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Adaptation of a particle filtering method for data assimilation
in a 1D numerical model used for fog forecasting
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Abstract: COBEL-ISBA, a boundary layer 1D numerical model, has been developed for the very short term forecast of fog and low
clouds. This forecast system assimilates local observations to produce initial profiles of temperature, specific humidity and liquid
water content. As fog forecasting is a threshold problem, the model is strongly non linear.
A new assimilation method based on a genetic selection particle filter was tested to produce the initial conditions. The particle filter
was adapted for a deterministic forecast and to take into account the time dimension by minimizing the error on a time window. A
simplified particle filter was also used to determine the initial conditions in the soil. The filter was tested with two setsof simulated
observations. In all cases, the initial conditions produced by this algorithm were of considerably better quality thanthe ones obtained
with a Best Linear Unbiased Estimator (BLUE). The forecast of the control variables and of fog events was also improved. When
comparing scores with the ones obtained with an ensemble Kalman filter (EnKF), the particle filter showed better performances for
most of the cases. The size of the ensemble impacted the frequency of filter collapse but had a limited influence on the temperature
and specific humidity scores.
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1 Introduction

Low visibility conditions often cause problems for
many international airports as they may reduce the land-
ing/takeoff traffic, leading to delays or even cancellations
of flights. Accurate forecasts of these conditions have
become an important issue. Each airport defines a set
of visibility and ceiling thresholds below which safety
procedures, called Low Visibility Procedures (LVP), are
applied. At Paris-Charles De Gaulle airport, the threshold
values are set at 600m for visibility and 60m for the
ceiling.
Various approaches are employed to forecast low visibil-
ity conditions. 1D models are suitable for the nowcasting
of radiation fog events for airports located in flat terrain
(Bergot and Guédalia (1994a), Bergot and Guédalia
(1994b)). They are currently used in real time to forecast
fog at local scale in several airports (e.g.Bergot et al.
(2005), Clark (2002), Clark (2006), Herzegh et al.
(2003)). The 1D boundary layer model COBEL (COde
Brouillard à l’Echelle Locale), developped jointly by
Météo-France and the Paul Sabatier University was
coupled with the land surface scheme ISBA (Interface
Sol Biosphère Atmosphère, (Noilhan and Planton(1989),
Boone (2000))), as documented inBergot et al.(2005).
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This forecasting system has been used to help produce
forecast bulletins of LVP conditions at the Paris-Charles
de Gaulle airport in France since 2005. These bulletins
aim to provide estimated times for the onset and lifting of
LVP conditions up to 4 hours in advance.
Fog is a phenomenon that evolves at small spatial and
time scales. Modeling the life cycle of fog involves in-
teractions between many parameterizations : turbulence,
microphysics, radiative scheme, surface-atmosphere
exchanges. This stresses the importance of working with
accurate initial conditions : the quality of the COBEL-
ISBA forecasts depends much on the initial conditions
(Bergot and Guédalia(1994a), Roquelaure and Bergot
(2007), Rémy and Bergot(2009a)). As fog modelling
involves numerous threshold processes, the model is
strongly non-linear. Because they do not require any
linear or Gaussian hypothesis, particle filters are an
adequate algorithm to produce initial conditions for
such a non-linear system. Particle filters (Doucet et al.
(2001), Del Moral (2004) and van Leeuwen (2009)
among others) are a probabilistic method that aims to
estimate the probability density function (pdf) of the first
guess given observations through an ensemble of random
draws, or particles. The filter consists of two steps: the
particles are integrated by the model, and then updated
or selected. There exist many kind of particle filters,
based on how the updating and/or selection of particles
is done at each assimilation step (van Leeuwen(2009),
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Baehr and Pannekoucke(2009)). Assimilation schemes
that mix both the particle filter and the ensemble Kalman
filter (EnKF) has also been developed, with the aim to
guide the particles closer to observations.
Our aim is to check if an algorithm based on particle
filtering can provide initial conditions for COBEL-ISBA
at a reasonable numerical cost. In doing that, we are
confronted to the so-called “dimensionality problem”
(Snyder et al.(2008)), i.e. that the number of particles
needed to adequately represent the prior density could
be very large. This problem is highly dependent on the
system that is considered and the type of filter that is
used. Particle filters with genetic selection for example
were shown (Baehr and Pannekoucke(2009)) to be less
affected by this problem. A genetic selection particle
filter was thus adapted to provide initial conditions for a
deterministic run. The computation of the weights was
also modified to take into account observations that are
available before or shortly after the analysis time.
The framework of this study is outlined in section 2.
Two sets of simulated observations were created : one
with mostly clear-sky conditions at the initialization, to
study the formation of fog, and the other with frequent
occurrence of fog and low clouds. Section 3 presents
the setup of the particle filter and section 4 shows the
results with the two sets of simulated observations, as
compared to the operational setup of the assimilation
scheme. In section 5, we are going to discuss the impact
of the ensemble size on the performance of the particle
filter. Finally, section 6 summarizes the results.

2 Framework of the study

2.1 The COBEL-ISBA assimilation-prediction system

2.1.1 The model

The COBEL-ISBA system results from the coupling
of the high resolution atmospheric boundary layer
1D model COBEL (Bergot (1993), Bergot and Guédalia
(1994a) and Bergot and Guédalia(1994b)) with the 7-
layer land-surface scheme ISBA (Noilhan and Planton
(1989), Boone(2000)). The atmospheric model possesses
a high vertical resolution: 30 levels between 0.5 and 1360
m, with 20 levels below 200 m, to be able to adequately
forecast radiative fog events. The physical parameteriza-
tions used in COBEL-ISBA consist of:

• a turbulent mixing scheme with a 1.5-order tur-
bulence closure that uses a prognostic turbulent
kinetic energy (TKE) equation. The mixing length
differs for stable (Estournel(1988)) and for neutral
or unstable conditions (Bougeault and Lacarrere
(1989)),

• a warm microphysical scheme adapted to fog and
low clouds in temperate regions,

• detailed long-wave and short-wave radiation trans-
fer schemes.

