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Abstract— In practical target tracking, a number of improved
measurement conversion techniques have been developed and
proofed to be superior to the standard (extended) Kalman
filtering (KF) in Cartesian coordinates. The framework of
conversion technique exhibits fundamental pros and cons and
therefore associated with different performance as pointed out
in [1]. In this paper, we show that, based on the fisher infor-
mation matrix (FIM) which can be evaluated approximately
using state estimates online, instead of the usual measurement
conversion, an equivalent linear dynamics can be reconstructed
from a general nonlinear form, thus even the standard KF can
be applied theoretically. The proposed approach is explicitly
free of the fundamental limitations of traditional measurement
conversion. Simulation results are provided by comparison with
a state-of-art conversion method with the so-called optimal
linear unbiased estimation presented in [1].

Index Terms— Posterior Cramer-Rao lower bound (CRLB),
fisher information matrix (FIM), nonlinear system conversion,
measurement conversion

I. INTRODUCTION

In actual target tracking implementation, the tracking is
performed in Cartesian coordinates while having to employ
the measurements collected in polar or spherical, therefore
the methods based on measurement-conversion framework
are widely used [2]. Its basic idea is to transform the
nonlinear measurement model into a so-called pseudo-linear
form in Cartesian coordinates, correspondingly, the bias and
covariance of the converted equivalent measurement error
are estimated, and perform filtering using KF. It can be seen
explicitly that there exists neither the bias introduced by local
linearization nor the derivation of Jacobian matrix, therefore
it is not surprised that the method outperforms the extended
KF (EKF) reasonably.

A number of improved variety of measurement conver-
sion techniques have been proposed [5], [6], [7], [8] with
only difference in the way of approximating the bias and
covariance of the converted error. The pros and cons of these
techniques are surveyed in [2]. Especially in literature [1], a
novel estimator based on the sense of best linear unbiased
estimate (BLUE) is developed, it focus on optimally trans-
ferring nonlinear measurement by calculating some statistics

This research was supported by the INRIA Research Foundation under
Grant XXXX.

Dr. Ming Lei is with the INRIA, University Bordeaux-I, Talence 33405,
France. (minglei.sa@gmail.com)

Prof. Christophe Baehr is with the CNRM/GAME URA1357,
French National Centre for Meteorological Research, Toulouse France.
(christophe.baehr@meteo.fr)

Prof. Pierre Del Moral is with the INRIA and Mathematics Institut, Uni-
versity Bordeaux-I, Talence 33405, France. (pierre.del moral@inria.fr)

approximately, essentially which is an expansion of standard
KF.

In this paper, a novel method for tracking with nonlinear
dynamics and nonlinear measurements is proposed, which
is motivated by recognizing that fisher information matrix
(FIM) is nothing but an uniquely criterion of low bound of
estimated error covariance for arbitrary (linear/ nonlinear)
dynamical system, furthermore, although the KF can not
optimally handle any nonlinear system directly, we may still
be able to develop the recursive BLUE estimator by con-
structing an equivalent linear dynamics to replace the original
nonlinear system on the sense of both having identical FIM.

The rest of the paper is organized as: In Section II, the
nonlinear dynamical model and the calculation of recursive
FIM are introduced. In Section III, the principle of transfor-
mation of equivalent linear dynamics is presented. In Section
IV, the filtering algorithm is schemed. Finally a simulation
and some conclusions are presented in Section V and VI.

II. BACKGROUND

A. Nonlinear Dynamical System

In Cartesian coordinates, the state of maneuvering target
can be assumed as a discrete time nonlinear form and
formulated by

xk+1 = fk(xk) + Γkwk, (1)

where k = 1, · · · , L and L is the length of the
simulation time. The definition of state vector xk ,
[xk, yk, zk, ẋk, ẏk, żk, s1×(n−6)]′, the superscript [·]′ stands for
transpose of a matrix or vector. xk ∈ Rn consists of the
position and velocity components along x, y and z directions
at time k, s1×(n−6) is other state components such as acceler-
ation. Process noise wk is assumed as a zero-mean Gaussian
process with invertible covariance matrix ζk, Fk ∈ Rn×n and
Γk, the state transition matrix and noise input matrix, in
general are the constant matrices, respectively.

