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Abstract 1: Let ω be the canonical Kähler structure on CP2 We prove that

any ω-symplectic sphere with positive ordinary double points is isotopic, among such

curves, to an algebraic curve. In other words, if J is a ω-tamed almost complex

structure on CP2, the rational J-curves with ordinary double points are isotopic to

algebraic curves. Moreover, calling Nd the number of degree d rational J-curves

going through 3d− 1 points “in general position”, it follows from the proof that Nd

does not depend on the almost complex structure J .

Since they were introduced by M. Gromov in 1985 [1], pseudo-holomorphic
curves have proven to be powerful tools in global symplectic geometry. By
comparing their spaces of curves, one can compare symplectic manifolds.
The aim of this paper is to compare some pseudo-holomorphic and alge-
braic curves in CP2.

The result we propose here can nevertheless be formulated without the
formalism of pseudo-holomorphic curves. Let ω denote the canonical Kähler
form on CP2. We have the following theorem:

Theorem 1. Any symplectic sphere in (CP2, ω) having only positive ordi-
nary double point singularities is symplectically isotopic (among symplectic
spheres with such singularities) to an algebraic curve.
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Let Jω denote the space of ω-tamed almost complex structures on CP2.
For J ∈ Jω, a J-holomorphic sphere with ordinary double points is clearly
a symplectic sphere. It follows from ideas of [1] that the reverse is true
: take a symplectic sphere C with positive ordinary double points. A ω-
tamed structure J : TCP2|C −→ TCP2|C can be built along C such that
J(TC) = TC. Because Jω is the space of the sections of some fiber bundle
with contractible fibers, this J can now be extended to all CP2. We can
then reformulate theorem 1:

Theorem 2. Let J be an ω-tamed almost complex structure on CP2 and C

be a rational J-curve having only ordinary double point singularities. There
exists a path (Jt, Ct), where Ct is a Jt-curve with ordinary double point
singularities, joining (J,C) to an algebraic curve.

In [1], M. Gromov proved that any pseudo-holomorphic curve of degree
1 is isotopic to an algebraic line, and sketched the proof that any pseudo-
holomorphic curve of degree 2 is isotopic to a conic. Our proof is modeled
on his work.

Sketch of the proof. The proof of M. Gromov for the degree 1 curves
rests on the following facts. Let U1 be the space of degree 1 maps from CP1

to CP2 (with regularity Ck+1,α for example). In the space U1 × Jω, define

P = {(u, J) ∈ U1 × Jω / u is J-holomorphic} ,

M = P/Aut(CP1).

We then have:

• P is a Banach manifold,

• the projection π : P −→Jω is a local submersion,

• the projection M−→Jω is proper.

The last fact is a consequence of the compactness theorem in [1]. If (Jn)
is a sequence in Jω converging to a structure J∞, then any sequence (Cn),
where Cn is a Jn-line, has a subsequence “converging” to a finite collection
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of J∞-curves. But the degree 1 homology class is indecomposable. The
subsequence must therefore converge to a J∞-line.

According to the three properties above, any J-line can be deformed
to a standard line. The positivity of intersection for pseudo-holomorphic
curves implies now that J-lines are smooth. The deformation is therefore
an isotopy.

In the situation we are interested in, we have to prove more: the corre-
sponding space P is still a manifold, but there is no reason for the projection
π to be everywhere a local submersion, nor for the projection M −→Jω to
be proper. Moreover, in the case where those “accidents” can be avoided, a
deformation of C to an algebraic curve exists, but this deformation may fail
to be an isotopy if some new singularity appears along the path, namely, if
there is a curve in the deformation which has a non-imbedded point, a triple
point, or a double point which is not ordinary.

