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n : number of observations - p : number of variables per observations

Data Science - Convex optimization and
application

p>>n>>0(1).

Summary > g | |
. . o . o 1. everal examples
We begin by some illustrations in challenging topics in modern data P
science. Then, this session introduces (or reminds) some basics on Spam detection From a set of labelled messages (spam or not), build a clas-
optimization, and illustrate some key applications in supervised clas- sification for automatic spam rejection.
sification.
D S H Variable Mot ou Carac. Modalités P/A Variable Mot ou Carac. Modalités
1 ata cle n ce make make make /Nmk X630 650 6507 N63
address address addr /Nad lab lab lab /NIb
all all all / Nal labs labs labs /Nls
. . X3d 3d 3d/N3d telnet telnet teln £ Ntl
1.1 What is data science : our our our/ Nou X857 857 857/ N§7
over over over { Nov data data data/ Nda
) . 3 . . remove remove remo /[ Nrm X415 415 415/ N41
Extract from data some knowledge for industrial or academic exploitation. iniernet - inernet inte/ Nin Xk B IS
order order orde [ Nor technology  technology tech/ Nic
3 . mail mail mail /Nma X1999 1999 1999/ N19
It generally involves : receive  receive rece / Nrc parts parts part J Npr
will will will / Nwi pm pm pm / Npm
. . . penple people peop / Npp direct direct dire / Ndr
Signal Processing (how to record the data and represent it ?) repon report tepo /Nip o o csiNes
addresses  addresses adds / Nas meeling meeling meet/Nmt
2. Modelisation (What is the problem, what kind of mathematical model e e e o /N ool o e
email email emai / Nem re re re / Nre
and answer ?) you vou you/ Nyo edu edu edu /Ned
credit credit cred/ Ncr table table tabl # Ntb
3. Statistics (reliability of estimation procedures ?) you your your! Nyr conference - conferenc ¢ cont et
. . . . . . . . X000 000 000/ NOO Cpe { Copar / NCj
4. Machine Learning (what kind of efficient optimization algorithm ?) morey  moncy mono/ Non || Coroch | Chro /NG
hp hp hp / Nhp Cexclam 1 Cexc / NCe
: hpl hpl hpl/ Nhl Cdollar 3 Cdol / NCd
5. Implementation (software needs) george  geomme geor [ Nge Cliese # Cde /NG
6. Visualization (how can I represent the resulting knowledge ?)

e Select among the words meaningful elements ?

In its whole, this sequence of questions are at the core of Artificial Intel- . ¢ '
e Automatic classification ?

ligence and may also be referred to as Computer Science problems. In this
lecture, we will address some issues raised in red items. Each time, practical
examples will be provided

Most of our motivation comes from the Big Data world, encountered in
image processing, finance, genetics and many other fields where knowledge Gene expression profiles analysis One measures micro-array datasets built
extraction is needed, when facing many observations described by many va- from a huge amount of profile genes expression. Number of genes p (of order
riables. thousands). Number of samples n (of order hundred).
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Diagnostic help : healthy or ill ?
e Select among the genes meaningful elements ?
o Automatic classification ?

Recommandation problems

amazon

27 Try Prime Your Amazon.com Today'sDeals GiftCards  Sell

And more recently :

e What kind of database ?
e Reliable recommandation for clients ?
e Online strategy ?

Breast
state
Non-small-ung
atios
X

D

Help

FoRRS 3:‘—.
; a
‘i;‘: =ﬁ éi

Melanoma

Credit scoring

Build an indicator (@) score) from a dataset for the probability

of interest in a financial product (Visa premier credit card).

TABLE | — Liste des variables et de leur libellé
Libellé

TABLE 2 - Liste des variables et de leur libellé — suitel

Identif. Identif. | Libellé

matric Matricule (identifiant client) boppn Nombre d"opérations & M-1

depts Département de résidence facan Montam facturé dans | année en francs

pvs Point de vente lgagt Engagement long terme

sexeq Sexe (qualitatif) vienb Nombre de produits contrats vie

ager Age en années viemt Montant des produits contrats vie en francs

famig Situation familiale uemnb | Nombre de produits épargne monétaire
(Fmar : marié, Feel : célibataire, Rdiv :divorcé, vemmts | Montant des produits d'épargne monétaire en francs
Fuli :union libre, Fsep : séparé de corps, Feu :veuf) xlgnb | Nombre de produits d'épargne logement

relat Ancienneté de relation en mois xlgmt | Montant des produits d'épargne logement en francs

pespe Catégorie socio-professionnelle (code num) ylvnb | Nombre de comptes sur livret

quals Code “qualité” client évalué par la banque ylvmt Montant des compies sur livret en francs