COBEL-ISBA is run at one-hourly intervals and provides
up to eight hours of LVP forecasts. The inputs to the model

are the initial conditions and mesoscale forcings. Meso-
scale forcings (i.e. geostrophic wind, horizontal advection
and cloud cover above the model column) are given by the
Numerical Weather Prediction (NWP) model ALADIN
(http://www.cnrm.meteo.fr/aladin).

2.1.2 The operational assimilation scheme

A two-step assimilation scheme using local observations
(Bergot et al.(2005)) provides the initial conditions. The
observation system used at Paris-Charles de Gaulle airport
is designed to provide up-to-date information on the state
of the surface boundary layer temperature and moisture.
It consists of a weather station which provides 2 m tem-
perature and humidity, visibility and ceiling; a measure-
ment mast that gives temperature and humidity observa-
tions at 1, 5, 10 and 30 meters; radiative flux (short-wave
and long-wave) observations at 2 and 45 meters; and soil
temperature and water content between the surface and
-40cm. Observations from the weather stations are avail-
able every 6 minutes whereas for other instruments they
are available every 15 minutes.
The operational assimilation system uses information
from a first guess or background (i.e. a previous 1 hour
COBEL-ISBA forecast), local observations, and profiles
from the ALADIN NWP model to compute a Best Linear
Unbiased Estimator (BLUE) of temperature and specific
humidity initial conditions:

xa = xb + K(yo − Hxb) (1)

where

K = BHT (HBHT + R)−1 (2)

In Eq. 1,xa is the analysis,xb is the first guess or back-
ground, andyo are the observations.K is the Kalman
gain that determines how the background is modified
to take into account the observations.B and R are the
error variance/covariance matrices of the background and
of the observations respectively, andH is the forward
operator, i.e. the matrix that interpolates information from
the model grid to the observation grid. As the dimension
of the system is small (30 levels for two control variables),
matrices can be explicitly inverted and there is no need
for a variational algorithm. In the operational setup, the
error statistics are imposed arbitrarily to allow the initial
profile to be close to observations near the surface and
closer to the ALADIN profiles above.
When a layer of cloud is detected, an additional step
uses an algorithm that minimizes the difference between
observed and simulated radiative fluxes at the ground
and at 45 m to estimate cloud thickness. This algorithm
works as follows: the radiation scheme of COBEL is
used to compute the modeled radiative fluxes at 2 and
45m, using different initial thicknesses of the fog layer.
The best estimate of the initial fog thickness is the one
that minimizes the error between modelled and observed
radiative fluxes (seeBergot et al.(2005) for more details).
The relative humidity profile is then modified within the
saturated layer.
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The soil temperature and water content profiles used to
initialize ISBA are obtained directly by interpolation of
soil measurements.

2.2 Simulated observations

Observing System Simulation Experiments (OSSE) are an
adequate tool for studying the accuracy of an assimilation
scheme (e.g.Huang et al.(2007)). They consist in gen-
erating pseudo-observations by adding perturbations to a
reference model run. The pseudo-observations are then
assimilated and the initial state and forecast can be com-
pared to the reference run. The advantages of this method
are :

• The perfect model hypothesis is true, in agreement
with the hypothesis made in the BLUE assimila-
tion algorithm. The errors in the initial conditions
originate only in the observations and first guess
errors, themselves originating from errors in ini-
tial conditions propagated by the previous fore-
cast. The lack of observations for certain param-
eters (e.g. the thickness or water content of a cloud
layer) does not allow the assimilation scheme to
entirely correct the errors of the first guess field.
The quality of the initial conditions thus depends
solely on the observations used and on the assimi-
lation scheme.

• This framework allows observations to be simu-
lated over the whole domain (the boundary layer
for this study).

• Lastly, it is possible to create a large variety of
observation sets that accommodate our needs for
evaluation purposes.

Two sets of simulated observations were made: one for
the study of clear-sky nights and of shallow-fog situations
(NEAR-FOG), and the other for the study of frequent
and deep fogs (FOG) (SeeRémy and Bergot(2009a) for
more details on how the simulated observations were
generated).

2.2.1 The NEAR-FOG situation

Simulated observations corresponding to clear-sky and
shallow-fog situations were produced. This observation
set will be referred to as NEAR-FOG hereafter. Fifteen
days of simulated observations were generated, during
which no fog occurred for the first 10 nights. Shallow
fog situations developed for the remaining five nights.
Their thicknesses did not exceed 10 m. Twenty-one hours
of Low Visibility Procedure (LVP) conditions were “ob-
served” for this situation. The skies above the model col-
umn were entirely clear, which ensured strong night-time
cooling. Figure1 shows the “true” temperature at 1m and
the corresponding liquid water path. Close to ground level,
the daily highs lay in the 20-22 ˚C range while the lows
were around 8-9 ˚C. Day and night relative humidity var-
ied greatly from 30% to 100%, corresponding to typical
conditions observed during autumn and winter over land.

2.2.2 The FOG situation

This situation was designed to study the fog and low
cloud life cycle. Fog and low clouds occurred during many
nights of the 15-day observation set, hereafter referred
to as FOG, because of high moisture combined with
strong night-time cooling due to clear skies above the
model column. Figure2 shows the “true” temperature
observations at 1m and the “true” liquid water content
integrated over the model column. In total, 98 hours of
LVP conditions were “observed” in these 15 days, with
fog occurring on 11 nights. Stratus also occurred in the
upper part of the model column on days 7 and 8. It was
not counted as LVP. Various fog situations occurred, from
shallow, early-morning fog to fog layers more than 200 m
thick.