i J

jp

j

jp
C

Figure 1: The accidents to be avoided in order to build an isotopy from C

to an algebraic curve

In order to study the deformations of our curve, we fix 3d− 1 points p1,
. . . , p3d−1 in CP2, and we restrict our attention to the curves going through
those points. The idea is that the expected dimension for the corresponding
space of curves is zero and that if we choose the points in a “general enough”
position, accidents will be forbidden.
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More precisely, we consider the following spaces. Let Ud denote the space
of degree d maps from CP1 to CP2 (with regularity Ck+1,α for example), and

Pd = {(u, J) ∈ Ud × Jω / u is J-holomorphic} (1)

Pp =
{

(u, J, z1, . . . , z3d−1) ∈ Pd × (CP1)3d−1
/ u(zi) = pi

}
(2)

Pp =
{

(u, J, z) ∈ Pp × CP1 / du(z) = 0
}

(3)

Pp =
{

(u, J, z1, z2, z3) ∈ Pp × (CP1)3 \∆ / u(z1) = u(z2) = u(z3)
}

(4)

Pp =
{

(u, J, z1, z2) ∈ Pp × (CP1)2 \∆ / u(z1) = u(z2) and . . .

im du(z1) = im du(z2)
}

(5)

and for each d′ ≤ d and each subset
{
pi1 , . . . , pi3d′

} ⊂ {p1, . . . , p3d−1}:

Pp =
{

(u, J, z) ∈ Pd′ × (CP1)3d′
/ ∀j u(zj) = pij

}
(6)

Let finally M p , Mp , M p , M p and M p denote the quotient of those spaces
by the natural action of Aut(CP1).

The space Pp is the (extended) space of parametrized curves going through
our points pi. Any non irreducible curve which is a limit of curves of Pp has
necessarily a component in one of the Pp spaces, so we will use these spaces
to study the properness of M p −→Jω. Finally, the spaces Pp , Pp and Pp , are
the spaces of the curves that should be avoided for a deformation to be an
isotopy.

We will prove (see 2.1) that

Lemma 1. The spaces Pp , Pp , Pp , Pp and Pp are Banach manifolds.

Definition 1. Let us call a structure J ∈ Jω generic for the degree d and
the points (pi) if J is a regular value of the projections of the spaces Pp , Pp ,
Pp , Pp and Pp to Jω.

We will check (see 2.2) that, as one can expect, the space of generic
structures J ∈ Jω is a dense Gδ set in Jω. Theorem 2 is implied by the
following lemma :
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Lemma 2. The space of generic structures for the degree d and the points
p1, . . . , p3d−1 is path connected.

The main tools we will use in the proofs are presented in section 1.
Section 2 is dedicated to the proof of lemmas 1 and 2. Theorem 2 is then
proven in section 3.

1 Main tools

1.1 Operators D and DN

We will use the local description of the space of J-curves of given genus and
homology proposed by S. Ivashkovich and V. Shevchishin [3].

Let C be a rational J-curve in CP2, and let M(J) denote the space of
all rational J-curves of the same degree as C.

Recall that a map u : CP1 −→ CP2 is J-holomorphic if and only if it
satisfies

du + J(u) du i = 0. (7)

Let ∇ be a complex connection on CP2. The linearisation of Φ with respect
to u at (u, J) ∈ Φ−1(0), is the classical Gromov’s operator D on the sections
of E = u∗TCP2. It does not depend on ∇, and can be written in the form
D = ∂̄+a, where a is an R-linear operator of order 0. The map du commutes
with the ∂̄ operator on TCP1 and D on E. The diagram

0 −→ Γk+1,α(TP1) du−→ Γk+1,α(E) −→ Γk+1,α(E)/ im du −→ 0y∂̄

yD

yD

0 −→ Γk,α(Λ01TP1) du−→ Γk,α(Λ01P1 ⊗E) −→ Γk,α(Λ01P1 ⊗ E)/ im du −→ 0

(8)

defines a linear map D, which is the key of the local description of M(J)
near C. Indeed, when M(J) is a manifold, we have

TM(J) = kerD.
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LetOD(E) denote the sheaf defined by the kernel of D. Let also H0
D(E) =

kerD and H1
D(E) = cokerD. Because du ◦ ∂̄ = D ◦ du, we get the following

exact sequence:

0 −→O∂̄(TCP1) du−→ OD(E) −→N −→ 0. (9)

The sections in the sheaf OD(E) are not holomorphic, but their expansion
near a point begins with an holomorphic term. An order of annulation
for each zero of du can therefore be defined. Let A =

∑
du=0 µizi be the

divisor associated to the zeroes of du. The map du extends to the sections
of TCP1 ⊗A.

