tains a single layer. For the LSTM, the repeated module contains four layers
(the yellow boxes), interacting as described by the above equations.

http://wikistat.fr

17 Neural Networks and Introduction to Deep Learning

Figure 20: Diagram of an LSTM. Source : Understanding LSTM Networks
by Christopher Olah http://colah.github.io/posts/2015-08-Understanding-
LSTMs/img/LSTM3-chain.png

Exercise. — On Figure 20, put the different elements mentioned in the equa-
tions defining the LSTM.

There are also variants of LSTMs, and this field of research is still very
active to obtain more and more powerful models.

References
[1] Szegedy C., Ioffe S., Vanhouche V., and Alemi A. Inception-v4,

inception-resnet and the impact of residual connections on learning.
Arxiv, 1602.07261, 2016.

[2] Hinton G.E., Srivastava N., Krizhevsky A., Sutskever I., and Salakhutdi-
nov R. Improving neural networks by preventing co-adaptation of feature
detectors. CoRR, abs/1207.0580, 2012.

[3] T. Hastie, R. Tibshirani, and J Friedman. The elements of statistical learn-
ing : data mining, inference, and prediction. Springer, 2009. Second
edition.

[4] Elman J.L. Finding structure in time. Cognitive science, 14(2):179–211,
1990.

[5] D. Kingma and J. Ba. Adam : a method for stochastic optimization.
Arxiv, 1412.6980, 2014.

[6] A. Krizhevsky, I. Sutskever, and G.E. Hinton. Imagenet classification
with deep convolutional neural networks. Advances in neural information
processing systems, pages 1097–1105, 2012.

[7] Jordan M.I. Artificial Neural Network, pages 112-127. IEEE Press, 1990.

[8] Y. Nesterov. A method of solving a complex programming problem
with convergence rate o(1/k2). Soviet Mathematics Doklady, 27:372–
376, 1983.

[9] B.T. Polyak. Some methods of speeding up the convergence of iteration
methods. USSR Computational Mathematics and Mathematical Physics,
4(5):1–17, 1964.

[10] Hochreiter S. and SchmidhuberJ. Long short-term memory. Neural Com-
putation, 9(8):1735–1780, 1997.

[11] I. Sutskever, J. Martens, G.E. Dahl, and G.E. Hinton. On the importance
of initialization and momentum in deep learning. ICML, 28(3):1139–
1147, 2013.

[12] LeCun Y., Bottou L., Bengio Y., and Haffner P. Gradient-based learn-
ing applied to document recognition. IEEE Communications magazine,
27(11):41–46, 1998.

[13] LeCun Y., Jackel L., Boser B., Denker J., Graf H., Guyon I., Henderson
D., Howard R., and Hubbard W. Handwritten digit recognition : Appli-
cations of neural networks chipsand automatic learning. Proceedings of
the IEEE, 86(11):2278–2324, 1998.

http://wikistat.fr

	Introduction
	Neural networks
	Artificial Neuron
	Multilayer perceptron
	Universal approximation theorem
	Estimation of the parameters
	Loss functions
	Penalized empirical risk
	Backpropagation algorithm for regression with the quadratic loss
	Backpropagation algorithm for classification with the cross entropy
	Initialization
	Optimization algorithms

	Convolutional neural networks
	Layers in a CNN
	Convolution layer
	Pooling layer
	Fully connected layers

	Architectures

	Recurrent neural networks
	Long Short-Term Memory

