
1 Sequential and reinforcement learning: Stochastic Optimization I

Sequential and reinforcement learning:
Stochastic Optimization I

Summary
This session describes the important and nowadays framework of
on-line learning and estimation. This kind of problem arises in
bandit games (see below for details) and in optimization of big data
problems that involve so massive data sets that the user cannot
imagine exploiting the entire data with a batch algorithm. Instead,
we are forced to use some subset of observations sequentially
to produce both : tractable algorithms, fast predictions, efficient
statistical estimators.

We will describe below the method of Stochastic Gradient Algorithm,
with application in
• Optimization of convex functions (regression, SVM, Lasso)
• Optimization with non convex functions : E.M. algorithm, Quan-

tile estimation

As well, we will introduce later a second family of method that relies
on pure randomness exploration strategy with Markov chains. We
will describe algorithms for solving the problem of simulations of
posterior distribution through another family of stochastic methods :
• M.H. M-C algorithms
• Adjusted Langevin algorithms

At last, we will briefly describe an ultimate method for solving the
minimization of a non convex function with multiple local traps, by
using simulated annealing. This problem will be illustrated on the
so-called travelling salesman problem.

1 Stochastic Gradient Descent (aka S.G.D.)

1.1 Gradient descent

1.1.1 Convex case

Let us consider a function f : Rp 7−→ R, which is convex and C2 (for the
sake of simplicity). We are interested in finding the minimum of f over Rp. A
natural method relies on a discretization of the so-called gradient descent :

ẋt = −∇f(xt)dt. (1)

It is easy to check that E(t) = f(xt) is a decreasing function all along the
time :

E′(t) = −‖∇f(xt)‖2.

Assume now that f(x∗) = min
Rp

f = 0, we can prove that

E(t)− E(0) = −
∫ t

0

‖∇f(xs)‖2ds,

so that ∫ t

0

‖∇f(xs)‖2ds ≤ E(0).

This last inequality immediately implies that

lim
t−→+∞

∇f(xt) = 0.

The convexity of f permits to conclude the convergence of (1) :

lim
t−→+∞

xt = x∗.

1.1.2 Strongly convex case

We can derive convergence rates if we add a slightly stronger hypothesis on
f . Assume now that f is α-strongly convex : it means that x 7−→ f(x)−α‖x−
x∗‖2 is still convex, or equivalently that

D2f ≥ αId,

in the following sense :

∀x ∈ Rp txD2(f)(x)x ≥ α‖x‖2.

http://wikistat.fr


2 Sequential and reinforcement learning: Stochastic Optimization I

A simple consequence is that

∀x ∈ Rp f(x) ≥ α‖x− x∗‖22.

A typical example (involved in the linear models) :

f(x) = ‖Ax− b‖2 with A ∈Mn,p(R),

such that tAA is an invertible matrix. We can be more precise about the beha-
viour of (1). We introduce F (t) = ‖xt − x∗‖2 and compute

F ′(t) = −〈xt − x∗,∇f(xt)〉.

But any convex function with minimum x∗ always satisfies

〈∇f(x), x− x∗〉 ≥ f(x),

so that
F ′(t) ≤ −f(xt) ≤ −αF (t).

We then conclude that
F (t) ≤ F (0)e−αt,

leading to an exponential convergence rate of xt towards its target x∗.

1.2 Stochastic settings

We are now interested in the situation where the numerical scheme is dis-
crete, given by an Euler explicit scheme (with step size (αk)g≥1) :

xk+1 = xk − αkdk(xk), (2)

where dk(xk) is a “ descent direction" that should be made close to the gradient
of f at point xk. In some situation, it is not reasonnable to imagine using
dk(x) = ∇f(x) because of

• computationnal issues (computing∇f may be costly)
• availability (the computation of∇f is not possible).

However, it is possible to produce an unbiased estimate of ∇f(xk) at time k
while assuming the important hypothesis :

∀k ∈ N ∀x ∈ Rp E[dk(x)] = ∇f(x) and V ar(dk(x)) ≤ σ2.

It means that now, we have access to an unbiased estimator of ∇f at each
iteration of the algorithm, with bounded variance. The natural question raised
by this framework is as follows. Does algorithm (2) still converges to x∗, if we
tune suitably the step-size sequence (αk)g≥1) ?