Let N denote the normal bundle of C (N = E/TC = E/im du). Let
DN be the projection of D on N . We have the following exact sequence:

0 −→O(TCP1 ⊗A) du−→ OD(E) −→ODN (N) −→ 0. (10)

From (9) and (10) we get

0 −−−→ O(TCP1) −−−→ OD(E) −−−→ N −−−→ 0y
y

yπ

0 −−−→ O(TCP1 ⊗A) −−−→ OD(E) −−−→ ODN (N) −−−→ 0

(11)

Define
N1 := kerπ =

⊕

du=0

Cµi
zi

.

The sheaf N1 is the skyscraper sheaf having stalk Cµi at each zero zi of du,
µi being its multiplicity.

We have N ' ODN (N)⊕N1, and the exact sequences

0 −−−→ H0(TCP1) du−−−→ H0
D(E) −−−→ H0

DN (N)⊕H0(N1) −−−→
−−−→ H1(TCP1) −−−→ H1

D(E) −−−→ H1
DN (N) −−−→ 0 ,

(12)

and

0 −−−→ H0(TCP1 ⊗A) du−−−→ H0
D(E) −−−→ H0

DN (N) −−−→
−−−→ H1(TCP1 ⊗A) −−−→ H1

D(E) −−−→ H1
DN (N) −−−→ 0 .

(13)

Let Ker D denote the kernel of D as a sheaf.
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Lemma 3. N and Ker D are isomorphic.

Proof. We have
N = OD(E)/du(O(TCP1)),

and
KerD = D−1(du.Γk,α(Λ01CP1))/du.Γk+1,α(TCP1)

(Γk,α(Λ01CP1) and Γk+1,α(TCP1) are seen as sheafs). Hence, there is a
natural map θ : N −→Ker D.

The map θ is injective: let v ∈ OD(E)∩du.Γk+1,α(TCP1). Then there is
ξ in Γk+1,α(TCP1) such that v = du.ξ. Because Dv = 0, we get du.∂̄ξ = 0,
and ∂̄ξ = 0 except maybe on a finite set. We have ξ ∈ Γk+1,α(TCP1), so ξ

is continuous and hence holomorphic and v ∈ du
(O(TCP1)

)
.

The map θ is surjective: let w ∈ D−1(du.Γk,α(Λ01CP1)). Then, there is
α in Γk,α(Λ01CP1) such that Dw = du.α. We can solve ∂̄ξ = α on a small
enough open set. Let v = w − du.ξ, we have Dv = 0, and w = θ(v).

From N ' ODN (N)⊕N1, we get the following theorem:

Theorem 3 (S. Ivashkovich, V. Shevchishin). The space kerD is iso-
morphic to H0

DN (N)⊕H0(N1) and cokerD to H1
DN (N).

This result can be used to describe the space M(J) near C:

Theorem 4 (S. Ivashkovich, V. Shevchishin). If H1(N) = 0, then, in
the neighborhood of C, the space M(J) is a manifold of finite dimension
and

TCM(J) ∼= H0
DN (N)⊕H0(N1).

Remark 1. This isomorphism can be made somewhat more precise.