GxxGxx$S | plusieurs variables caractérisant les interdits nbelts | Nombre de produits d'épargne long terme
bancaires mielts | Montant des produits d"épargne long terme en francs

impnbs Nombre d'impayés en cours nbcats | Nombre de produits épargne i terme

rejets Montant total des rejets en francs micats | Montant des produits épargne i terme

opgnb Nombre d"opérations par guichet dans le mois nbbecs | Nombre de produits bons et certificats

moyry Moyenne des mouvements nets créditeurs mibecs | Montant des produits bons et certificats en francs
des 3 mois en Kf rocnb | Nombre de paiements par carte bancaire i M-1

tavep Total des avoirs épargne monétaire en francs nicas Nombre total de cartes

endet Taux d’endettement nplag Nombre de cartes point argent

gaget Total des engagements en francs segvls | Segmentation version 2

gagec Total des engagements court terme en francs itave Total des avoirs sur tous les comples

gagem Total des engagements moyen terme en francs havef Total des avoirs épargne financiére en francs

kvunb Nombre de comptes & vue jnbjdis | Nombre de jours & débita M

gsmaoy Moyenne des soldes moyens sur 3 mois jnbjd2s | Nombre de jours & débit a M-1

qered Moyenne des mouvements créditeurs en Kf Jjobyd3s | Nombre de jours & débita M-2

dmvtp Age du dernier mouvement (en jours) carvp P ion de la carte VISA Premier

1. Define a model, a question ?

2. Use a supervised classification algorithm to rank the best clients.

3. Use logistic regression to provide a score.

1.3 What about maths ?

Various mathematical fields we will talk about :

e Analysis : Convex optimization, Approximation theory
e Statistics : Penalized procedures and their reliability

e Probabilistic methods : concentration inequalities, stochastic processes,

stochastic approximations

Famous keywords :
e Lasso
e Boosting
e Convex relaxation
e Supervised classification
e Support Vector Machine
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Aggregation rules
Gradient descent
Stochastic Gradient descent
Sequential prediction
Bandit games, minimax policies
e Matrix completion

In this session : We will slightly talk about optimization, that are mainly
convex in our statistical worl. Non-convex problems are also very interesting
even though much more difficult to deal with from a numerical point of view.

2 Standard Convex optimisation procedures

2.1 Convex functions

We recall some background material that is necessary for a clear unders-
tanding of how some machine learning procedures work. We will cover some
basic relationships between convexity, positive semidefiniteness, local and glo-
bal minimizers.

DEFINITION 1. — [Convex sets, convex functions] A set D is convex if and
only if for any (z1,2) € D? and all o € [0,1],

r=ax;+(l-a)xgeD.

A function f is convex if
e its domain D is convex

o f(z)=f(axi+(1-a)r) <af(zr)+(1-a)f(z2).

DEFINITION 2. — [Positive Semi Definite matrix (PSD)] A p x p matrix H is
(PSD) if for all p x 1 vectors z, we have z' Hz > 0.

There exists a strong link between SDP matrix and convex functions, given
by the following proposition.

PROPOSITION 3. — A smooth C*(D) function f is convex if and only if D? f
is SDP at any point of D.

The proof follows easily from a second order Taylor expansion.

2.2 Example of convex functions
. 0 € R — exp(af) on R whatever a is.
. feRY—s alf +0
. 0 e R, —> —0log(0)
d
. 0 R — 0], = K| D[0P withp>1.
i=1
. 6 e RY — 6' PO + 2¢'0 + r where P is symetric and

positive.
2.3 Why such an interest in convexity ?

From external motivations :

e Many problems in machine learning come from the minimization of a
convex criterion and provide meaningful results for the statistical initial
task.

e Many optimization problems admit a convex reformulation (SVM clas-
sification or regression, LASSO regression, ridge regression, permuta-
tion recovery, ...).

From a numerical point of view :

e Local minimizer = global minimizer. It is a powerful point since in ge-
neral, descent methods involve V f(x) (or something related to), which
is a local information on f.

e 1z is a local (global) minimizer of f if and only if 0 € 9 f ().

e Many fast algorithms for the optimization of convex function exist, and
sometimes are independent on the dimension d of the original space.
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2.4 Why convexity is powerful ?