There exists a spherical coordinates with its original point
stems from the Cartesian coordinates, the measurements
collected from this spherical coordinates can be formulated
as

zk = hk(xk) + vk =
[
rk, θk, φk

]′
+ vk, (2)

where hk(·) : Rn → Rm is a nonlinear measurement map-
ping and here m = 3, that is, the measurement consists
of rk = (x2

k + y2
k + z2

k)1/2, θk = tan−1(yk/xk) and φk =

tan−1[zk/(x2
k + y2

k)1/2]. Note that generally the dimension n >
m. zk, vk ∈ R3 denotes the measurement and corresponding
measurement noise assumed as zero-mean Gaussian with



invertible diagonal covariance Rk = diag(σ2
r , σ

2
θ , σ

2
φ). wk and

vk are assumed to be independent mutually.

B. Recursive Computation of FIM

Let x̂k be an unbiased state estimate based on measurement
set that collected up to and including time k, i.e., Zk =

{z1, z2, · · · , zk}. Let pz,x(Zk, x) = pz|x(Zk |x)px(x) be the joint
probability density function of the pair (z, x), the lower bound
of covariance of x̂k can be formulated by

Ck , E[(x̂k − xk)(x̂k − xk)′] ≥ J−1
k , (3)

where Jk is the n × n fisher information matrix (FIM) with
the elements

Ji j = E
[
−∂

2 log pz,x(Zk, x)
∂xi∂x j

]
, i, j = 1, · · · , n (4)

provided that the derivatives and expectations in (3) and (4)
are exist. The inverse of FIM, J−1

k , is referred to as posterior
CRLB. The inequality in (3) means that the difference Ck −
J−1

k is a positive semi-definite matrix. Let notations ∇ and ∆
be operators of the first and second-order partial derivatives,
∇θ = [∂/∂θ1, · · · , ∂/∂θn]′ ,∆Φ

Θ
= ∇Θ∇′Φ. Tichavsky et al. [3]

proposed a Riccati-like recursion for the FIM Jk calculation:

Jk+1 = D22
k − D21

k (Jk + D11
k )−1D12

k (k > 0), (5)

D11
k = E[−∆xk

xk
log p(xk+1|xk)], (6)

D12
k = E[−∆xk+1

xk
log p(xk+1|xk)] = (D21

k )′, (7)

D22
k = E[−∆xk+1

xk+1
log p(xk+1|xk)]

+ E[−∆xk+1
xk+1

log p(zk+1|xk+1)], (8)
J0 = E[−∆x0

x0
log p(x0)]. (9)

The expectation E[·] in (6) and (7) is with respect to xk

and xk+1, whereas in (8), it is with respect to xk+1 and zk+1.
Note that matrices of D11

k , D12
k and D22

k are all evaluated
at the true value of xk and xk+1 theoretically. p(x0) is the
prior density function of target state. If the first-two order
moments statistics of the prior distribution p(x0) are known
and the covariance given by C0, then J0 = C−1

0 . The matrix
D22

k defined in (8) indicates the dependency of CRLB on
both the state and measurement models.

III. FIM-BASED NONLINEAR SYSTEM CONVERSION

A. Derivation Matrices Defined in FIM

From the Gaussian assumption of state xk and measure-
ment zk as that stated in Section II-A, the log-pdf of xk+1
and zk+1 given xk and xk+1 can be written by

ln p(xk+1|xk)

= c1 −
1
2

[(xk+1 − fk(xk))′Q−1
k (xk+1 − fk(xk))], (10)

ln p(zk+1|xk+1)

= c2 −
1
2

[(zk+1 − hk+1(xk+1))′R−1
k+1(zk+1 − hk+1(xk+1))], (11)

where c1 and c2 are constants. Qk , ΓkζkΓ
′
k. Then according

to the definitions in (6)-(8), it follows directly that

D11
k = E[(∇xk f

′
k(xk))Q−1

k (∇xk f
′
k(xk))′], (12)

D12
k = −E[∇xk f

′
k(xk)]Q−1

k (13)

D22
k = Q−1

k + E[(∇xk+1 h′k+1(xk+1))

× R−1
k+1(∇xk+1 h′k+1(xk+1))′]. (14)

B. A Equivalent Form of Nonlinear System With Identical
FIM

Without loss of generality, we can find the equivalent
matrices F̆k, H̆k, Q̆k and R̆k to construct a new linear
dynamics like

xk+1 = F̆kxk + δk, (15)

zk+1 = H̆k+1xk+1 + ψk+1, (16)

which has the same fisher information matrix as the original
nonlinear system in (1) and (2). Clearly Eqn. (15) is identical
to (1) substantially, however we still use different notation to
represent it. Similarly we define a new equivalent Eqn.(16)
and use it to replace the original nonlinear equation of (2)
and map the state to measurement. δk and ψk correspond to
the original process noise Γkwk and measurement noise vk in
(1) and (2), and are also assumed as the zero-mean Gaussian
process noises with zero means and known covariance matrix
Q̆k and R̆k, respectively. Then, based on this constructed
linear system, the matrices corresponding to the definitions
in (6)-(8) can be derived as,

