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Unsupervised clustering with E.M.

Summary
We describe here the important framework of mixture models. These
mixture models are rich, flexible, easy to handle, and possess a sur-
prisingly large spectrum of possible applications.
Moreover, these mixture models may be easily interpreted, and es-
timated efficiently with the well known Expectation Maximization
algorithm (E.M. for short). The purpose of this session is to detail
theoretical and practical aspects of the clustering problem with a
Bayesian modelling that involves mixtures.

1 Introduction

1.1 Definition of the clustering problem

Clustering is sometimes also called classification. In fact, we should pay
attention at the very beginning of this lecture at the statistical framework : the
classification problem can be supervised or unsupervised.
• K class supervised classification : we observe in the training set Dn :=
{(X1, Y1) . . . , (Xn, Yn)} both positions of the observations Xi ∈ Rp
and labels for these observations Yi ∈ {1, . . . ,K}. In this framework,
we need to build the best classifier possible φ to minimize the risk loss
R

R(φ) := E[Y 6= φ(X)] ' min
f∈Φ

E[Y 6= f(X)],

In a sense, the performance of prediction on a new observation is what
matters, but K is known !

• Unsupervised classification : we observe in the training set Dn :=
(X1, . . . , Xn) only the positions but we know that a latent structure
exists in the data, that derives from a natural partition of the state space.
We want to predict a partition of the state space and of the data. We also
may be interested in giving a confidence probability for an observation
to be in a particular class.
In a sense, the performance on current observations is what matters.

Important drawback : in general we do not know K !
We will be interested in the unsupervised classification problem, also called

clustering problem.

1.2 Notations

D := {X1, . . . , Xn} is the data set and n is the number of observations.

K is the number of clusters K ≤ n and we are looking for

∆ = {C1, . . . , Ck} a partition of D

We can produce two results for the clustering :
• Hard clustering : The method says that an observation i belongs to only

1 cluster. We thus predict the partition of the observations {C1, . . . , Ck}.
• Soft clustering : The method says that an observation is more likely to

belong to one of the K cluster by producing a probability distribution :

P[Xi ∈ Ck] = γk,i with
K∑
k=1

γk,i = 1.

We can see in Figure 1 that some cases may be so simple that it is possible
to produce a reliable Hard clustering (figure on the left). In other cases, the
picture is not so clear and we only produce a probability to belong to one of
the several classes. This is the purpose of the Soft clustering (figure on the right
is an illustration).

From a state of the art point of view, the old fashioned algorithms like hie-
rarchical clustering or K means produce some Hard clustering.

The purpose of the E.M. clustering is to propose a Soft clustering method.

1.3 What we won’t discuss on

1.3.1 Single linkage algorithm

The Hierarchical clustering algorithm (also called Single linkage algorithm)
is certainly one of the simplest method to produce a Hard clustering method.
It only requires the knowledge of a distance between observations. Then, the
policy is forward from bottom to up with a recursive grouping strategy.
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FIGURE 1 – An example of two situations where the clustering problem may
be solved, but with certainly two different meanings (from a visual point of
view).

Algorithm 1: Single linkage algorithm / Hierarchical clustering
Data: Dataset D = {X1, . . . , Xn} ⊂ Rp. Distance d.

1 Initialization : Form the set of n individual groups
2

{X1}, . . . {Xn} := G0

3 for k = 1 . . . n− 1 do
4 Aggregate the two groups of observations (A,B) ∈ G2

k−1 such that

d(A,B) := mini∈A,j∈Bd(Xi, Xj).

is as small as possible.
5 Build the new set of groups :

Gk := Gk−1 \ ({A} ∪ {B}) ∪ {A ∪B}.

6 end
7 Output : Sequence of groups G0, . . . ,Gn−1.

FIGURE 2 – An example of two situations where the clustering problem may
be solved, but with certainly two different meanings (from a visual point of
view).

The complexity of the method is weak since it requires only of the order n2

iterations (i.e. the square of the number of observations). We can observe an
execution in R of Algorithm 1 in Figure 2.