Two kinds of optimization problems :

Non-convex energy

Convex energy

e On the left : non convex optimization problem, use of Travelling Sales-
man type method. Greedy exploration step (simulated annealing, genetic
algortihms).

e On the right : convex optimization problem, use local descent methods
with gradients or subgradients.

DEFINITION 4. — [Subgradient (nonsmooth functions ?)] For any function f :
R? —s R, and any x in RY, the subgradient Of () is the set of all vectors g
such that

f(x) = f(y) <{g,2-y).

This set of subgradients may be empty. Fortunately, it is not the case for convex
functions.

PROPOSITION 5. — f : R —s R is convex if and only if Of () #+ @& for any
x of R

3 Gradient descent method
3.1

In either constrained or unconstrained problems, descent methods are po-
werful with convex functions. In particular, consider constrained problems in

Projected descent

X c R, The most famous local descent method relies on

where

Yt+1 = Tt — NGt gr € 0f (xy),

and
Tee1 =y (yt+1)7

where 1 > 0 is a fixed step-size parameters.

He+1

rojection -13_:5 |

gradient step
3.2

Fig, 2 Mustration of the Projected Subgradient Descent method.

THEOREME 6. — [Convergence of the projected gradient descent method,
fixed step-size] If f is convex over X with X ¢ B(0,R) and |0f]e < L,

the choice 1) = LL\% leads to
1 ) RL
- Tg|—min f < —
(7 gm)-minss

3.2 Smooth unconstrained case

Results can be seriously improved with smooth functions with bounded se-
cond derivatives.
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DEFINITION 7. — f is 8 smooth if V f is 8 Lipschitz : 25 :
2f, % 2 Vg ()T
15 e @) =T
— < —ql.
IV £(2) - VW) < Bla o Eemple e
05 ' ’
. J min 0 + 0, < ™ )
Standard gradient descent over R® becomes fcR? N, R e
2 2 _ : Ve = (134)7
sc. O7+65-2=0 A
e\vf/\, “ z
Tpr1 = 2 — NV f(x1), V()= (1, 1)

THEOREME 8. — [Convergence of the gradient descent method, 3 smooth 0 : circle of radius /2
Sunction] If f is a convex and -smooth function, then n = % leads to Optimal solution : 0* = (=1,-1)" and J(6*) = -2.

Important restriction : we will restrict our study to convex functions J.
1g . R .
f (t Z xs) —min f < -1 DEFINITION 9. — A constrained problem is convex iff
s=1 e J is a convex function
e f; are linear or affine functions and g; are convex functions

Remarque. —

¢ Note that the two past results do not depend on the dimension of the state
space d.

o The last result can be extended to the constrained situation.

’ Iso—contours J@) = ¢
Exemple gl e o

. OecR2 .
3.3 Constrained case 20y + 20, — 2 y 11
Elements of the problem : s.C. 01 —0>-=0 g(6) <0
e O unknown vector of R? to be recovered 0] —2 <0 ¢ * Wa_bad )
e J:R?% R function to be minimized — S 2 p 12 3

¢ f; and g; differentiable functions defining a set of constraints.
Definition of the problem :

- Example
e mingcra J(6) such that : .
. 1(0) =0, (Vi): 1,...,nand g;(8) <0,Vi=1,...,m minJ(6)  suchthat  a’9-b=0
Set of admissible vectors : e Descent direction h : V.J(0)'h < 0.
e Admissible direction h : a’(6 + h) —b=0 <= a'h = 0.
Q= {9 eR? | f:(9) =0,Viand g;(0) <0, Vj} Optimality 8% is optimal if there is no admissible descent direction starting

from 0*. The only possible case is when V.J(6*) and a are linearly dependent :

Typical situation : INeR VJ(0") + Aa =0.
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3.5 Inequality constraint

A
Exemple Case of a unique inequality constraint :

. 2 2 1 i 0- £
iy 01+ 03 + 0102 “ SN ] mein J(9) suchthat  ¢(0)<0
—201 + 20> — 2 Y [ e

c 0 — 6 =0 5 A e Descent direction h : V.J(0)h < 0.
- T '2%/, : ] o Admissible direction h : Vg(#)'h < 0 guarantees that g(6 + ah) is de-
I B creasing with a.