2.2.3 Reference experiments for NEAR-FOG and FOG

Figure 3 shows the mean Root Mean Square Error
(RMSE) and the mean bias of the forecasted temperature
and specific humidity versus forecast time and altitude,
when the operational setup, as defined in section 2.12, was
used. The influence of the observations can be seen in the
lower values of RMSE at initialization time below 50m,
especially for temperature. For both temperature (figure
3c) and specific humidity (figure3a), most of the increase
of the RMSE occurred during the first two hours of fore-
cast time. For specific humidity, the maximum of RMSE
was always at the surface whereas, for temperature, the
RMSE no longer showed large differences between the
lower and upper part of the domain after 4h of forecast
time. The analysis was nearly unbiased for both specific
humidity and temperature (figures3b and d). The specific
humidity bias became slightly positive with forecast time,
with a maximum close to the ground. A small cold bias
also occured for the forecasted temperature (figure3d) and
increased regularly with the forecast time, with maxima
close to the ground-level and above the top of the mast
(30m).
Figure 4 shows the mean RMSE and bias of tempera-
ture and specific humidity when the operational setup was
used with the FOG situation. It is interesting to compare
it with figure 3. The initial profiles of specific humidity
(figure4a) show a larger RMSE for FOG than for NEAR-
FOG over the whole domain. This is mainly due to errors
in the initialization of fog and low clouds. The increase
of RMSE with forecast time is slower for FOG than for
NEAR-FOG and, after two hours of forecast, the values
close to the surface are similar for both situations. The
RMSE above 100m remain significantly higher for FOG
than for NEAR-FOG, for all forecast times. The specific
humidity bias (figure4b) is close to zero for all fore-
cast times below 50m whereas it is negative above that
height. For all heights, the specific humidity bias did not
vary much with forecast time. The RMSE of forecasted
temperature (figure4c) increases much faster in the lower
part of the domain for FOG than for NEAR-FOG (figure
3c) and reaches a maximum of 1K after 7 hours of sim-
ulation. A maximum appears between 50 and 150 m of
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Figure 1. NEAR-FOG : “Truth” for 1m temperature (a) and Liquid water path (b).

altitude, which corresponds to situations where the fore-
casted height of the fog is different from the simulated
observations. The inversion at the top of the fog layer sig-
nificantly increases the error if the forecasted cloud layer
thickness is not the same as the observed one. The tem-
perature bias (figure4d) also increases with forecast time,
with a maximum at the surface.

3 Particle filter-based data assimilation

Particle filters are ensemble-based assimilation algorithm
that employ a fully non-linear and non-Gaussian analysis
step to estimate the probability distribution function of
the model conditioned by the observations. There exist
several particle filter algorithms. In this work, a genetic
selection particle filter based on the work of Baehr and
Pannekoucke (2009) was adapted to a deterministic 1D
model. This section presents a background on particle
filter, focuses on the genetic selection algorithm, and then
show how the particle filter was adapted to supply initial
conditions to a deterministic model.

3.1 Fundamentals of particle filtering

Let (xk), k ∈ N be a Markov chain that denotes the model
state.(yk), k ∈ N is the sequence of observations. Both
are realizations of the random variablesXk andYk with

the probabilitiesp(xk) and p(yk). The aim of filtering
algorithms is to estimate the probabilityp(xk|yk). In this
work, the hypothesis that a linear relation, denoted by
the H matrix, exists between the observation and the
model spaces is made. Non-linear observation operators
are possible, but non-necessary in this work. A non-linear
dynamical system can be written as:

{

xk+1 = f(xk) + Vk

yk = Hxk + Wk

(3)

f is the model,(Vk), k ∈ N and(Wk), k ∈ N are the model
and the observation errors respectively; the observation
errors are supposed to be independent from each other
in time. Particle filters use an ensemble of first guesses
(xi,k), i = 1, .., N , also called “particles”. The subscriptk

denotes the analysis time iterations, andi the particles.
Particle filtering relies on the hypothesis that this ensem-
ble of first guesses is able to approximate the probability
p(xk) through a discrete sum:

p(xk)
N→∞

∼
1

N

N
∑

i=1

δ(xi,k) (4)
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Figure 2. same as figure1 for FOG.

Then, using the Bayes theorem:

p(xk|yk) =
p(yk|xk)p(xk)

∫

p(yk|xk)p(xk)dx
(5)

N→∞

∼
N

∑

i=1

wiδ(xi,k) (6)

Where(wi,k), i = 1, .., N are the weighting coeffi-
cients, given by:

wi,k =
p(yk|xi,k)

∑N

j=1 p(y|xj,k)
(7)

The maximal weight iswmax
k = maxi(wi,k). The poten-

tial fonction is defined for each particlei as follows:

Gk(xi) = p(yk|xi,k) (8)

so that

wi,k =
Gk(xi)

∑N

j=1 Gk(xj)
(9)

3.2 Genetic selection algorithm

Particle filter algorithms differ on whether and how the
particles are selected and resampled. The genetic selection
algorithm selects the particles that are closer to the obser-
vations, i.e. the ones that have larger weights. Resampling

is done using only the selected particles. During the se-
lection step, a particlei will be kept with a probability
of Gk(xi) or eliminated with a probability of1 − Gk(xi).
Del Moral (2004) showed that using a multiplicative co-
efficient ǫk, so that a particlei has aǫkGk(xi) probabil-
ity to be selected and a1 − ǫkGk(xi) probability to be
eliminated, lowers the error variance of the estimator pro-
vided by the particles filter. As inBaehr and Pannekoucke
(2009), we choseǫk = 1

maxiGk(xi)
. Once the particles are

selected, they are resampled through an importance re-
sampling (IR) algorithm (?which uses multinomial draws.
This algorithm replicates particles with higher weights. To
differentiate them, noise is added to each particle. This
noise has to be large enough to differentiate the similar
particles that result from the selection step and to range
the first guesses probability, but not too large so that the
resulting particles have weights that are not too small, i.e.
to avoid filter collapse. We chose to add to each particle
analysisi a term in the form:

xa
i,k = xa

i,k + B
1

2 µi,k (10)

Whereµi,k is a vector of random variables drawn from
a gaussian distributionN (0, 1). The noises were thus co-
herent with the model uncertainty. Bounds were arbitrarily
imposed on them so that they were not too large.
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Figure 3. NEAR-FOG : RMSE (left) and bias (right) of temperature (top) and specific humidity (bottom) versus forecast time. Isolines
are every 0.05K for temperature bias and RMSE, every 0.05 g/kg for specific humidity RMSE and every 0.025 g/kg for specific humidity

bias.