N1 = O(
du(TCP1 ⊗A)

)
/du

(O(TCP1)
)

= du
(O(TCP1 ⊗A)/O(TCP1)

)

= du(Ñ1)

The sheaf Ñ1 is of course isomorphic to N1 but gives rise to the exact
sequence

0 −→H0(Ñ1)
du−→ TCM(J) −→H0

DN (N) −→ 0,

where the arrows are canonical.
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1.2 Automatic genericity

We will only recall a theorem of [2]. The facts described in this theorem will
be refered to as the phenomenon of “automatic genericity”. The situation is
the following. Let Σ be a Riemann surface of genus g, and L a complex line
bundle over Σ. Let D be a differential operator on L of the form ∂̄ +a. The
operator D is elliptic, and, using the Riemann-Roch theorem to compute its
index, we get indRD = 2

(
c1(L) + 1− g

)
.

If this index is positive (resp. negative), a perturbation of D can make
it surjective (resp. injective). The automatic genericity ensures that if the
index is positive (resp. negative) enough, D is automatically surjective (resp.
injective).

Theorem 5 ([2]). With the previous notations, we have

• If c1(L) ≥ 2g − 1 then cokerD = 0.

• If c1(L) ≤ −1 then kerD = 0.

We stress that L has to be a rank 1 fiber bundle over Σ. The two cases
are equivalent under some duality argument, and in the case c1(L) ≤ −1,
the proof rests on a positivity of intersection argument applied to a section
and the null section.

1.3 Operator D̃

To define the spaces of curves we are interested in, we used evaluation maps
which we study now.

Let F be a complex vector bundle over a Riemann surface Σ and D be
a differential operator on F of the form ∂̄ + a. Let z1, . . . , zm be m distinct
points on Σ. Consider the evaluation map at each zi:

OD(F ) τ−→⊕m
i=1Fzi −→ 0.

Let P be the divisor −∑m
i=1 zi, and F̃ = F ⊗ P .
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Lemma 4. There exists a unique operator D̃ = ∂̄ + ã on F̃ making the
following diagram commutative:

L1,p(F̃ ) ι−−−→ L1,p(F )

D̃

y D

y

Lp(Λ0,1Σ⊗ F̃ ) −−−→ Lp(Λ0,1Σ⊗ F ).

(14)

Proof. There is no difficulty (nor any choice) in defining D away from the
points zi. In a neighborhood of a point zi, if such an operator exists, it must
satisfy:

D̃s = z−1Dz s

= z−1∂̄z s + z−1az s

= (∂̄ + z−1az) s.

Piecing together the operators z−1az, we define an operator ã of order 0.
The operator D̃ = ∂̄ + ã is then well defined. Moreover, ã is L∞ in z,
which is sufficient to apply classical results about elliptic operators to D̃ (in
particular D̃ is Fredholm).

The sequence

0 −→OD̃(F̃ ) −→OD(F ) τ−→⊕m
i=1Fzi −→ 0

is exact and gives rise to the long exact sequence of cohomology

0 −→ ker D̃ −→ kerD
τ−→⊕m

i=1Fzi −→ coker D̃ −→ cokerD −→ 0. (15)

This sequence will be useful to study the surjectivity of evaluation maps.

Remark 2. Multiplicities can be assigned to the points zi, from which an
operator D̃ can be derived exactly in the same way (there are only a few
technical words to be said about the space of “D-holomorphic” jets, which
differs from the space of holomorphic ones, but have same dimension).
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2 Proof of lemma 2

2.1 The spaces P are Banach manifolds.

Recall that Ud denotes the space of degree d maps from CP1 to CP2, and
Pd that of couples (u, J) ∈ Ud ×Jω for which u is J-holomorphic. It is well
known (see for example [4]) that Pd is a Banach manifold. Let us extend
now the classical proof to our spaces Pp , Pp , Pp , Pp and Pp .

