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Abstract. In this paper we examine the links between Ensemble Kalman Filters
(EnKF) and Particle Filters (PF). EnKF can be seen as a Mean-Field process with
a PF approximation. We explore the problem of dimensionality on a toy model.
To by-pass this difficulty, we suggest using Local Particle Filters (LPF) to catch
nonlinearities and feed larger scale EnKF. To go one step forward we conclude with
a real application and present the filtering of perturbed measurements of atmo-
spheric wind in the domain of turbulence. This example is the cornerstone of the
LPF for the assimilation of atmospheric turbulent wind. These local representation
techniques will be used in further works to assimilate singular data of turbulence
linked parameters in non-hydrostatic models.
Keywords: Ensemble Kalman Filter, Particle Filter, Data Assimilation, Mean–
Field Process.

1 Introduction

The major problems in data assimilation for geophysical models come from
nonlinearity of dynamics, non-gaussianity of perturbations and high dimen-
sions of state space. Ensemble Kalman Filters (EnKF) was a first answer
to these difficulties. For a few years some authors have tried to use Particle
Filters (PF) roughly to propose an alternative strategy. But directly applied
this new approach stumbles across the problem of the dimensionality. In
this paper, we present the links between EnKF and PF, we also remind that
the EnKF converges but tends to a particular process and we describe the
dynamical system of the nonlinear filter distribution. In the case of the PF,
with a modified selection step, we investigate the effect of an increasing state
space dimension for a constant number of particles. Then we suggest to cou-
ple EnKF and Local Particle Filter (LPF) to propose solutions in the vicinity
of strong uncertainties. The next step is the use of LPF with a stochastic
representation of the medium and we present some results on the filtering
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of real turbulent wind measurements. In the conclusion we see the expected
consequences of this work for meteorological models.

2 EnKF as a mean-field process

The nonlinear filtering process has a complete description in terms of Feynman-
Kac distribution (see [3]). For instance in discrete time, we consider the
dynamical system for the state vector Xn ∈ R

d partially observed by the
process Yn:



Xn = An(Xn−1) +
√

Qn.Wn Wn ∼ N (0, 1)
Yn = Cn(Xn) +

√
Rn.Vn Vn ∼ N (0, 1)

(1)

where An and Cn are nonlinear functions of Xn (Cn is linear for EnKF), Qn

and Rn are covariances of the Gaussian noises. We denote Mn the Markov
Kernel of the state vector Xn. The filtering problem consists in calculat-
ing the distributions η̂n = Law(Xn | Y[0,n]) and ηn = Law(Xn | Y[0,n−1]),
where Y[0,n] is the collection {Y0, . . . , Yn}. The nonlinear filter is there-
fore a sequential algorithm that gives the solution of the dynamic system
ηn = ηn−1 Kn−1,ηn−1

, where Kn−1,ηn−1
is a (non-unique) Markov kernel rep-

resentation of the filtering process. For genetic type filtering algorithm, the
kernel Kn−1,ηn−1

is Kn−1,ηn−1
= Sn−1,ηn−1

Mn with Sn−1,ηn−1
a (also non-

unique) selection of adapted states to be defined. We call mean-field process,
a process for which the evolution depends on a probability law πn, a priori
or conditioned to the observations, for instance with the dynamical evolution
Xn+1 = F (Xn, πn) where F is a nonlinear function. The filtering process is
mean-field type. Now we will see the corresponding mean-field process of the
EnKF. The EnKF is a clever technic to use an ensemble of state to approx-
imate the covariance error matrix by an empirical matrix. The motivation
of this approximation is the high dimensional size of the state vectors. The
equations of the EnKF are described in [5], the filter has a prediction step
and a corrective update. The convergence of the filter is proved in [6], but
the limit process is not the filtering process. Denoting Zn the update process,
it is a Markov process following the nonlinear equation
Zn = An(Zn−1) +

√
Qn.Wn + Gn.