You may find many tutorials on hierarchical clustering with R on the www. In
particular, the important matter is the choice of a good threshold in the lasting
steps of the algorithm. This choice induces the number of groups obtained in
the clustering, and the method used to fix this threshold is oftenly questionable.

1.3.2 K-means algorithm

The second classical method is the so-called K-means algorithm (see e.g.
Lloyd, 1982 [2]). Given an integer K, it produces a recursive algorithm that
build and update the groups sequentially.

http://wikistat.fr


3 Unsupervised clustering with E.M.

We briefly provide a pseudo-code of the method in Algorithm 2. Moreover,
Figure 3 proposes an illustration of the K-means algorithm until the conver-
gence of the method is reached. Again, the stabilization of the method is quite
rapid, but there is scarse theoretical supporting result on this method.

Algorithm 2: K-means clustering
Data: Dataset D = {X1, . . . , Xn} ⊂ Rp. Distance d.

1 Initialization : Pick randomly K centers in Rp denoted µ1, . . . , µK
2 Build K groups formed by the minimal distance assignment criterion :

Xi ∈ C0
j ⇐⇒ d(Xi, µj) = inf

1≤k≤K
d(Xi, µk).

3 t=1
4 while The groups are modified do
5 Compute the barycenters of the groups µt1, . . . , µ

t
K

µtk =
1

|Ct−1
k |

∑
Xi∈Ct−1

k

Xi

6 Assign the observations Xi to one of the group according to the
minimal distance assignment to each barycenter.

Xi ∈ Ctj ⇐⇒ d(Xi, µ
t
j) = inf

1≤k≤K
d(Xi, µ

t
k).

7 t←− t+ 1

8 end
9 Output : K groups C1, . . . , CK .

2 Mixture models

2.1 Latent factor models

A mixture model associated to a clustering problem will consider that one
do not face a too much simplistic situation where x belongs to only one class.

FIGURE 3 – Toy example for the K-means algorithm.

It mimics the fact that given a position x in the space, this point is more likely
to belong to one class (in comparison with the other ones). This assumption
can be quantified through a conditional probability to be a member of each
class.

To be more precise, we consider now a family (fθ)θ∈Θ of densities over
Rp and a probability distribution over Θ. We assume that the density of the
observed phenomenon (Xi)1≤i≤n may be written as

∀x ∈ Rp f(x) =

K∑
k=1

πkfθk(x), (1)

where (πk)1≤k≤K satisfies

∀k ∈ {1 . . . ,K} πk ≥ 0 and
K∑
k=1

πk = 1.

The latent factor assumption is that the class k (among 1 . . .K) has a probabi-
lity πk to be used in the initial mixture model (1).
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DÉFINITION 1. — [Parameters of the mixture] In Equation (1), (πk)1≤k≤K is
called the proportion of the mixture. The value of θ gather the locations of the
mixture model.

A typical example of mixture model is GMM (Gaussian Mixture Model)
where

∀k ∈ {1, . . . ,K} θk = (µk,Σk).

Once the distribution π and location θ is determined, the mixture model
permits to automatically give the degree of membership of any point of Rp
through the Bayes rule :

P[Ck|x] =
P[Ck]× P[x|Ck]

P[x]
=

πkfθk(x)
k∑
j=1

πjfθj (x)

(2)

The value of this function (and in particular the most typical class at point x)
provides a natural partition of the state space :

Ck :=

{
x : πkfθk(x) > max

j 6=k
πjfθj(x)

}
We represent in Figure 4 an example of three Gaussian densities mixed with

coefficients 1/3, 1/3, 1/3 in dashed lines. The corresponding global mixture
model density is represented in straight line.

Of course, in general the parameters π = (π1, . . . , πK) and θ =
(θ1, . . . , θK) are unknown and need to be recovered !

2.2 Likelihood of the model

An efficient estimation in the model (1) is needed to make the mixture ap-
proach efficient for clustering. We briefly outline the likelihood approach be-
low.