Consider the vector bundle Fd over Bd = Ud×Jω having fiber Γk,α(Λ01CP1⊗
u∗TCP2) at (u, J). The map

Φ(u, J) = du + J(u) du i (16)

defines a section of Fd, and Pd = Φ−1(0).
Consider now the following vector bundles:

F p = Fd ⊕ (CP2)3d−1

yIΦ p

B p = Bd × (CP1)3d−1

Fp = F p ⊕ T 1
JyIΦp

Bp = B p × (CP1)

F p = F p ⊕ (CP2)3

yIΦ p

B p = B p × (CP1)3

F p = F p ⊕ (T 1
J )2

yIΦ p

B p = B p × (CP1)2

F p = Fd ⊕ (CP2)3d′

yIΦ p
B p = Bd′ × (CP1)3d′

where T 1
J has fiber Λ10CP1⊗u∗TCP2 at (u, J, z). Let Φ p , . . . ,Φ p be the di-

rect sum of Φ and the natural evaluation maps (u, z) 7→ τ0
z u = u(z) or τ1

z u =
(u(z), [du(z)]10).

We then have Pp = Φ−1p (0×S p ), with S p = {(p1, . . . , p3d−1)}, and similar
relations for the other spaces with:

Sp = S p × 0T 1 (17)

S p = S p ×∆ (18)

S p = S p ×
{
τ1, τ2 ∈ T 1

J / π(τ1) = π(τ2), rgC(τ1, τ2) ≤ 1
}

(19)

S p =
{
(pi1 , . . . , pi3d′ )

}
(20)
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Our problem is now to study, in each case, the transversality of Φ and
the associated manifold S.

Let us start with the space Pp . Let (u, J, z) ∈ Pp . We want to prove
that the linearization of Φ p at (u, J, z) is surjective, namely that for all
α ∈ Γk,α(Λ01CP1 ⊗ u∗TCP2) and vi ∈ TpiCP2 the following equations (in
(v, δJ, ξ)) can be solved





D.v + δJdui = α (i)

v(zi) + dziu.ξi = δpi (ii).
(21)

For the spaces Pp ,Pp ,Pp , some more equations of the same form as (ii) or
maybe of the form

Lτ1(v, δJ, ξ) = βi (ii’) (22)

have to be added to the system (21).
In a neighborhood U of every singular point of C = u(CP1) and of every

point zi, we can “solve the ∂̄ operator” and hence solve (21) (and (22)) with
δJ = 0. Let v denote this local solution. We extend v to all CP1. Only the
following equation has to be solved left:

δJ du i = α̃, (23)

where α̃ = α − D.v. The section α̃ vanishes on U . Outside U , we have
du 6= 0. The equation (23) determines the restriction of δJ as a map from
TC to TCP2|C . Any anti-complex map from TC to TCP2|C can be extended
to an anti-complex map from TCP2|C to itself, and then extended to all CP2.
Finally, the equations (21) (and (22)) always have solutions.

This means that Φ p (resp. Φp , . . . , Φ p ) is transverse to S p (resp. Sp ,
. . . , S p ), and the spaces P p , . . . , P p are Banach manifolds.

2.2 The projections P −→Jω are Fredholm maps

Consider a point (u, J, z) ∈ Pp (resp. Pp , . . . ,Pp ), and the linearization (still
denoted by π) of the projection π : Pp −→Jω at this point. We have

TPp = {(v, δJ, δz) / Dv + δJ du i = 0 and τ.(v, δz) ∈ TS p } ,
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(resp. τ.(v, δz) ∈ TSp , . . . , TS p ) and the following commutative diagram:

TPp π1−−−→ Γ(u∗TCP2)⊕ (TCP1)3d−1 τ−−−→ (TCP2)3d−1

π

y D⊕0

y
⋃

TS p
TJω

α−−−→ Γ(Λ01CP1 ⊗ u∗TCP2)

(24)

with α.δJ = δJ du i (and here, TS p = 0).
We have

kerπ =
(
kerD ⊕ (TCP1)3d−1) ∩ τ−1(TS p ). (25)

Consequently kerπ is finite dimensional. We also have kerα ⊂ im π, so
cokerπ ' im α/ im(α ◦ π).

im(α ◦ π) = imα ∩ imD ∩D(τ−1(TS p ))

and, because α⊕D ⊕ τ is surjective,

imα +
(
D(τ−1(TS p )

)
= Γ(Λ01 ⊗ u∗TCP2).