3.3 Dimensionality problem

As particle filters rely entirely on the hypothesis that
the background probabilityp(xk) can be estimated by a
weighted sum of particles, the ensemble has to be large
enough to represent accurately enough the probability
density function of the first guess.Snyder et al.(2008)
showed with the dynamical system proposed by Lorenz
(Lorenz (1996)) that the ensemble size needed for a
successful implementation of a Sequential Importance
Resampling (SIR) particle filter scales exponentially with
the problem size. For a 200-dimensional model space,
they found at 1011 particles were needed to avoid filter
collapse or divergence, i.e. a single particle has a weight
nearly equal to 1 while all others has very small weights.
The dimensionality problem can be partially reduced
depending on what kind of particle filter is used. Baehr
and Pannekoucke (2009) showed that a genetic selection
algorithm brought convergence of the particle filter with
1000 particles and a 200-dimensional model space, using
the same dynamical system as Snyder et al. Furthermore,
the frequency of filter divergence also depends on the
dynamical system.

3.4 Adaptation of a particle filtering algorithm to a
deterministic 1D model

A particle filter with genetic selection was adapted for us-
age within a deterministic 1D model. The dimensionality
problem was partially corrected through the resampling
state.

3.4.1 Computation of the weights

As shown by Eq. 7, the weightswi,k, i = 1, ...N are a
function of the distance between the particlei and the ob-
servations, which is supposed to be known. This function
depends much on the law followed by the observation er-
rors, as shown byDel Moral (2004). The hypothesis was
made that these errors are Gaussian; as a consequence, the
weights are also a Gaussian function of distances. Another
advantage of this choice is that the Gaussian function is
very discriminative: particles with higher distances will
have very small weights. The distance between observa-
tions and the particle was taken as the Mahalanobis dis-
tance, modified to take into account the background error
statistics:

p(yk|xi,k) = p((yk − Hxi,k)T (R + HBHT )−1

(yk − Hxi,k)) (11)
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Figure 4. Same as figure3 for FOG.

The B matrix in Eq. 11 was computed directly from
the ensemble of first guesses. An issue is the relative
importance of temperature and specific humidity in the
computation of the modified Mahalanobis distance. As
temperature was generally larger than specific humidity in
the situations under study, the distance between simulated
and observed temperature was often much larger than dis-
tance between simulated and observed specific humidity.
As a consequence, the overall distance given by Eq. 11
was much more influenced by errors on temperature than
on specific humidity. The weights thus depended much
more on temperature errors than on specific humidity
errors. To solve this problem, the distance between
simulated and observed temperature was normalized so
that the sum of all temperature distances computed at a
given analysis time were made equal to the sum of all
distances on specific humidity. As we had no information
on the “real” relative impact of temperature and specific
humidity on the distance, we chose arbitrarily to equalize
their relative influence. The overall distance was then
taken as the sum of the specific humidity distance and
the normalized temperature distance. It then depends on
temperature and specific humidity errors in the same
proportion.

In addition, the potential functions were computed
at different forecast times of the backgrounds, matching

the times when observations were available, so that the
observations were assimilated within a time window and
not at a single point in time. If a family(ym

k ), m = 1, ..M

of observations are available at timesm between analysis
times k − 1 and k + 1, then for each observationym

k

and each particlexi,m the potential function is computed
similarily as with Eq.8:

Gk(xi,m) = p(ym
k |xi,m) (12)

The potential function of the particlei over the time
window associated with analysis timek is then the product
of all potential functions computed at a single time,
following Del Moral (2004):

Gk(xi) = Πm=M
m=1 Gk(xi,m) (13)

and

Wi,k =
Gk(xi)

∑N

j=1 Gk(xj)
(14)

The maximal weight becomesWmax
k = maxi(Wi,k).

Figure 5 illustrates this concept. If the weights were
computed only as a function of the distance between the
particles and observations for single point in time (i.e.
analysis time), particle 1 in figure5 would have had a
larger weight than particle 2, as the distance between
observations and particle 1 is smaller at analysis time.
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Figure 5. Schematic graph showing two particles and their weights computed with a time window of 30 minutes centered on analysis time.

Particle 1 is however not a good choice, as its trajectory
is very different from the sequence of observations,
except at analysis time. When the weights computed at
forecast times 30 minutes later and 30 minutes earlier
than analysis time are taken into account, then particle 2
has a larger overall weight than particle 1, as its trajectory
is closer to the sequence of observations.
In our case study, observations from the measurement
mast were available every 15 minutes, the weather station
provided 2m humidity and temperature every 6 minutes,
and ALADIN profiles were available for every hour.
The distance between obervations and the background
were computed for forecast times varying from 6 minutes
to 1h30, i.e. from analysis time minus 54 minutes to
analysis time plus 30 minutes. In this way, all available
observations were used. This setup thus imposed simula-
tions to be started at least 30 minutes later than analysis
time. It is already the case in the operational setup, as
the observations that covers the period from analysis
time included to 30 minutes later are available around 40
minutes after analysis time.