Assume X1, . . . , Xn are generated according to an unknown distribution
Pθ, where θ ∈ Θ has to be estimated. The M.L.E. principle is to compute

Likelihood(θ|D) = Pθ(D) =

n∏
i=1

Pθ(Xi).

FIGURE 4 – Toy Gaussian mixture model.

An equivalent formulation involves the log-likelihood (denoted ` = logL).
When the observations are assumed to be i.i.d., ` may be written as

`(θ|D) =

n∑
i=1

`Pθ(Xi).

What is called M.L.E. is the estimator θ̂n that maximises ` (or equivalently L) :

θ̂n := arg max
θ∈Θ

`(θ|D).

Of course, it is estimated on the data.

In particular, for the mixture model (1), we can write

(π̂n, θ̂n) := arg max
(π,θ)

`((π, θ)|D), (3)

with

`((π, θ)|D) =

n∑
i=1

log

(
K∑
k=1

πkfθk(x)

)

http://wikistat.fr


5 Unsupervised clustering with E.M.

We can see that we need to solve a certainly complicated maximization pro-
blem in the variables π and θ. This may be handled directly by gradient ascent
in (π, θ). Nevertheless, it is worthwhile saying that this approach has no theo-
retical fundation because of the nonconvexity of `. An alternative relies on the
use of the Expectation-Maximization algorithm, that aims to adopt a Minori-
zation/Maximization procedure on the variational problem derived from (3).

2.3 E-M Algorithm

This algorithm has been introduced in the seminal work of [1]. It is maybe
one of the most famous and useful academic work in statistics. We introduce
the unobserved random variablesZi that are the indicator variables from whom
the observation Xi is sampled.

Zi = k ⇐⇒ Xi ∼ fθk .

We associate to the initial log-likelihood ` the complete log likelihood defined
as

`((π, θ)|X,Z) := logP((X,Z)|(π, θ)).

This complete likelihood is now equal to

`((π, θ)|X,Z) :=

n∑
i=1

log (P(Zi|π)× P[Xi|Zi, θ])

=

n∑
i=1

K∑
k=1

1Zi=k × [log πk + log fθk(Xi)]

since for each observation i, the probability to obtain (x, z) is to first choose
class k with probability πk, and then sample x with probability fθk(x). This
formula repeats each time Z is equal to k.

The interest of this formulation relies on the fact that the optimization may
be splitted in a recursive two-step procedure that built a sequence of estima-
tors !

Of course, the variables Z are not observed, otherwise the problem would be
straightforward. It is nevertheless possible to compute the expected complete
log likelihood : If we use the notation Θ for the current possible values of the

parameters (in the mixture)

Q(Θ|ΘOld) := E(X,Z)∼P
ΘOld

`(X,Z, |Θ). (4)

Above, what is unknown are the values of Z. In particular, if Θ = (π, θ) :

Q(Θ|ΘOld) =

n∑
i=1

K∑
k=1

E(X,Z)∼P
ΘOld

[1Zi=k × [log πk + log fθk(Xi)]] ,

which in turn yields

Q(Θ|ΘOld) =

n∑
i=1

K∑
k=1

P[Zi = k|Xi,Θ
Old]× [log πk + log fθk(Xi)].

E step At the current stage, we can impute the expected responsabilities of
each class to P[Zi = k|Xi,Θ

Old] :

P[Zi = k|Xi,Θ
Old] =

πOldk fθOld
k

(Xi)∑K
j=1 π

Old
j fθOld

j
(Xi)

:= γi,k (5)

This formula is similar to Equation (2) and is just the conditional distribution
of Zi given Xi and the old value of the parameter ΘOld.

M step We now maximise with respect to Θ the expectation of the complete
likelihood Q(Θ|ΘOld). Writing now Θ = (π, θ), this is made possible since
everything is splitted :

Q((π, θ)|ΘOld) =

n∑
i=1

K∑
k=1

γi,k log[πk + log fθk(Xi)] = J(π) +

K∑
k=1

J(θk).