Optimality 8% is optimal if there is no admissible descent direction starting
from 0*. The only possible case is when V.J(6*) and Vg(6*) are linearly de-

In this situation : .
this situatio pendent and opposite :

_ 291 + 02 -2 _ 1 *\ * .
vJ(0) = (91 +202+2) and a= (_1) IxeR VJ(0") =-pvg(0") with w>0.

Hence, we are looking for 0 such that V.J(6) « a. Computations lead to 6, = 2'2 !
—0,. Optimal value reached for 61 = 1/2 (and J(6*) = -15/4). 15

1 x
3.4 Lagrangian function Exemple L0
min 01+ 0> OZ
OcR? -

min J(9) suchthat  f(0):=a'0-b=0 sc. g(0)=02+62-2<0 N

We have seen the important role of the scalar value \ above. 2

DEFINITION 10. — [Lagrangian function]

L\ 6) = J(0) + Af(6)

We can check that 6* = (-1,-1).

3.5.1 Lagrangian in general settings

A is the Lagrange multiplier. The optimal choice of (6*, A*) corresponds to We consider the minimization problem :

VoL(\*,0%) =0 and VaL(\*,0%) = 0. e miny J(6) such that
e g;(0)<0,Vj=1,...,mand f;(0) =0,Vi=1,...,n
Argument : 0* is optimal if there is no admissible descent directions h.

Hence, v.J and V f are linearly dependent. As a consequence, there exists A DEFINITION 11. — [Lagrangian function] We associate to this problem the

such that Lagrange multipliers (A, 1) = (A1, o, Ay fh1y -« - 5 fhm )-
VoL(A\*,0%) =vJ(0) + AV f(0)=0 (Dual equation) L0, 1) = J(0) + > Nifi(0) + > pjg;(0)
i=1 j=1

Since 8 must be admissible, we have . .
e 0 primal variables

VoL(A\*,0%) = f(0")=0 (Primal equation) e (A, pt) dual variables
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3.5.2 KKT Conditions

DEFINITION 12. — [KKT Conditions] If J and f, g are smooth, we define the
Karush-Kuhn-Tucker (KKT) conditions as

e Stationarity : VoL(\, p,0) = 0.

e Primal Admissibility : f(0) =0 and g(9) <0.

o Dual admissibility p; >0,Vj=1,...,m.

THEOREME 13. — A convex minimization problem of J under convex
constraints f and g has a solution 0 if and only if there exists \* and p*
such that KKT conditions hold.

Example :
Lo
J(G):§||9H2 s.t. 0, -20,+2<0

We get L(6, ) = % + p(61 + 205 + 2) with 1 > 0.
Stationarity : (61 + p, 02 — 21) = 0.

0y = —26,
We deduce that 0% = (-2/5,4/5).

with 05 <0.

3.5.3 Dual function

We introduce the dual function :
LA\ p)= IIgIl L(O, )\ ).
We have the following important result

THEOREME 14. — Denote the optimal value of the constrained problem p* =
min {J(8)|f(0) =0,9(0) < 0}, then

LA, p) <p™

Remark :

e The dual function £ is lower than p*, for any (A, ) € R® x R
e We aim to make this lower bound as close as possible to p* :
maximize w.r.t. A\, i the function L.

idea to

DEFINITION 15. — [Dual problem]

max

A ).
AeR™ , p1eRT L)

L(6,\, ) affine function on A,y and thus convex. Hence, £ is convex and
almost unconstrained.

e Dual problems are easier than primal ones (because of almost constraints
omissions).

e Dual problems are equivalent to primal ones : maximization of the dual
< minimization of the primal (not shown in this lecture).

e Dual solutions permit to recover primal ones with KKT conditions (La-
grange multipliers).

Example :

e Lagrangian: L(0, ) = @ +u(fy - 205 +2).

o Dual function £(p) = ming L(6, p) = -3 p* + 2.

e Dual solution : max £() such that > 0: p = 2/5.

e Primal solution : KKT = 0 = (-, 2u) = (-2/5,4/5).

To obtain further details, see the Minimax von Neuman’s Theorem ...

3.6 Take home message from convex optimization

e Big Data problems arise in a large variety of fields. They are complicated
for a computational reason (and also for a statistical one, see later).
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Many Big Data problems will be traduced in an optimization of a convex
problem.
Efficient algorithms are available to optimize them :

independently on the dimension of the underlying space.
Primal - Dual formulations are important to overcome some constraints
on the optimization.
e Numerical convex solvers are widely and freely distributed.