3.4.2 Determination of the initial conditions

Two possibilities exist for the construction of the initial
conditions for the deterministic, non-perturbed run: either
take the weighted mean of all particle as the analysis, or
the best particle, i.e. the one with the largest weight, as the
analysis. Here, we chose the latter option, so that the ini-
tial conditions are as close as possible to the observations
and that its coherence with the model physics is ensured.
The filter was run with 50 perturbed particles, plus the

non-perturbed first guess. Figure6 shows the frequency
of the non-perturbed run being chosen to be the ini-
tial conditions versus analysis time. During the nights
of NEAR-FOG, the non-perturbed first guess was cho-
sen most of the times; it could be because in a stable
atmosphere, the perturbations added to the analysis were
better preserved during the simulation than in a neutral
or unstable stratification, while in a neutral atmosphere,
perturbation to the analysis were quickly smoothed dur-
ing the simulation. During the day, the perturbed parti-
cles were most of the time closer to observations than the
non-perturbed first guess. During FOG, the frequent oc-
currence of fogs changed this pattern; perturbed particles
were chosen more often during the nights, because thick
fogs or stratus occured, which ma the atmosphere less un-
stable or neutral. During the day, as for NEAR-FOG, the
non-perturbed guess was seldom chosen to be the initial
conditions.
The initial temperature and specific humidity provided
by this algorithm replaced the ones that were given by
the BLUE algorithm. The second step of the assimila-
tion scheme, i.e. the initialization of liquid water con-
tent and adjustment of initial specific humidity profiles
in case clouds are present at initialization time, was left
unchanged.

3.4.3 Frequency of filter collapse

Before anything else, we have to check if the filter does not
collapse. Figure7 presents a frequency histogram of the
maximal weightWmax for all simulations of the FOG and
NEAR-FOG situations. The filter was run with ensemble
sizes varying from 50 to 200 members, which is small
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Figure 6. Frequency of the non-perturbed guess being chosento be the initial conditions versus analysis time, for NEAR-FOG (a) and
FOG (b).

compared to ensemble sizes used bySnyder et al.(2008)
andBaehr and Pannekoucke(2009). Filter collapse can be
diagnosed by diagrams strongly skewed toward the right:
when the maximal weight is very close 1. For the FOG sit-
uation (figure7a, c and e), it was not the case. When using
50 members; the filter was already rather convergent: for
less than 10% of the simulations, the maximal weight was
above 0.95. The diagrams were more and more skewed to-
wards the left with increasing ensemble size, which means
that the filter was more and more convergent. This can be
explained by the fact that when more particles are avail-
able, the best one is likely to stand above the other ones
less markedly, in terms of distance to the observations,
than when fewer particles are used.
With the NEAR-FOG situation, collapse of the filter was
more frequent when using a 50-particles ensemble; the
maximal weight was larger than 0.95 for around one anal-
ysis in three. The frequency of filter collapse decreased
with increasing ensemble sizes. The difference between
FOG and NEAR-FOG lay in the occurence of deep fogs
during FOG, which provoked a change in the stratification
of the atmosphere at night.
Figure8 shows the maximal weightWmax for every as-
similation cycle of PART50 versus lower atmosphere sta-
bility, arbitrarily defined here as the gradient of poten-
tial temperature in the first 100m of the atmosphere, for
NEAR-FOG and FOG. Cases when fog or stratus were
present at analysis time are plotted in gray. When fog

was present at analysis time, the atmosphere was either
very stable, when the fog was shallow, or neutral when
it was thicker or in the presence of stratus. There were
clearly more situations with weakly stable, neutral or un-
stable lower atmosphere for FOG, than for NEAR-FOG;
and many of these situations were linked to the presence
of fog or stratus. For NEAR-FOG, when the atmosphere
was stable, the variability of the maximal weight divided
by the sum of all weights was less important than with
FOG. There appears to be a dependancy between stabil-
ity and the frequency of filter divergence, with a threshold
around -2 to -3K for potential temperature gradient. Be-
low that value, filter divergence was frequent; while it was
quite rare when stability was above that value. For FOG,
the dependancy is less clear, though overall filter diver-
gence was significantly more frequent for strongly stable
atmospheres than with weakly stable, neutral or unstable
atmospheres.
This explanation of the different behaviour of the filter de-
pending on the stratification of the atmosphere lies in how
the initial perturbations are preserved or smoothed dur-
ing the simulation. The atmosphere is neutral or weakly
unstable during the day and at night if deep fog or stra-
tus occurs. With a neutral or unstable atmosphere, the
initial perturbations are quickly smoothed during simula-
tions; the distances of the particles are then rather close
and filter divergence is avoided. Stable atmosphere oc-
cur during nights with clear-sky or shallow fogs. When
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Figure 7. Frequency histogram ofWmax for all simulations of the FOG (left) and NEAR-FOG (right) situation; simulations using 50 (a
and b), 100 (c and d), 200 (e and f) particles.

the atmosphere is stable, the initial perturbations are not
modified much through the simulations and the distances
of the particles to the observations are larger; the filter is
then likelier to collapse. As shown before, in this case,
the non-perturbed guess was often chosen to be the initial
conditions.
Filter divergence was linked for most cases to the strat-
ification of the atmosphere. For the same dimension
of the model space, it occured less frequently than in
Snyder et al.(2008), for ensemble sizes much smaller than
were used in their work. The frequent convergence of
the modified particle filter was due to the selection stage,
which eliminated particles that were distant from the ob-
servations. The fact that the noise added to the initial state
of the particles was coherent with the model uncertainty
and bounded also allowed to run with fewer particles than
if they were purely random. The selection step was not
included in the kind of particle filter that Snyder et al.

used., which could explain the different behaviour of the
particle filter. The results in terms of filter divergence fre-
quency versus ensemble size are in the same range as the
ones obtained byBaehr and Pannekoucke(2009) for the
NEAR-FOG situation. Convergence was more frequent
for the FOG situation. perturbations were used.

3.5 Soil data assimilation

In the operational setup, the soil observations are simply
interpolated to the ISBA grid to provide initial conditions.
During the simulation, COBEL-ISBA adjusts the values
of temperature and humidity in the lower levels of CO-
BEL and the upper levels of ISBA through its physical
processes, in order to reach some kind of equilibrium that
is consistent with its parameterized processes. Figure9 il-
lustrates this phenomenon; with the operational setup, un-
realistic initial values of sensible and latent heat fluxes are
quickly adjusted in the first 15 minutes of the simulation.
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Figure 8. Wmax for every assimilation cycles of PART50 with NEAR-FOG(a) and FOG(b) versus potential temperature gradient in the
first 100m of the atmosphere. When fog or stratus was present at analysis time, the corresponding cross is plotted in gray.The mean for

every stability interval of 1K is plotted by a continuous line.

