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MATHEMATICAL NOTES (14): "EVERY POLYNOMIAL HAS
A ROOT"

J. E. LlTTLEWOOD*.

1. Any proof of this theorem f must appeal by the nature of the case
to limit-processes lying outside algebra proper. The true algebraist,
indeed, profiting by the crime of others, is not interested in the sordid
details, and any appeal my remarks may have will probably be to the
analyst.

If limit processes are to be reduced to a minimum we must exclude
the circular functions J, and what I have to say presupposes that they
are absolutely barred. This disallows the proof by

"A argf(z) — 2nir for a large circle".

It also disallows the summary proof that zn — a-\-ib has a root (and this is
important for the sequel).

There is a proof, one of Gauss's§, which appeals only to the principles:

(A 1) the square root of a 'positive number exists;

(A 2) an equation of odd degree with real coefficients has a real root;

and is otherwise algebraical. This would seem to be the last word from
a purely logical standpoint, but for that very reason it is rather sophisti-
cated, and any proof that is really easy to follow and to remember is
worth at least passing attention.

There is a proof || which begins very congenially to the analyst. Besides
(A 1) and (A 2) it appeals to :

(A 3) a continuous function attains its lower bound {in a closed set).

If f(z) = zn-\-a1z
n~1-\-...-\-an has no root, then, since \f(z)\ is large when

\z\ is large, it attains its lower bound, different from 0, for some value

* Received 1 March, 1941; read 29 May, 1941.
f In its ordinary sense : the variable and the coefficients are complex numbers and

some complex number is to be a root.
J Whose foundation requires either integration or infinite power series.
§ It is given (considerably disguised for the amateur by its modern dress) in van der

Waerden's Moderne Algebra, I, § 67.
|| Also due to Gauss. See Weber's Algebra, I, §§35 and 41.
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z0 of z. We aim now at the contradiction that | f(z) | is decreased if z
moves a small distance from z0 in an appropriate "direction". Let

where A0=f(zQ) ^ 0 . If A1^Q there is no difficulty in specifying the
"direction"; we take £ = — (AJA-^S, when

and is less than | - 4 0 | = l/(zo)l if S is small and positive. Since, however,
Ax may be so unfair as to vanish, we must consider the general case when
Am is the first of Ax, A2, ..., An = 1 that does not vanish. Now we can
proceed practically as before*, provided we can solve the general equation
of the type z11 = a-\-ibt to which problem our task is accordingly reduced.
The fact that z2 = a-\-ib is soluble is well knownf, and we may consequently
suppose that n is odd.

2. So far all is unforgettable, once known. But when, at long
intervals, I have wished to reconstruct the complete proof, I have stuck
at the next step, long enough at least to make me look it up; other analysts
have probably had the same experience.

The usual argument is: the solution of zn = a-\-ib where 6 is not zero)
is equivalent to that of the simultaneous equations (in real x, y)

(1) (32-H/2)» = a2+&2>

(2) (x+iy)n (a-ib)-{x~iy)n ja+ib) = Q

Now (2) is an equation in y/x of odd degree with real coefficients, and has
a real root; x and y can then be obtained from {\)%.

The observation I have now to make is that we can escape this argument
by repeating the original idea, the details being forced by the necessities
of the case: it is only necessary to apply the "lower bound" method to

* Taking £= 8w, where um = —A0IAm, so that

|/(2o

t ± f a r e solutions, where

J rn—c = 0 bein soluble for odd n and positive c as a special case of (A 2).
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the polynomial/(z) = zn— (a+ib) itself, a and b not being both zero. If
there is no root, | / | attains a non-zero lower bound when z = zQ, say.
If z0 is not 0, the number A1 is not 0, and all is well. If finally zo = 0
we have to show that \f(z) | < |/(0)| for some small z* If a is not zero
/ ( i S ) has the same -imaginary part b as /(0), and has the real part
B = ( i l ) n S n —a : since n is odd, one of the two signs must make \R\ less
than \a\ for small 8, and so \f(z) | < |a+*6|. If a is and 6 is not zero we
argue similarly with/dtiS).

It will be observed that the complete proof now uses one only of (A 2)
and (A 3) (the latter).

3. The arguments can be knit more closely, and combined with
inductionf. We thus obtain a proof, somewhat artificial in appearance,
but very concise.

Suppose the theorem false, let n be the least index of failure, and let
/(z) = zn-\-a1z

n-1-\-...-\-an be a polynomial without root. Since | / | is
large when | z\ is large, | / | attains its non-zero lower bound when z = z0,
say. Let

\<f> | has a minimum \A0\ # 0 at £ = 0. Let n = 2km, where m is odd,
and let Ar be the first of Ax, A2, ... different from 0. If r < n, £r = —AJAr

has a root, u say, and

for small positive 8, a contradiction. If r = n, <f>(t,) is A0-\-t,
n. If 3£L40 -^ 0,

let v be a root{ of

according as %A0 ^ 0; if %AQ ^ 0, let w be a root§ of

* Prof. G. H. Hardy points out to me that the proof of this corresponds to the fact,
geometrically intuitive, that if P and Q are distinct points and Px, P2, P3, P 4 are near P
and respectively N\, S., E., and W. of P, then one of the distances P,Q is strictly less
than PQ.

t At a lecture in which I was giving the proof of § 2, Mr. J. T. Wiltshire raised the
question, " Can the theorem be proved by induction? ". The present proof is a result.

J Existent since every equation z3 = a-\-ib has a root.
§ The cases overlap; we take the second only in the special case 2&.4O = O.

JOUB. 62.
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according as 3L4O ̂  0. In the first case we take £ = vh, in the second

£ = wB, where 8 is small and positive. In the change from z = 0 to z = £,
<f> has in the first case its real part decreased in absolute value and its
imaginary part left unaltered; in the second it has its real part left
unaltered and its imaginary part decreased in absolute value. In either
case |^ | is decreased, and we obtain the desired contradiction.

Trinity College,
Cambridge.

NOTE ON THE PRODUCT OF THREE HOMOGENEOUS LINEAR
FORMS

H. DAVENPORT | .

Introduction.

Let Lx, L2, L3 be three homogeneous linear forms in u, v, w with real
coefficients and determinant 1. Let M denote the lower bound of

I Lx L2 Lz |

for integral values of u, v, w other than 0, 0, 0. I provedf some time
ago that

(1) M^lr,

and that the constant on the right is best possible. In the present note
(which is self-contained) I give a new and simple proof § of (1). In a
later paper the method will be developed to give a much deeper result
concerning the "second minimum" of \LXL2LZ\.

The lemma.

Suppose tliat 0 < e < j 1 ^ . Let al3 a2, a3 be real numbers such that

(2) \{n—ax){n—a2)(n—a3)|^l — e

for all integers n. Then

(3) S = ( a i - a 2 ) 2 + (a2-a3)2+ ( ^ - a j 2 > 1 4 - lOe.

t Received 1 May, 1941; read 29 May, 1941.
t Proc. London Math. Soc. (2), 44 (1938), 412-431.
§ This proof is not related to the one given recently by Mordell, Proc. London Math. Soc.

(not yet published).