Finally:

cokerπJ ' Γ(Λ01 ⊗ u∗TCP2)/D(τ−1(TS p )). (26)

Because τ−1(TS p ) has finite codimension in Γ(u∗TCP2), cokerπ has finite
dimension.

Thus the projection π : Pp −→Jω is Fredholm.

Let us compute the (real) index of π using relations (25) and (26). Con-
sider a decomposition

TU '
ker D︷ ︸︸ ︷ im D︷ ︸︸ ︷

K⊕ K∩ ⊕ F ⊕G︸ ︷︷ ︸
τ−1(TS p )

and Γ(Λ01CP1⊗u∗TCP2) ' F⊕G⊕cokerD.

We then have kerD ' K∩⊕(TCP2)3d−1 and cokerD ' G⊕cokerD: indπ =
dimK∩ − dimG− dim cokerD. Moreover,

dimK∩ + dimK = dim kerD,

dimG + dimK = codim τ−1(TS).
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Because τ is surjective, we obtain

indπ = ind D + dim (TCP1)3d−1 − codim TS p . (27)

Exactly in the same way, it can be proven that the same results hold for
the spaces Pp , . . . ,Pp and the manifolds Sp , . . . ,S p .

Namely, we have

indR π p = 2
(
3d + 2 + 3d− 1 − 2(3d− 1)

)
= 6,

indR πp = 2
(
3d + 2 + 3d− 1 + 3 − 2(3d− 1) + 4

)
= 4,

indR π p = 2
(
3d + 2 + 3d− 1 + 2 − 2(3d− 1) + 3

)
= 4,

indR π p = 2
(
3d + 2 + 3d− 1 + 1 − 2(3d− 1) + 2

)
= 4,

indR π p = 2
(
3d′ + 2 + 3d′ − 2(3d′)

)
= 4.

Using sufficiently regular almost complex structures, those projections
can be made as smooth as desired, and the Sard-Smale theorem can hence
be applied: the set of generic structures is a Gδ dense set.

Remark 3. A structure J is a regular value of a projection πp , π p , π p or
π p if and only if it is not reached by this projection. In fact, suppose that
there is a rational J-curve of degree d going through the 3d − 1 points pi

and having a singularity which is not an ordinary double point, or a rational
J-curve of degree d′ < d going through 3d′ of the points pi. Let (u, J, z) ∈ P
be a parametrization associated to it. Letting Aut(CP1) act on (u, z), we
get a family of curves of real dimension 6 in the fiber of the projection. This
projection being of real index 4, its cokernel is of real dimension at least 2,
thus J is not a regular value of the projection.

2.3 The space of generic structures is path connected

The Sard-Smale theorem implies that along a generic path (Jt)t∈[0,1], ei-
ther the structure Jt is a regular value of projections Pp , . . . ,Pp −→ Jω, or
dimR cokerπ = 1 for one of these projections.

We already proved that dimR cokerπ = 1 is impossible for the spaces Pp ,
. . . ,Pp . Let us deal with the space Pp .
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Let (u, Jt, z) ∈ Pp . We know that Jt is a regular value of the projections
π : Pp , . . . ,Pp −→ Jω. So the curve C = u(CP1) has only ordinary double
point singularities.

From (10), we derive

0 −→O(TCP1) −→OD(u∗TCP2) −→ODN (N) −→ 0.