1.3 Examples of applications of SGD

1.3.1 f as an average of convex functions

A famous use of S.G.D. concerns the situation where f is given by

∀x ∈ Rp f(x) = EU∼P [f(x, U)],

where U is a random variable of distributions P and for any u : f(., u) is
convex. If we can sample from the distribution P , then S.G.D. can be written
as

xk+1 = xk − αk∇xf(xk, Uk) where Uk ∼ P.

Above, we implicitely assume that ∇xf(xk, Uk) is easy to handle, which is
not the case for the whole gradient∇xf(xk).

Another great advantage is that this approach permits generally to handle
sequential arrivals of new observations Xn, with a very low cost of updates.

1.3.2 Linear regression

The loss L is given by

L(w) =
1

2

n∑
i=1

[Yi − 〈w,Xi〉]2.

We then immediately adapt the on-line regression with stochastic gradient
using the direction descent :

dk(w) = [〈wk, Xik〉 − Yik ].Xik ,

where (Xik , Yik) is an observation uniformly picked in the training set. Note
that dk(w) and Xik are vectors of size p. This stochastic step do not involve
the inversion of the Fisher information matrix.

http://wikistat.fr


3 Sequential and reinforcement learning: Stochastic Optimization I

1.3.3 S.V.M. problem

The S.V.M. problem induces the minimization of a cost function that de-
pends on a variable w ∈ Rp+1. The S.V.M. is dedicated to a supervised clas-
sification problem with n observations (Xi, Yi) where Yi ∈ {±1}. The obser-
vation Xi is sent in a p dimensional space through a kernel φ.

The loss function is defined as

L(w) = λ‖w‖22 +

n∑
i=1

max{0; 1− Yi[〈w, φ(Xi)〉]}.

This function is convex in w and minimizing this loss corresponds in trying
to find the best separation hyperplane in a p dimensional space. If n is huge,
handle the gradient of L may be complicated. However, we can notice that

L(w) = λ‖w‖22 + E(X,Y )∼Pn max{0; 1− Y [〈w, φ(X)〉]}.

Hence, we can replacement at each step the gradient of L by an unbiased esti-
mation given by

dk(w) = λw − Yk〈w,φ(Xk)〉1Yk〈w,φ(Xk)〉<1 where (Xk, Yk) ∼ Pn.

Here, we can see that we only need one sample of the training set to produce
an estimator of the gradient at each step of the algorithm.

1.3.4 Lasso

The Lasso loss is

L(w) = λ‖w‖1 +
1

2

n∑
i=1

[Yi − 〈w, φ(Xi)〉]2

We can trivially apply the S.G.D. on this loss using again a sampling of
Pn the empirical measure. Nevertheless, this kind of method fails in produ-
cing a sparse reconstruction. Instead, we can also randomize on the variables
(w1, . . . , wp) by picking one coordinate of w uniformly at random among the
p variables.

In that case, the descent becomes :
• Pick one variable jk uniformly in {1, . . . , p}.

•

w̃jk+1 = wjk − 1j=jk∂jk

(
1

2

n∑
i=1

[Yi − 〈w, φ(Xi)〉]2
)
.

• Use the proximal step

wk+1 = sλ[w̃k+1].

1.3.5 Quantile

The quantile of a real distribution may be of interest while looking for confi-
dence sets. Recall that the quantile qα is defined as

P(X < qα) =

∫ qα

−∞
p(s)ds = 1− α.

Now, imagine you want to find qα from sequential arrivals of observations
(Xn)n∈N, you are thus looking for the minimizer of the loss

L(q) = [P[X ≤ q]− (1− α)]2,

whose gradient is given by

L′(q) = p(q)[P[X ≤ q]− (1− α)] = p(q) [E[1X≤q]− (1− α)]

A natural extension of the initial gradient algorithm will produce the following
descent choice :

dk(qk) = 1Xk≤qk − (1− α),

that solely depends on the observation Xk at time k and the current estimation
qk.

1.4 Examples in Matlab

Each time, try to modify some parameters (step size, functions to be mini-
mized, initialization, etc.)