As you can see, the step E is explicit and do not really deserve any special
attention. This is not exactly the same situation for the M step.
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Algorithm 3: E-M Algorithm
Data: Dataset D = {X1, . . . , Xn} ⊂ Rp. Parametric model (fθ)θ.

1 Initialization : Choose an initial distribution π0 in the probability simplex
and pick a parameter θ0 randomly in its state space.

2 Denote Θ0 = (π0, θ0).
3 for t = 1 . . .+∞ do
4 E Step Use formula (5) to compute the expected responsabilities on

each observation :

∀i ∈ {1, . . . , n} ∀k ∈ {1, . . . ,K} γti,k =
πt−1
k fθt−1

k
(Xi)

K∑
k=1

πt−1
k fθt−1

k
(Xi)

.

5 M Step Update the parameters Θt = (πt, θt) with

πt := arg max
π:

∑
πk=1

K∑
k=1

log[πk]

(
n∑
i=1

γti,k

)
(6)

and

∀k ∈ {1 . . .K} θtk := arg max
θ

n∑
i=1

γti,k log fθk(Xi). (7)

6 end
7 Output : Limiting values in Θt.

2.4 Solving M in EM

A simple remark shows that the M step for the computation of π is simple
(see Equation (6)). Using the Lagrange multiplier, we need to solve

0 = ∂π

[∑
k

log πk
∑
i

γi,k + λ(1−
∑
k

πk)

]
,

which after brief algebra leads to

πk :=
1

n

∑
i

γi,k.

This formula is general and works for any mixture model.

However, in the other maximization procedure in θ given by Equation (7) of
theM step, we need to solve the maximization procedure “at hand", depending
on the kind of densities involved in the mixture model.

We specify here the M step in some particular cases :
• Gaussian mixture with unknown means We assume that fθ is the den-

sity of a Gaussian standard random variable of mean θ :

fθ(x) =
1

(2π)d/2
e−‖x−θ‖

2/2.

The maximisation over θ is explicit here, and leads to

∀k ∈ {1 . . . ,K} θtk :=

n∑
i=1

γti,jXi,

which is indeed the mean over the observatino of the posterior distribu-
tion on the K classes.

• Gaussian mixture with unknown means and variance The formula
for the mean remains identical for the means recovery

∀k ∈ {1 . . . ,K} θtk :=

n∑
i=1

γti,jXi,
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The variance/covariance term is given by

∀k ∈ {1 . . . ,K} Σtk :=

n∑
i=1

γti,j
t(Xi − θtk)(Xi − θtk),

where the term t(Xi − θtk) refers to the transpose of the vector Xi − θtk.
• Poisson mixture with unknown means The Poisson distribution is a

discrete law over N such that

fθ(k) = e−θ
θk

k!

Again, the maximization (7) leads to

∀k ∈ {1 . . . ,K} θtk :=

n∑
i=1

γti,jXi.

Even though this formula is the same as the one involved for Gaussian
distributions, please have in mind that it is not a general matter of fact !

3 Theoretical guarantees for EM Algorithm
Even though the algorithm makes both step (E and M) feasibles from a com-

putational point of view, we need to understand what happens by iteratively
solving line 4 and line 5 of Algorithm 3. This understanding relies again on
the Minorization-Maximization principle already sketched for the Lasso.

3.1 Principle of the MM algorithm

An algorithm is needed to solve the majorization problem

arg max
Θ∈Rp

{`(Θ|X)} .

An efficient method follows the principle of "Majorize Minorization" and is
referred to as MM method.
• MM are useful for the minimization of a convex function/maximization

of a concave one.
• Geometric illustration

• Idea : Build a sequence (Θk)k≥0 that converges to the maximum of
`(Θ|X).

• MM algorithms are powerful, especially they can convert non-
differentiable problems to smooth ones.