Consider the associated long exact sequence of cohomology and the eval-
uation map at the points zi. We get

0 −−−→ H0(TCP1) du−−−→ kerD
p−−−→ kerDN −−−→ 0

τ1

y τ

y τ2

y
0 −−−→ C3d−1 −−−→ (C2)3d−1 −−−→ C3d−1 −−−→ 0 ,

(28)

Let us write the sequence (14) for N and the points zi. We have

0 −→O
D̃N (Ñ) −→ODN (N) −→⊕Czi −→ 0. (29)

We obtain the long exact sequence of cohomology:

0 −→ ker D̃N −→ kerDN τ2−→ C3d−1 −→ coker D̃N −→ cokerDN −→ 0. (30)

We have ind D̃N = 0. The automatic genericity (theorem 5) then ensures
that ker D̃N = 0 and coker D̃N = 0. Consequently, in (28), the map τ2 is an
isomorphism.

Finally

kerπ ' ker τ2 ◦ p ' H0(TCP1). (31)

In particular, dim kerπ = indπ, so that π is a local submersion. This
completes the proof of lemma 2.

Remark 4. The group Aut(CP1) acts on Pp and the quotient, which is a
manifold, is the space M p of non parametrized curves going through the
points pi. The equation (31) shows that the tangent space to the action at
one point is exactly the kernel of π: we deduce that the projectionM p −→Jω

is a local diffeomorphism.
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3 Proof of theorem 2

Let C be a rational J-curve of degree d, having only ordinary double point
singularities. We want to build an isotopy from C to an algebraic curve.

The construction rests directly on lemma 2. Technically, the structures
at the ends of the isotopy are fixed, so the proof is divided into two parts:
the typical case, and the technical adaptations at the ends.

Isotopy associated to two generic structures. Let p1, . . . , p3d−1 be
3d − 1 distinct points in CP2. Let J0 and J1 be two generic structures for
these points and degree d. Let finally C be a J0-curve going through the
points pi.

Consider now a path (Jt)t∈[0,1] of generic structures joining J0 to J1. Let
Pp still denote the restriction of Pp to this path, and M p = Pp /Aut(CP1)
the quotient space.

Let us prove that M p is a compact set. Let (Jtn , Cn) be a sequence in
M p . It has a subsequence for which Jtn −→ J∞ and Cn converges to a cycle
C∞ =

∑N
i=1 Zi consisting of rational J∞-curves. Let di be the degree of Zi

and ki the number of points of {p1, . . . , p3d−1} Zi is going through. Because
J∞ is generic, J∞ is not reached by the projection Pp −→Jω, thus

∀i, ki ≤ 3di − 1.

We also have
∑

di = d and
∑

ki ≥ 3d− 1, so 1 ≤ N ≤ 1. The cycle C∞ is
a rational J-curve of degree d going through the points p1, . . . , p3d−1. Thus
C∞ ∈M p , and M p is a compact set.

Let K be the connected component of C in M p . It is a compact set so
π(K) is compact. It is an open set and the map π is a local diffeomorphism,
so π(K) is an open set. We then have π(K) = [0, 1].

This means that there is a homotopy joining the J0-curve C to a J1-
curve. Moreover, all the structures Jt are generic, so the homotopy is an
isotopy.

Ends of the isotopy. Choose 3d− 1 distinct points on C. The structure
J itself might not be “globally” generic for these points, but is so at least
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locally, for the linearization of the projection πJ : Pp −→ Jω at (C, J) is
surjective (see (31)). We can build a first deformation (Ct) of C to a J ′-
curve C ′, where J ′ is now generic for the chosen points.

The standard structure i of CP2 might not be generic for the chosen
points. Let then (p′1, . . . , p′3d−1) be points for which it is generic. Let (φt)
be a path of diffeomorphisms of CP2 such that φ0 = Id and φ1(p′i) = pi.

The construction in the typical case can now be applied to the structures
φ1∗i and J ′, and then pulled back by (φt) to give the isotopy we were looking
for.

This brings the proof of theorem 2 to its end.

Remark 5. Since π : M −→J[0,1] is a local diffeomorphism, this proof leads
to a more precise result: the number Nd of degree d rational J-curves going
through 3d− 1 generic points does not depend on J .
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