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Abstract. This note is the sequel of [1], where the regular type of a real
hyper surface H in Cn (eventually endowed with an almost complex structure)
was characterized in terms of Lie brackets of complex tangent vector fields on
H. This note extends these results to the singular type.

Let J be a smooth almost complex structure on Cn, H a smooth real hypersur-
face, p ∈ H, and let ρ : Cn → R be a function such that 0 is a regular value of ρ
and H = {ρ = 0}.

Let D be the unit disc in C, where the variable will be denoted by t = x + iy.
A complex curve will be a J-holomorphic map u : D→ Cn. The valuation of u at
0 is the integer ν(u) such that u(k)(0) = 0 for k < ν(u) and u(ν(u))(0) 6= 0. In the
same way, suppose u(0) = p and define ν(ρ(u)) as the vanishing order of ρ(u) at 0.

Following [3], let

∆(u,H) =
ν(ρ(u))
ν(u)

,

and define the 1-type of H at 0 as

(1) ∆1(H, p) = max
{u/u(0)=p}

∆(u, H).

This notion 1-type plays is well known in complex analysis and plays a crucial
role for instance when trying to estimate the regularity of the Cauchy-Riemann
equation. D’Angelo proved in [3] that points of finite type form an open set in H.
More precisely, he proved that

∆1(H, p) ≤ 2∆n−1
1 (H, p0)

for p close to p0. It would be nice to know if this inequality still holds in the
almost complex case, or if the finite type condition remains open. In particular, in
D’Angelo’s proof’s, curves are seen as common zeros of holomorphic functions, and
the result rests on algebraic study of the multiplicity of ideals of such functions. Of
course, no such function exist in general in the almost complex case, and the proof
can not be directly extended to this case. A proof in this setting would hence also
provide a different point of view on the integrable case.

Restricting to regular curves only in the definition (1) leads to the so called
regular type ∆reg

1 . The object of [1] was to characterize this type in term of Lie
brackets or jets of J-tangent vectors on H, as this was a question of Bloom and
Graham [2].

In this note, we extend these results to the singular case. Notice that the results
are stated in the almost complex setting for the sake of generality, but are new even
in the integrable case.
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The main argument here is to turn singular curves into regulars by considering
their graph: this allows the results of [1] to be applied almost directly to this new
situation.

1. Main definitions and statement

We first recall some notations from [1]. In particular, given a non vanishing
vector field X ∈ Cn, it’s (p, q)-th derivative is the vector field (JX)qXp+1 obtained
by differentiating X p times in its own direction and then q times in the JX
direction (we use the Euclidean connection on Cn to define the derivation along X,
but if a different connection ∇ would define a different jet, the valuation proposed
in definition 1.1 would be the same).

Notice that if X is a vector field on T JH and X̂ is an extension of X to Cn,
then, on H, (JX̂)qX̂p+1 depends on X only.

Let H̃ = C × H ⊂ Cn+1. Let J̃ = i ⊕ J . The coordinates on Cn+1 will be
denoted by (τ, z).

Definition 1.1. Given a regular vector field X̃ ∈ Γ(T J̃H̃), use the decomposition
T J̃H̃ = C∂τ ⊕ T JH to write X̃ as a sum X̃ = λ∂τ + X. The vector field X̃ is said
to have a contact order at least k with the line C∂τ at a point p̃ if

(2) (J̃X̃)qX̃p+1 = (iλ∂τ )q(λ∂τ )p+1 for p + q < k

Define then the τ -valuation of X̃ as νp̃(X̃) = max{k ∈ N, (2) holds}.
For each regular vector field X̃ ∈ Γ(T J̃H̃), we define Stabp̃(X̃) as the maximal

integer k such that all iterated Lie brackets of length at most k, involving X̃ and
J̃X̃, belong to the complex line spanned by X̃ at p̃.