1.4.1 Convex minimization

The baseline (toy) functions :

http://wikistat.fr


4 Sequential and reinforcement learning: Stochastic Optimization I

function y=E1(x)
y=x.^2/2;

function y=gradE1(x)
y=x;

The Matlab script :

% Script of the S.G.D.
clear all
close all
%Step Size power parameter
alpha=1;

%Maximal number of iterations
Nstop=1000;

%Initialisation of the gradient and of the S.G.D.
x(1)=randn; xx(1)=randn;

for i=1:Nstop-1
x(i+1)=x(i)-(i+1)^(-alpha)*gradE1(x(i));
xx(i+1)=xx(i)-(i+1)^(-alpha)*[gradE1(xx(i))+randn];

end

plot(x)
hold on
plot(xx,’r’)

legend(’EGD’,’SGD’)

1.4.2 Non-Convex minimization

function y=E2(x)
y=5*sin(x)+x.^2/2;

function y=gradE2(x)

y=5*cos(x)+x;

The Matlab script :

x(1)=3;

%Initialisation of the S.G.D.
xx(1)=3;

for i=1:Nstop-1
x(i+1)=x(i)-(i+1)^(-alpha)*gradE2(x(i));
xx(i+1)=xx(i)-(i+1)^(-alpha)*[gradE2(xx(i))+randn];

end

figure

plot(x)
hold on
plot(xx,’r’)

legend(’EGD’,’SGD’)

1.4.3 Linear regression with (possibly) giant dataset

The Matlab script :

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Linear Model
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all
%Dimension of the problem:
p=10;
% Step size parameter
alpha=1/2;
% Unknown parameter
theta=(2*rand(p,1)-1)*10;
% Number of observations:
nobs=1000;

http://wikistat.fr


5 Sequential and reinforcement learning: Stochastic Optimization I

esti(:,1)=zeros(p,1);

for i=1:nobs
%Current Error
s(i)=norm(theta-esti(:,i));
% Sequential arrival of an observation (X,Y)
X=10*randn(p,1);
Y=sum(X.*theta)+randn;
esti(:,i+1)=esti(:,i)+(i+1)^(-alpha)*(Y-sum(esti(:,i).*X))*X/(100*p);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Evolution of the error
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
plot(s)

1.4.4 Quantile estimation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Sequential quantile estimation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all
% Alpha
alpha=0.01;
% Step size parameter
nu=1/2;

% Number of observations:
nobs=10000;
q(1)=0;

for i=1:nobs
X=randn;
q(i+1)=q(i)-i^(-nu)*((X<q(i))-(1-alpha));

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Evolution of the quantile estimation for the std gaussian
r.v.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
plot(q)

1.5 Theoretical guarantees

1.5.1 Convergence results

A first important ingredient for a good behaviour of these stochastic algo-
rithms is about the choice of the step size parameter. This choice is not so
obvious. It can be shown that two baseline important properties are as follows :

∞∑
n=1

γn = +∞ and
∞∑
n=1

γ1+εn < +∞,

for any ε > 0. In practice, it is important to choose

γn ∼ Cn−α with α ∈ (1/2, 1].

Such a choice permits to establish the following results :

THÉORÈME 1. — Assume that f is stongly convex and ∇f is L Lipschitz, and
that the noise at each step has a bounded variance. Then γn = cn−α with
α ∈ (0, 1) leads to

E[f(Xn)]−min
Rp

f . γn.

Consequently, the smaller the step-size, the lower the upper bound. Unfortu-
nately, we cannot choose α = 1 without any additional assumption that relies
on the strong convexity of f . It can be shown that if γn = c/n with c large
enough, then the result of Theorem 1 remains true. These results are difficult
(especially when α < 1/2 and can be found in the earliest work of Benaïm
and Duflo).

1.5.2 Polyak averaging

A very good alternative to a very careful choice of the step-size parameter
(that would depend on the strong convexity of f or not), is to use a step size

http://wikistat.fr


6 Sequential and reinforcement learning: Stochastic Optimization I

γn = C/nα with α ∈ (1/2, 1) and an additional Cesaro averaging procedure.

X̄n :=
1

n

n∑
k=1

Xk.

In that situation, we can show the next result.

THÉORÈME 2. — If f is strongly convex and γn = cn−α with α ∈ [1/2, 1),
then

E[f(X̄n)]−min
Rp

f .
1

n
.

Hence, Polyak averaging has the good property to catch the best rate achievable
with strong convexity, without setting a sharp constant in front of an hypothetic
step size γn = c/n. In practice, a good setup is γn ∼ 1/

√
n coupled with

Polyak averaging.

http://wikistat.fr

	Stochastic Gradient Descent (aka S.G.D.)
	Gradient descent
	Convex case
	Strongly convex case

	Stochastic settings
	Examples of applications of SGD
	f as an average of convex functions
	Linear regression
	S.V.M. problem
	Lasso
	Quantile

	Examples in Matlab
	Convex minimization
	Non-Convex minimization
	Linear regression with (possibly) giant dataset
	Quantile estimation

	Theoretical guarantees
	Convergence results
	Polyak averaging