This adjustment brought a sharp peak in the forecasted
2m temperature and a brutal increase in the forecasted 2m
specific humidity. This phenomenon is frequent for sim-
ulations with maximal solar radiation and is a source of
specific humidity bias.
This problem was especially troublesome within a particle
filter, as for many simulations it concerned all particles,
perturbed or non-perturbed. When using the adapted par-
ticle filter with the original soil initialization, particles all
showed the same bias for specific humidity for simulations
that started between 10UTC and 15UTC. To prevent this
problem, a simplified version of a particle filter was set
up to provide the initial conditions for ISBA. The ISBA
first guess that was closest to observations of soil temper-
ature and water content was chosen to be the ISBA initial
conditions for the non-perturbed run. A random pertur-
bation was added to these profiles to produce the initial
conditions of the perturbed particles. That means that the
selection step consisted here only to keep the closest par-
ticle and to eliminate all others. The distance between
observations and the ISBA backgrounds were computed
over a time window, as they were for COBEL. The ra-
tionale behind this algorithm was to provide ISBA with
initial conditions produced by the model itself, as it is the
case for COBEL. The adjustment that usually occurs at the
beginning of the simulation would then already be taken
in account in the initial conditions of both ISBA and CO-
BEL. Figure9 shows an example of how the problem of

the interface between soil and atmosphere was partially
solved following the implementation of this algorithm.
There was still some adjustment on the sensible heat flux,
but the impact on 2m temperature and specific humidity
was much smaller than with the operational setup.

4 Results of the filter

The performance of the filter was assessed against the
REF experiment to evaluate the improvement or degra-
dation of the new assimilation algorithm as compared to
the operational setup. Scores on temperature and specific
humidity were computed and, for the FOG situation, the
impact of the new assimilation scheme on the quality of
the forecast of LVP events was also estimated. The ex-
periments were called PART50, PART100, PART200 de-
pending on the size of the (perturbed) particle ensembles.
In this section the results of PART50 are shown; the influ-
ence of the ensemble size will be discussed in a specific
section.
COBEL-ISBA was designed to forecast radiation fog,
which is a phenomenon that occurs in the lower part of
the model’s domain. As a consequence, when discussing
the scores, more emphasis will be put in the first 100m of
the domain.
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Figure 9. NEAR-FOG: simulation starting at Day 4, 13UTC; 2m temperature (left) and the sum of latent and sensible heat fluxes (right).
Observations are plotted by a dashed line, simulation with the operational setup is represented by a black line; with thenew assimilation

scheme, by a gray line.

4.1 NEAR-FOG situation

Figure10 shows the Root Mean Square Error (RMSE) of
PART50 as a percentage of REF’s RMSE for temperature
and specific humidity, and also the bias difference between
the two experiments for NEAR-FOG. The RMSE of ini-
tial temperature was improved by up to 20-40% above
80m and degraded by up to 10% below 20m. For initial
specific humidity the RMSE was reduced by 25 to 55%
above 100m, and slightly degraded below 20m. PART50
did not improve the initial RMSE in the lowest part of the
domain. An explanation for this is that the distance be-
tween the particles and observations was minimized over
a time window and not just at analysis time; the particle
that was selected to be the initial conditions may not be
the one closest to the observations at analysis time. Also,
the initial conditions of REF were very close to the ob-
servations from the mast and the weather station there,
since the variances of the measurements from the mast and
the weather station used in the BLUE were much smaller
than the ones of both the ALADIN profiles and the first
guess. The initial temperature bias was slightly degraded
by PART50 as compared to REF, that of specific humidity
was unchanged below 100m and slightly improved above
that.

The usefulness of taking a first guess as the initial con-
ditions and of assimilating data over a time window ap-
peared fully during the forecast. As the initial conditions
were coherent with the model’s physical processes, the
forecast was rapidly of much better quality for PART50
as compared to REF. The improvement reached 35 to
45% for specific humidity and 25 to 30 % for tempera-
ture. The bias was also reduced in the lower part of the
domain for temperature after 2 hours of forecast and for
specific humidity over the whole domain after 1 hour of
forecast. This shows that the initialization of ISBA and
the interface between COBEL and ISBA worked better
with the new algorithm then with the operational setup,
as it was shown by previous studies (Rémy and Bergot
(2009a)) that a faulty initialization of ISBA is a cause of
increasing forecasted bias on temperature and specific hu-
midity.
These results were obtained with a filter that was often
diverging during the nights (see figure7). This was not
too detrimental in our case, as the filter was used within a
deterministic approach. The most important in this frame-
work is that the filter provides good quality first guesses to
be used as initial conditions. The noise added to the initial
conditions also contributed to increase the spread of the
ensemble even when the filter collapsed.
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Figure 10. NEAR-FOG: RMSE of PART50 as a percentage of the RMSE of REF (left) and bias of PART50 minus bias of REF (right)
versus forecast time, for temperature (top) and specific humidity (bottom).

4.2 FOG situation

4.2.1 Scores on temperature and specific humidity

Figure11 shows the RMSE of PART50 as a percentage
of REF’s RMSE for temperature and specific humidity,
and also the bias difference between the two experiments
for FOG. PART50 improved the initial conditions as
compared to REF. For specific humidity the initial RMSE
was reduced by 40 to 45 % over the whole domain. As for
temperature, the initial RMSE improvement was larger
above 50m, with a reduction of 30 to 45% above that
height and of 10 to 25% below. For both temperature and
specific humidity, the initial bias difference as compared
to REF was very small
As for simulations with NEAR-FOG, the temperature
RMSE was reduced by larger margin during the simula-
tion than for the initial state. For specific humidity, the
improvement is in the same range for the forecast and for
the initial state. After one hour of forecast, the RMSE was
improved by up to 35-45% for temperature and specific
humidity. The bias was slightly degraded in the lower
part of the domain for temperature and left unchanged for
specific humidity. It was improved in most other part of
the domain.