D̆11
k = F̆′kQ̆−1

k F̆k, (17)

D̆12
k = −F̆′kQ̆−1

k , (18)

D̆22
k = Q̆−1

k + H̆′k+1R̆−1
k+1H̆′k+1. (19)

One possible solution of the above linear equation group can
be formulated as

F̆k = −(D̆12
k )−1D̆11

k , (20)

Q̆k = (D̆12
k )−1D̆11

k (D̆21
k )−1, (21)

H̆k = R̆1/2
k+1

[
D̆22

k − D̆21
k (D̆11

k )−1D̆12
k

]1/2
, (22)

R̆k = Rk, (23)

where A1/2 stands for the square root of a positive semidef-
inite matrix A. All the inverses requested in (20)-(22) are
assumed to be existent. In order to make the linear system
((15)(16)) to be a equivalent form of the original nonlinear
system ((1)(2)) in sense of having identical information
matrix, we have the equalities, D11

k = D̆11
k , D12

k = D̆12
k and

D22
k = D̆22

k . Substitution of (12)-(14) into (20)-(22), together



with (23), implies that

F̆k = QkE
[
∇xk f

′
k(xk)

]−1
E

[
(∇xk f

′
k(xk))Q−1

k (∇xk f
′
k(xk))′

]
,

(24)

Q̆k = QkE
[
∇xk f

′
k(xk)

]−1

× E
[
(∇xk f

′
k(xk))Q−1

k (∇xk f
′
k(xk))′

] (
E[∇xk f

′
k(xk)]′

)−1
Qk,

(25)

H̆k = R1/2
k+1

{
Q−1

k

+E
[
(∇xk+1 h′k+1(xk+1))R−1

k+1(∇xk+1 h′k+1(xk+1))′
]}1/2

− R1/2
k+1

{
Q−1

k E[∇xk f
′
k(xk)]′

(
E

[
(∇xk f

′
k(xk))

×Q−1
k (∇xk f

′
k(xk))′

])−1
E[∇xk f

′
k(xk)]Q−1

k

}1/2
. (26)

Note that for a dynamical system with a prior state transition
map fk, the intensity and distribution of process noise,
generally, is unknown, however, the assumption of it in
Section II-A, can be accepted comprehensively. According to
the theory of CRLB, the matrices D11

k , D12
k and D22

k should
be evaluated using the true state though it is not acquired
actually, however according to the approximation in [4], the
matrices can be computed by using the first two moments of
state estimates online.

The term E[(∇xk+1 h′k+1(xk+1))R−1
k+1(∇xk+1 h′k+1(xk+1))′] in

right-hand of (26) is further derived and see details in
Appendix.

IV. SCHEME OF EQUIVALENT LINEAR DYNAMICS
FILTERING

For the convenience of implementation, we summarize the
scheme of the proposed equivalent linear system filtering
(ELSF) as below.

One iteration of filtering for the constructed equivalent
dynamics specified by (15) and (16) is as follows:

A. Initializes Parameters (at time k = 0)

The covariance matrices of the process and measurement
noise, Qk and Rk; Initial state x0 and its error covariance P0;
Sampling interval T ; The length of simulation time step N;
The runs of Monte Carlo simulation M.

B. Parameters Computation (at time k − 1)

Calculate the matrices F̆k−1, Q̆k−1 and H̆k−1 using the state
estimates such as x̂k−1|k−1 and Pk−1|k−1 (see (24)-(26)).

C. Filtering (at time k)

Corresponding to the linear dynamics presented in (15)
and (16), the BLUE-based KF can be formulated by

x̂k|k−1 = F̆k−1x̂k−1|k−1,

Pk|k−1 = F̆k−1Pk−1|k−1F̆′k−1 + Q̆k−1,

Kk = Pk|k−1H̆′k
(
H̆kPk|k−1H̆′k + Rk

)−1
,

x̂k|k = x̂k|k−1 +Kk

(
zk − H̆kx̂k|k−1

)
,

Pk|k =
(
In×n −KkH̆k

)
Pk|k−1,

where In×n denotes a n × n dimensional unit matrix.
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Fig. 1. Comparison of position RMSE.

V. SIMULATION AND DISCUSSION

Considering that it has been shown in [1] that the nonlinear
measurement conversion method outperforms the EKF and
other methods (e.g., referred to as “fixed-measurement”
approaches in [8] and “unbiased/debiased” methods in [6]
respectively) explicitly at long range for root-mean-square
azimuth of 1.5 or more in terms of the estimation accuracy.
We only compare our proposed ELSF with the technique
referred as the best linear unbiased estimation filtering
(BLUEF) in [1], which is among the top choices in the class
of measurement-conversion methods.