1. A function g(Θ|Θk) is said to minorize f at point Θk if

g(Θk|Θk) = f(Θk) and g(Θ|Θk) ≤ f(Θ),∀Θ ∈ Rp.

2. Then, we define
Θk+1 = arg max

Θ∈Rp
g(Θ|Θk)

3. Need a choice of a function g(.,Θk) whose maximization is easy.
4. An example with a quadratic majorizer of a non-smooth function :
5. Important remark : The MM is a descent/ascent algorithm :

f(Θk+1) = g(Θk+1|Θk) + f(Θk+1)− g(Θk+1|Θk)

≥ g(Θk|Θk) + f(Θk+1)− g(Θk+1|Θk)

≥ f(Θk) (8)

3.2 Application to E.M. Algorithm

We will establish that the sequence produced by E.M. satisfies

`(Θ|X)− `(Θk|X) ≥ Q(Θ|Θk),

where Q is defined in Equation (4). We compute :

`(Θ|X)− `(Θk|X) = logPθ(X)π(θ)− logPθk(X)π(θk),
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We can introduce the hidden variables Z :

Pθ(X)π(θ) =
∑
Z

Pθ(X,Z)π(θ) =
∑
Z

P(X|θ, Z)P(Z|θ)π(θ)

=
∑
Z

P(X|θ, Z)P(Z|θ)π(θ)

P(Z|X, θk)
× P(Z|X, θk)

The map P(.|X, θk) is a probability distribution and the Jensen inequality
yields (log is a concave function) :

log (Pθ(X)π(θ)) ≥
∑
Z

log

(
P(X|θ, Z)P(Z|θ)π(θ)

P(Z|X, θk)

)
P(Z|X, θk).

The second term of the difference may be written as :

log (P(X|θk)π(θk)) =
∑
Z

P(Z|X, θk) log (P(X|θk)π(θk)) .

Consequently :

log (Pθ(X)π(θ))− log (Pθk (X)π(θk))

≥
∑
Z

P(Z|X, θk) log

(
P(X|θ, Z)P(Z|θ)π(θ)

P(Z|X, θk)

)
−
∑
Z

P(Z|X, θk) log (P(X|θk)π(θk))

=
∑
Z

P(Z|X, θk) log

(
P(X|θ, Z)P(Z|θ)π(θ)

P(Z|X, θk)P(X|θk)π(θk)

)
=

∑
Z

P(Z|X, θk) log

(
P(X,Z|θ)π(θ)

P(X,Z|θk)π(θk)

)
:= Q(Θ|Θk).

The conclusion may be stated in the following result.

THÉORÈME 2. — The likelihood of the sequence produced by the E.M. algo-
rithm is increasing.

Note that the Theorem above provides the convergence of the likelihood
of the model, but nothing more can be said more on the convergence of the
method (convergence of (Θk)k≥0, local traps,. . . ).

4 Numerical example
We end the session with a brief numerical illustration through the famous

Old Faithful eruption dataset, which concerns the elapse time in minute bet-
ween each eruptions of a the Old Faithful geyser in the Yellowstone National
Park.

We will use the mclust software, that is learning mixture of Gaussian random
variables in R with the E.M. algorithm.

library(mclust)
plot(faithful)

An important point is the practical choice of K, the number of components.
It can be made by maximizing the BIC criterion. The package compute first
each optimal value of the log likelihood with E.M. and then penalize the score
by using suitably the number of components (find how ?).

faithfulBIC <- mclustBIC(faithful)

plot(faithfulBIC)

What is the optimal number of component in the mixture model ?

faithfulSummary <- summary(faithfulBIC,
data = faithful)

faithfulSummary
plot(faithfulBIC, G = 1:7, ylim = c(-2500,-2300), legendArgs = list(x = "bottomright", ncol = 5))

We can obtain a visual interpretation through (options 1,2,3 or 4).

plot(faithfulMclust)

and the predicted cluster may be obtained with

faithfulMclust$classification

The uncertainty of prediction is computed as well with

faithfulMclust$uncertainty
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