Definition 1.2. For a regular vector field X̃ ∈ Cn+1 such that X̃|H̃ ∈ Γ(T J̃H̃) and
a point p̃ ∈ H̃, we put

∆(X̃, p̃) =
Stabp̃(X̃) + 1

νp̃(X̃) + 1

(with the convention that if νp̃(x̃) = +∞, then ∆(X̃, p̃) = 0). To a point p ∈ H,
we associate then the number

∆Lie
1 (H, p) = max(∆(X̃, (0, p)), X̃ ∈ Γ(T J̃H̃))

The main statement is the following:

Theorem 1.3. With the previous notations, we have:

∆1(H, p) = ∆Lie
1 (H, p)

Remark 1.4. As explained in [1] (theorem 1), the regular type of H can be charac-
terized in term of stability order of complex line sub-bundles of T JH. It turns out
that this interpretation still holds in the singular case. In fact, the definition 1.1
only depends on the complex line sub-bundle spanned by X̃ rather than on X̃ itself.

Proof. Let X̃ be some vector field in Γ(T J̃H̃), and (p, q) some integers such that
p + q < νp̃(X̃).

Let α be some non vanishing complex valued function, and X̃ ′ = αX̃. Then at p̃,
(J̃X̃ ′)qX̃ ′p+1−αp+q+1(J̃X̃)qX̃p+1 is a linear combination of the vectors (J̃X̃)sX̃r+1
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with r + s < p+ q and the coefficients are polynomials in the derivatives of α in the
directions of such vectors. Since (J̃X̃)sX̃r+1 = (iλ∂τ )s(λ∂τ )r+1, we deduce that
(J̃X̃ ′)qX̃ ′p+1 = (iλ′∂τ )q(λ′∂τ )p+1, with λ′ = αλ. ¤

As a consequence, all the (non vanishing) sections of a given complex line sub-
bundle have the same τ -valuation and we can consider the following definition:

Definition 1.5. Let L̃ be a complex line sub-bundle of T J̃H̃ and p̃ ∈ H̃. We then
define

νp̃(L̃) = νp̃(X̃)
where X̃ is some section of L̃.

In the same way, all the (non vanishing) sections of a given complex line sub-
bundle have the same stability order at a given point, so we can set Stabp̃(L̃) =
Stabp̃(X̃) where X̃ is any section of L̃.

Definition 1.6. Let L̃ be a complex line sub-bundle of T J̃H̃ and p̃ ∈
tildeH. We then define

∆(L̃, p̃) =
Stabp̃(L̃) + 1

νp̃(L̃) + 1
These definitions lead to the following rephrasing of theorem 1.3:

Theorem 1.7. With the previous notations, we have:

∆1(H, p) = max
L̃
{∆(L̃, (0, p))}

where L̃ runs through all the complex line sub-bundles of T J̃H̃.

2. Proof of theorem 1.3

The main idea in the proof is to turn singular curves into regulars by considering
their graph. In the sequel, we fix p at 0 in H. Moreover, we define ρ̃(τ, z) = ρ(z)
so that H̃ = ρ̃−1(0).
Proof of ∆1(H, p) ≤ ∆Lie

1 (H, p). :

Proof. Let us start with a possibly singular curve u : D → Cn such that u(0) = 0
and ρ(u(t)) = O(|t|k) and ν(u) = ν so that ∆(H, u) ≥ k

ν (note that we can suppose
k
ν ≥ 2, if it is not, there is nothing to do) .

Let ũ : D → Cn+1 the map ũ(t) = (t, u(t)). It is a regular curve in Cn+1 and
ρ̃(ũ(t)) = ρ(u(t)) = O(|t|k), so that ũ has contact order at least k with H̃.