Assume that a scenario of a 3-dimensional Cartesian
coordinates with a single sensor placed in the origin of the
coordinates. The target performs a nearly-constant-velocity
(straight line) move. The initial coordinates of target are
selected as [x0, y0, z0] = [−50, 200, 0]km with a standard
deviation of 1km. The initial velocity components are also
chose from Gaussian distribution with mean [ẋ0, ẏ0, ż0] =
[103, 0, 0]m/s and standard deviation of 102m/s. For the
sensor measurement error, it is assumed as a Gaussian
with zero-mean and constant covariance diag(σ2

r , σ
2
θ , σ

2
φ) =

diag(402m2, 1002mrad2, 1002mrad2). The sensor measure-
ment sampling period is T = 1s. The tracking period lasts for
100s. We employ only the root mean square error (RMSE)
of position and velocity as comparison criterion and they
are defined as Eposi

k = [ 1
M

∑M
m=1

∑3
n=1(x̂m

k|k,n − xm
k,n)2]1/2 and

Evelo
k = [ 1

M
∑M

m=1
∑6

n=4(x̂m
k|k,n − xm

k,n)2]1/2 respectively, where
k = 1, · · · ,N, time step N here equal to 100. M denotes the
runs of Monte Carlo simulation and let M = 100. x̂m

k|k,n −xm
k,n

is the state estimation error of nth component at kth time step
and mth run. Fig.1-2 show the comparisons of BLUEF and
our ELSF with the process noise wk draw from Gaussian
distribution with zero mean and a common deviation of
ζk = 12I3×3 in x, y, z directions. We can see that there exists
an explicit gap between the two approaches. The ELSF
corresponding to red circle-line is overall worse than the
BLUEF marked by blue triangle-line through all instances
whenever for position or velocity. Moreover, ELSF exhibits
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Fig. 2. Comparison of velocity RMSE.

extra higher error in the transient part, then keeps a relatively
stability in steady state. In order to have a thoroughly review
of ELSF, we compare the two methods by increasing the
process noise covariance ζk from 12I3×3 to 10002I3×3 with
interval 2002I3×3, we found the gap of RMSE between the
two methods turning to reduce substantially, however the
BLUEF is still more accurate than the ELSF, even in the
situation of increasing the measurement noise Rk to 200
percent of current value.

In the simulation conducted, the standard implementation
of our proposed ELSF sometimes exhibited numerical prob-
lem, we had to use more numerically robust approach. As a
comparison, we did not found any numerical problem when
performed the BLUEF under the same initial condition and
environment.

We can see that the proposed ELSF is valid, but its
accuracy is explicitly still inferior to that of the BLUEF
with a great quantity. The validity of ELSF depends heavily
on an accurate FIM for a nonlinear dynamics, however we
made approximation in two place: the one is using the
estimates of state instead of true state to calculate the FIM.
The other is making only two-order Taylor series expansion
of the nonlinear model. These surely introduce much error
and reflect in its performance. However the idea of ELSF
is thoroughly different from the measurement conversion
framework so far, therefore, to improve ELSF by reducing
the approximation error will be focused intensively.

VI. CONCLUSIONS

An equivalent linear system filtering (ELSF) in the sense
of FIM-based equivalent transformation has been presented
for general nonlinear dynamics. The recursive ELSF is valid
for general nonlinear system and operates in Cartesian coor-
dinates entirely. Compared with a state-of-art optimal linear
unbiased conversion method presented in [1], the simulation
results indicate follows.

The proposed ELSF appears to be unacceptably biased
in term of accuracy, however, with increasing the process
noise or measurement noise or both of them synchronously,

the filtering accuracy can be improved substantially, but
still is inferior to the optimal unbiased conversion method.
Moreover, ELSF sometimes exhibited numerical problem.

As discussion in Section V, the performance of ELSF
depends heavily on how accurate of FIM approximation,
and therefore future work will focus on obtaining the well
approximation of FIM from the dynamics with high nonlin-
earity and strong noise.

APPENDIX
Derivation of the term E[(∇xk h′k(xk))R−1

k (∇xk h′k(xk))′] in
right-hand of (26) as follows.