4.2.2 Forecast of LVP events

Figure12 shows the frequency distribution histogram of
the onset and the burnoff time of LVP events, for all sim-
ulation times and forecast times, for the FOG situation.
Simulations in which fog was already present at initializa-
tion time were discarded for the computation of the onset
scores. For these simulations, it was meaningless to com-
pare the simulated and observed onset times because the
fog events considered had begun before the initialization
time. The errors larger than 240 minutes are grouped to-
gether in the 240 minutes column. The mean and standard
deviation of errors smaller than 240 minutes are also indi-
cated.
The onset time of low visibility conditions was generally
forecasted too early for REF: there was small negative bias
for this experiment. This bias was corrected and even in-
verted by PART50, with onset time generally forecasted
too late. The errors were generally smaller for PART50
than for REF. The frequency of errors being smaller or
equal to 30 minutes was raised from 30% for REF to
45% for PART50 and the standard deviation of the error
was smaller. The errors larger than 240 minutes were sig-
nificantly less frequent. PART50 also improved markedly
the prediction of LVP burnoff time as compared to REF.
The errors were generally smaller with much fewer errors
larger than 240 minutes. The frequency of errors being
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Figure 11. Same as10 for FOG.

Table I. Hit Ratio (HR) of LVP conditions for various forecast
times for the FOG situation and for the REF, PART50 and ENKF32
experiments. EnKF32 values are taken fromRémy and Bergot

(2009b).

1h00 2h00 3h00 4h00 6h00 8h00 all

REF 0.93 0.89 0.89 0.88 0.86 0.84 0.88
PART50 0.93 0.94 0.97 0.98 0.98 0.98 0.97
ENKF32 0.95 0.92 0.93 0.95 0.93 0.93 0.94

smaller or equal to 30 minutes was raised from 40% for
REF to 70% for PART50. The negative bias of REF for
the forecast of burnoff time was reduced by PART50.

TablesI andII show the Hit Ratio (HR) and pseudo
False Alarm Ratio (FAR) of LVP conditions for various
forecast times and for the REF and PART50 experiments.
In the case of rare event forecasting, such as fog and
LVP conditions, the pseudo-FAR is convenient because it
removes the impact of the "no-no good forecasts" (no LVP
forecast and no LVP observed), which mostly dominate
the data sample and hide the true skill of the LVP forecast
system. Ifa is the number of observed and forecasted
events,b the number of not observed and forecasted
events, andc the number of observed and not forecasted

Table II. Pseudo False Alarm Ratio (FAR) of LVP conditions
for various forecast times for the FOG situation and for the
REF and PART50 experiments. EnKF32 values are taken from

Rémy and Bergot(2009b).

1h00 2h00 3h00 4h00 6h00 8h00 all

REF 0.07 0.05 0.07 0.10 0.12 0.18 0.09
PART50 0.01 0.00 0.03 0.01 0.09 0.09 0.04
ENKF32 0.04 0.03 0.02 0.06 0.08 0.15 0.07

events, HR and pseudo-FAR are then defined as follows:

HR =
a

a + c
; pseudoFAR =

b

a + b

TableI shows that the detection of LVP conditions was
improved for all forecast times larger than 1 hour, and that
the overall hit ratio was significantly higher for PART50
than for REF. The improvement was larger for longer
forecast times, corresponding to the largest improvements
in temperature and specific humidity RMSE as compared
to REF. Also, the hit ratio of LVP conditions did not
decrease with time with PART50, while it did with REF.
This shows the strong influence of the initial conditions
on the forecast when the model error has been removed by
using simulated observations. TableII shows that PART50
experienced fewer false alarms than REF. The number of
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b) Burnoff time error for REF

Mean −23 mn
Stdev 66 mn

Mean −9 mn
Stdev 62 mn

Mean 32 mn
Stdev 54 mn

Mean −15 mn
Stdev 64 mn

Figure 12. FOG: Frequency distribution histogram of the error on onset time (left, the LVP conditions at initial time arenot taken into
account) and burnoff time (right) of LVP conditions, in minutes. REF experiment is at the top, PART50 at the bottom. Positive values
correspond to a forecast of onset or burnoff that is too late.Errors larger than 240 minutes are grouped in the 240 minutescolumn. The

mean and standard deviation of errors smaller than 240 minutes are indicated.

false alarms did not increase much with forecast time. This
is an interesting result since an improvement in both HR
and pseudo-FAR is hard to obtain.

4.3 Comparison with an ensemble Kalman filter

The ensemble Kalman filter (Evensen(1994) andEvensen
(2003)) is an assimilation scheme that uses an ensemble
of first guesses to estimate the background error statistics,
which are then used in the BLUE algorithm that com-
putes the initial conditions for the ensemble and the non-
perturbed run. This scheme has been implemented in var-
ious oceanic and atmospheric models (Houtekamer et al.
(2005), Zhang(2005) andSakov and Oke(2008) among
others). A “perturbed observations” version (Burgers et al.

(1998)) of the ensemble Kalman filter was run with FOG
and NEAR-FOG using ensemble of 8, 16 and 32 mem-
bers. As the ensembles used were rather small, the covari-
ances were inflated using an adaptive covariance inflation
algorithm (Anderson(2007)). The results are described
in Rémy and Bergot(2009b). As the ensemble size didn’t
impact much the quality of initial conditions and forecasts
when using the ensemble Kalman filter with simulated
observations, it was possible to qualitatively compare the
results of the 32 members ensemble Kalman filter (exper-
iment ENKF32) with the ones obtained with PART50.
Figure13shows the RMSE of PART50 as a percentage of
ENKF32’s RMSE for temperature and the bias difference
between the two experiments for NEAR-FOG and FOG.
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Figure 13. Temperature RMSE of PART50 as a percentage of the RMSE of ENKF32 (left) and bias of PART50 minus bias of ENKF32
(right) versus forecast time, for NEAR-FOG (top) and FOG (bottom). Data for ENKF32 are taken fromRémy and Bergot(2009b).