4 Applications & Homework

Length limitation : 5 pages !
Deadline : 8th of February.
Group of 2 students allowed.

e This report should be short : strictly less than 5 pages, including the
references.

e The work relies either on an academic widespread subject or on a group
of selected papers. In any case, you have to highlight the relationship
between the concerned chapter and the theme you selected.

For the chosen subject, the report should be organized as follows

1. First motivate the problem with a concrete application and propose a
reasonnable modelisation.

2. Second, the report should explain the mathematical difficulties to solve
the model and some recent developments to bypass these difficulties.
You can also describe the behaviour of some algorithms.

3. Third, the report should propose either :
e numerical simulations using packages found on the www or your
own experiments.
e some sketch of proofs of baseline theoretical results
o a discussion part that present alternative methods (with references),
exposing pros and cons of each methods.

You can choose to only exploit a subsample of the proposed references,
as soon as the content of your work is interesing enough. You can also
complement your report with a reproducible set of simulations (use R or
Matlab please) that can be inspired from existing packages. (If packages are
not public, send the whole source files). These simulations are not accounted

in the 4/5 pages of the report.

The report files should be named lastname.doc or lastname.pdf and expected
in my mailbox before 8th of February.

And to do this, anything is fair game (you can do what you want and find
sources everywhere, but take care to avoid a plagiat !)

4.1 Classification with NN & SVM

The supervised classification problem is a long-standing issue in statistics
and machine learning and many algorithms can be found to deal with this
standard framework. After a brief introduction and a concrete example, a mo-
delisation of this statistical problem, explain the important role of the Bayes
classifier and of the NN rule. Then, present the geometric interpretation of the
SVM classifier, the role of convexity and the maths behind. After, discuss on
the influence of the several parameters : number of observations, dimension of
the ambiant space, etc.

simulated data classification

teste, 2]

02 00 02 04 06 08 10 12
L L -

tostbx(, 1]

References :
e CRAN repository
e Journal of Statistical Software webpage
e Hastie Tibshirani and Friedman, The elements of statistical learning
data mining inference and prediction
e Gyorfi, Lugosi, A Probabilistic Theory of Pattern Recognition
e My website perso.math.univ-toulouse.fr/gadat/
e Wikistat wikistat.fr/
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4.2 Transport problems

(T =%
0.06 —N(=2,1/4)  1/0.06 —pw
—W = N(0,5/8
0.04 /\ 0.04 Hﬁ HIH
’//’ \\\ H 1
0.02 / \ 0.02) f ]
/ \ r 1
- 1,
.v‘; -
-4 -2 0 2 4 -4 -2 0 2 4

Optimal transportation problem is a growing field of interest in machine lear-
ning, big data and statistics. You will find below some interesting readings. Try
to mainly understand the motivations, the mathematical tools, and the nature
of the several applications. You can also find some softwares.

References

o Cran repository : Ipsolve and Transport packages

o Gabriel Peyré’s webpage (Matlab softwares)

e Mario Cuturi’s webpage

¢ Nicolas Papadakis’s webpage

e Benamou, Carlier, Cuturi, Nenna and Peyré Iterative Bregman Projec-
tions for Regularized Transportation Problems

e Cuturi and Peyré A smoothed dual approach for variationnal Wasser-
stein problems

o Cuturi Sinkhorn Distances : Lightspeed Computation of Optimal Trans-
port

o Cuturi and Doucet Fast Computation of Wasserstein Barycenters

4.3 Permutation recovery

The statistical recovery of a permutation is a perfect example of NP-hard
problem, for which a non trivial convex relaxation should be studied. You can
either propose to focus on global optimization with simulated annealing or ge-
netic algorithm, or convex methods for solving relaxed convex problems. The
problem of permutation recovery is useful in seriation, graphs, . ... Instead of
focusing on the statistical part, focus on the optimization problem, the principle
of the relaxation and the potential applications.
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References :

Cran repository : Ipsolve and Transport packages

Francis Bach’s webpage (Matlab softwares)

Alexandre d’ Aspremont’s webpage

Fogel,Jenatton, Bach, D’ Aspremont Convex relaxations for permutation
problems

e Lim and Wright Beyond the Birkhoff Polytope : Convex Relaxations for

Vector Permutation Problems

e Collier and Dalalyan Minimax rates in permutation estimation for fea-

ture matching
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