According to definitions in (5), the matrices D11
k , D12

k , and
D22

k should be evaluated at the true value of state xk and xk+1
theoretically. However, the true state is not available actually,
so one feasible choice is to use the state estimate x̂k and
x̂k+1|k, instead of the true state respectively, to calculate D11

k ,
D12

k , and D22
k approximately [4]. Therefore we can determine

the score function ∇xk h′k(xk).
From the definition of measurement model (2), The Taylor

series expansion of the nonlinear vector-valued measurement
hk(xk) at a “point” of one step prediction of state estimate,
x̂k|k−1, while keeps the second-order (quadratic) terms, can
be represented by

hk(xk) ≈ hk(x̂k|k−1) + Ĝkx̃k +
1
2

m∑
i=1

eix̃′kŜk,ix̃k, (27)

where ei ∈ Rm×1 denotes the ith unit vector. x̃k , xk − x̂k|k−1
is the state prediction error. Ĝk denotes Jacobian matrix at
x̂k|k−1, which represents the linear (first-order) dependence of
the state residual, and show that

Ĝk , [∇xk h
′
k(xk)]′|xk=x̂k|k−1 = [∂hk,i(xk)/∂x j]m×n

=

 x/l2 y/l2 z/l2 0 0 0
−y/l21 x/l21 0 0 0 0
−xz/l1l22 −yz/l1l22 l1/l22 0 0 0


k

, (28)

where l1 =
√

x2 + y2, l2 =
√

x2 + y2 + z2. Ŝk,i ,
[∇xk [∇xk hk,i(xk)]′]|xk=x̂k|k−1 denotes the Hessian matrix of the
ith element hk,i(xk) of hk(xk), when i = 1, 2, 3, it can be
formulated directly as

Ŝk,1 = diag[Ŝ∗k,1, 03×3]|xk=x̂k|k−1 ,

Ŝ∗k,1 =
1
l32

 y2 + z2 −xy −xz
−xy x2 + z2 −yz
−xz −yz x2 + y2


k

,

Ŝk,2 = diag[Ŝ∗k,2, 04×4]|xk=x̂k|k−1 ,

Ŝ∗k,2 =
1
l41

(
2xy y2 − x2

y2 − x2 −2xy

)
k
,

Ŝk,3 = diag[Ŝ∗k,3, 03×3]|xk=x̂k|k−1 ,

Ŝ∗k,3 =
1

l31l42

−z[2x4 + x2y2 − y2(y2 + z2)]
−xyz[3(x2 + y2) + z2]

x(x2 + y2 − z2)l21
−xyz[3(x2 + y2) + z2] x(x2 + y2 − z2)l21

z[x4 − 2y4 + x2(z2 − y2)] y(x2 + y2 − z2)l21
y(x2 + y2 − z2)l21 2zl41


k

,



where 03×3 and 04×4 stands for 3 × 3 and 4 × 4-dimensional
zero matrices. The definition of l1 and l2 are same with that
in (28). Then from ∇xk h′k(xk) ≈ Ĝ′k +

∑m
i=1 e′i Ŝk,ix̃k we have

E[(∇xk h
′
k(xk))R−1

k (∇xk h
′
k(xk))′]

≈ E


Ĝ′k + m∑

i=1

e′i Ŝk,ix̃k

 R−1
k

Ĝk +

m∑
j=1

x̃′kŜk, je j




= Ĝ′kR−1
k Ĝk + E


 m∑

i=1

e′i Ŝk,ix̃k

 R−1
k

 m∑
j=1

x̃′kŜk, je j




= Ĝ′kR−1
k Ĝk +

m∑
i=1

m∑
j=1

R−1
k,i j

(
Ŝk,iPk|k−1Ŝk, j

)
, (29)

where Pk|k−1 , E[x̃kx̃′k], Rk,i j is the (i, j)th element of matrix
Rk, and the term

Ĝ′kR−1
k Ĝk = diag


 g11 g12 g13

g12 g22 g23
g13 g23 g33

 , 03×3


k

,

where

g11 =
y2

σ2
θ l

4
1

+
1
l42

[
x2

(
l22/σ

2
r + z2/(σ2

φl
2
1)
)]
,

g12 = xy
 1
σ2

r l22
+

1
l41

(
(z2l21)/(σ2

φl
4
2) − 1/σ2

θ

) ,
g22 =

x2

σ2
θ l

4
1

+
1
l42

y2
[
l22/σ

2
r + z2/(σ2

φl
2
1)
]
,

g13 =
1
l42

xz
(
l22/σ

2
r − 1/σ2

φ

)
,

g23 =
1
l42

yz
(
l22/σ

2
r − 1/σ2

φ

)
,

g33 =
1
l42

[
(l22z2)/σ2

r + l21/σ
2
φ

]
.
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