From [1] (corollary 11) we deduce that there is a (regular) germ of vector field
X̃ ∈ T J̃H̃ at 0, such that

Stab(X̃, 0) ≥ k − 1
More precisely, X̃ can be chosen in such a way that for p + q + 1 ≤ k − 1:

(J̃X̃)qX̃p+1(0) =
∂p+q

∂xp∂yq

∂ũ

∂x
(0) (with t = x + iy)

If u is regular, the last equality (with p+q = 0) says ν0(X̃) = 0 and ∆Lie
1 (H, 0) ≥ k.

If u is singular, the same equality gives : in particular, X̃(0) = ∂τ (0), and for

1 < p + q + 1 ≤ ν − 1, (J̃X̃)qX̃p+1(0) = (0, 0), and X̃ν(0) = (0, u(ν)(0)) 6= (0, 0).
We deduce ν0(X̃) = ν − 1, and hence ∆Lie

1 (H, 0) ≥ k
ν . ¤
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Proof of ∆Lie
1 (H, p) ≤ ∆1(H, p). :

Proof. Consider a (regular) vector field X̃ ∈ Γ(T J̃H̃) and let k = Stab(X̃, 0) and
ν = ν0(X̃) (we can suppose k+1

ν+1 ≥ 2, because ∆1(H, 0) ≥ 2 .
Write X̃ = λ∂τ + XH .

Suppose λ(0) 6= 0: Notice that Stab( 1
λX̃) = Stab(X̃), and ν0( 1

λX̃) = ν0(X̃), so
that X̃ can be replaced by 1

λX̃ without loss of generality, and hence be written in
the form:

X̃ = ∂τ + XH

From [1] (theorem 1) we infer the existence of a regular curve ũ(t) = (τ(t), z(t)),
such that: {

ρ(ũ(t)) = O(|t|k+1)
∂p+1ũ
∂xp (0) = X̃(p+1)(0) (with p + 1 ≤ k)

Since ν0(X̃) = ν, we have ũ(t) = (t, 0) + O(|t|ν+1).
Let u(t) = π2(ũ(t)) = z(t). Due to the particular form of the almost complex

structureJ̃ , u is a J-holomorphic curve in Cn, and ν0(u) = ν + 1.
Finally ρ(u(t)) = ρ̃(τ(t), u(t)) = O(|t|k+1). As a consequence:

∆1(H, 0) ≥ k + 1
ν + 1

This ends the proof in the this case.
Suppose λ(0) = 0: (in particular ν0(X̃) = 0). Since X̃(0) 6= 0, we have XH(0) 6= 0.
Using the same argument as before, we have a regular curve ũ(t) = (τ(t), z(t)),
such that: {

ρ(ũ(t)) = O(|t|k+1)
∂p+1ũ
∂xp (0) = X̃(p+1)(0)(with p + 1 ≤ k)

and projecting it on H, we get J-holomorphic curve u(t) that is regular at 0. The
same computations as before show that

∆1(H, 0) ≥ k + 1 = ∆(X̃, 0)

This ends the proof in the this case. ¤

3. Type realtif to a complex foliation of dimension 1:

The definition 1.1 does not depend on the particular form of the vector field ∂τ ,
and defines in fact a contact order of two (non vanishing) vector fields, or more
geometrically, of the two complex line sub-bundles they span. More precisely, given
a vector field X and a complex tangent line sub-bundle L, define νp(X, L) as the
maximal k such that there is a section Y of L such that X and Y have the same
jet up to order νp(X, L).

This observation allows the construction to be brought to the situation where
H̃ is in fact a real hyper-surface M in Cn+1 endowed with a foliation F by smooth
complex curves.

Given a smooth vector field X, define

∆(X,F , p) =
Stabp(X) + 1
νp(X,TF) + 1

and ∆Lie
1 (M,F , p) = max

X
(∆(X,F , p))

This number ∆Lie
1 (M,F , p) can be viewed as a notion of one dimensional type

modulo the foliation F . In particular, in the case where M is bi-holomorphic to
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a product H × C and F to the foliation given by the C factor, one recovers the
previous definitions, and hence the singular type of H.
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