Specific humidity scores are not shown as they display
the same patterns. The RMSE of temperature at initial-
ization time was slightly degraded in the first 20m of the
domain and improved elsewhere by PART50 as compared
with ENKF32 for NEAR-FOG; while the initial bias was
mostly unchanged. Forecasted temperature RMSE was
significantly improved for NEAR-FOG, by up to 30%;
and the forecasted temperature bias was also smaller for
PART50 as compared with ENKF32. The overall im-
provement of PART50 as compared to ENKF32 increased
with forecast time.
For FOG, the initial temperature RMSE was larger for
PART50 as compared with ENKF32 below 10 m. Above
that height, there was a small improvement of 5 to 10%.
The initial bias was similar for both experiments below
100m and slightly larger for PART50 above 100m. Dur-
ing the forecast, PART50 displayed smaller RMSEs than
ENKF32 by 10 to 30% below 100m and up to 7 hours of
forecast. Elsewhere, the differences between PART50 and
ENKF32 were smaller. The forecasted temperature bias
was slightly smaller for PART50 as compared to ENKF32
below 80m, and slightly larger above that height.
The HR and pseudo-FAR of LVP conditions were close
between the two experiments, as shown by tablesI andII .
PART50 had an overall HR slightly higher than ENKF32

and a smaller pseudo-FAR. ENKF32 showed a higher de-
tection rate for forecast times of 1 hours while PART50
was better for higher forecast times. For the pseudo-false
alarm rate, PART50 and ENKF32 showed scores in the
same range, except for a forecast time of 8 hour, for which
PART50 was significantly better. PART50 also predicted
onset and burnoff time more accurately than ENKF32 (not
shown).

5 Impact of the ensemble size

The size of the ensemble influenced the frequency of filter
collapse, especially for the NEAR-FOG situation (see fig-
ure7). In this section, the impact on the initial conditions
and forecasts is assessed.
Overall, no consistent tendancy can be drawn for the im-
pact of the ensemble size on the RMSE of analyzed and
forecasted temperature and specific humidity (not shown).
The scores of PART100 and PART200 were slightly bet-
ter or worse than PART50 depending on the height and the
forecast time, but no correlation could be drawn between
the quality of these scores and the ensemble size.
The same conclusion holds also for the specific humid-
ity bias (not shown). A consistent impact of the ensemble
size on the temperature bias was however found. Fig-
ure 14 shows the temperature bias difference between
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Figure 14. Temperature bias difference between PART100 andPART50 (left) and PART200 and PART50 (right) for NEAR-FOG (top)
and FOG (bottom). A negative value indicates that PART100 orPART200 had a smaller temperature bias than PART50.

PART100/200 and PART50, for FOG and NEAR-FOG.
It can be seen that for both situations, PART100 and
PART200 showed significantly better temperature bias,
for the initial profiles as well as for the forecasted ones.
Overall, correlation between the ensemble size and the
quality of the initial conditions and forecasts was weak,
though the impact of ensemble size on the convergence
of the filter was marked. Convergence frequency and the
quality of initial conditions appear thus to be decoupled.
This could be due to the fact that the filter was used within
a deterministic approach: the goal of the filter is to pro-
vide an accurate first guess, not to describe fully all the
possible states of the background. The noise added to each
particle at initial time during the resampling stage explains
also this result, as it increased the spread of the ensemble
even when the filter diverged. The fact that this noise was
bounded also probably helped to keep the best particles,
even when the overall number of particles was not very
large, close to observations.
This study shows also that for these two particular situa-
tions, the filter worked well with 50 particles with simu-
lated observations and that more particles does not bring
further information on the probability distribution of the
backgrounds. This conclusion has to be confirmed using
real observations.

6 Summary and discussion

A challenge of data assimilation is to provide the model
with initial conditions that are at the same time close to
the true state of the atmosphere, and coherent with the
processes that are modelled in the system. Both require-
ments are harder to reach with strongly non-linear systems
such as COBEL-ISBA. An algorithm based on a genetic
selection particle filter was developed, with modifications
brought to take into account the particle’s time trajec-
tories. Experiments using this new assimilation scheme
were assessed against experiments using the operational
setup of COBEL-ISBA that consists of a BLUE algorithm.
This work showed that an algorithm based on particle fil-
tering with genetic selection is able to provide accurate
initial conditions to a 1D model using a reasonable num-
bers of particles, within a simulated observations frame-
work. Filter collapse was less frequent, given the size of
the model space and of the ensembles that were used,
than with experiments carried out by Snyder et al. (2008),
thanks to the genetic selection algorithm and the noise
added to each particle at analysis time. The divergence fre-
quency of the filter was shown to depend on the stratifica-
tion of the atmosphere. Both temperature and specific hu-
midity analysis were improved as compared to the BLUE
algorithm used in the operational setup. As the initial con-
ditions were given by the first guess that had the closest
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trajectory to the observations, the initial conditions met
the two conditions mentioned above. Thanks to that also,
the forecasted temperature and specific humidity were im-
proved by a larger margin than the analyzed ones. The bet-
ter quality of the initial conditions and forecasts brought
better forecasts of LVP events. The final product delivered
by COBEL-ISBA, i.e. hours of forecasted occurence or lift-
off of LVP conditions, was markedly improved by the new
assimilation scheme.
The conclusions on the convergence of the filter and on the
adequate number of particles needed to run the model are
model-dependant and also situation-dependant: the results
vary from one set of simulated observations to another.
Nethertheless, they can be helpful for future implementa-
tions of assimilation algorithms based on particle filtering,
as they provide general insights on the causes and mecha-
nisms of filter divergence.
A next stage will be to test this assimilation scheme with
real observations. As the physics underlying the observa-
tions and the simulations were the same when using simu-
lated observations, the task of producing initial conditions
consistent with the model’s physics was simplified. The
real atmosphere is non-linear to greater extent than a sim-
ulated one; particle filtering is an assimilation algorithm
that was designed for non-linear dynamical systems, so it
seems fit for the task.
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