ˆ

Yn − Cn.An(Zn−1) − Cn.
√

Qn.Wn +
√

Rn.Vn

˜

where Gn = Pn CT
n [Cn Pn CT

n + Rn]
−1, Rn = E

(

[
√
Rn Vn]

√
Rn V T

n

)

and

Pn = E
(

[An(Zn−1) +
√
Qn Wn][An(Zn−1) +

√
Qn Wn]

T
)

. This mean-field
process could have a particle approximation, and with a N particles sys-
tem (Zi

n)1≤i≤N computing the empirical average Zn =
1
N

∑N
i=1 Z

i
n we have

Zn = An(Zn−1)+Gn [Yn−Cn An(Zn−1)], and if An is a linear function, we
get exactly the Kalman estimator. The estimation is exact if the pair (Xn, Yn)
is linear and Gaussian, and that is the best linear estimator of Zn in the other
cases. Gn is an mean-field operator according to ηn and the EnKF filtering
process approaches the dynamical equation ηn = ηn−1 Cn,Yn,ηn−1

Mn where
Cn,Yn,ηn−1

is a correction kernel induced by Gn[Yn − CnF (Zn−1,Wn) − Vn].
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For Gaussian noises, Cn,Yn,ηn−1
(x, dz) = exp(− [z−x−Gn(Yn−Cnx)]2

2G2
n
Rn

) dz. The

EnKF, as the number of elements goes to ∞, tends to a mean-field process
Zn different from the filtering process. With a small number of elements, the
EnKF by its correction method is better than a PF, but when this number
increases largely, only the PF converges to the optimal filter.
All stochastic nonlinear filter have two steps, one is the prediction ac-

cording to the dynamic model, the other is an update through a selection
process. At this present time, no correction process is available to ensure the
convergence of the nonlinear filter. The exact filter laws are not analytically
known ( except in the linear Gaussian case with the Kalman estimator ) and
we have to use a particle approximation to learn these probability laws. To
filter mean-field processes, there are various particle algorithms (see [1]). All
are based on a mean-field Markovian model, a genetic selection rule and par-
ticle approximation for the filtering laws and for the mean-field laws. Now we
turn the discussion onto the selection step with limited numerical ressources
which is the core of the problems and the success of any particle or ensemble
filter.

3 Particle Filters regimes

Initially for nonlinear filters, the selection step was an Importance Sampling
(IS). This kind of selection brings some difficulties with filter collapses. This
is the motivation of the recent paper [8] relatively to the dimensionality. But
since the late 90’s, genetic selection have shown their efficiency to the fil-
tering problems. In this selection, there is an acceptance/rejection of the
state and only the rejected state are resampled. More precisely, the obser-
vational equation Yn = Cn(Xn) +

√
Rn.Vn leads to a potential function Gn

( see [3] ) which evaluates the adaptation of a state point Xn with respect
to Yn. For a parameter εn ≥ 0 such that εnGn ∈ [0, 1], the selection kernel
is defined by Sn,ηn

(x, dy) = εnGn(x)δx(dy)+ [1− εnGn(x)]Ψn(ηn)(dy) where

Ψn(ηn)(dy) =
ηn(dy)Gn(y)

ηn(Gn) is the resampling law. In the case of the high dimen-

sional state space we suggest to choose for the parameter εn = 1/ess sup(Gn).
A small noise is added on each particle to insure the exploration of the state
space, and the potential Gn is corrected consequently. The use of genetic se-
lection and this choice of the parameter εn provide a very different behavior
in comparison with the IS selection, especially with limited computational
ressources. Snyder et al. suggest to examine the possibility of a PF collapse
with Wmax

n , the maximum of the weight Wn =
Gn

ηn(Gn) . The filter is reputed

to be collapsed if Wmax
n is almost surely (a.s.) equal to 1. We conduct some

numerical experiments using the dynamical model proposed by Lorenz in
1996 (see [7]). We used this chaotic model because we can easily increase
the size d of its state space. We observe directly half of the state space and
perturb the observation vector with a standard Gaussian noise. A PF using
N = 1000 particles with a genetic selection filters the signal during 1460
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time steps. We examine here the histograms of maximum of weight Wmax
n .

The results for dimensions d = 200, 600 and 1500, presented figure 1, are
quite unlike the diagrams proposed by Snyder for the IS. For a fixed number
N = 1000 of particles, the collapse is reached for a higher dimension. In
fact the question seems not to be on the dimension but on the existence of
a critical number of particles for a given model and a given selection rule.
Theoretical works are still to be done, but numerically it seems that three
regimes are possible. The first one is a collapsed filter where Wmax

n = 1
a.s., the filter is fully divergent. The second is a transitional regime and the
filter may be locally divergent. The third is the optimal situation when the
filter converges and P(Wmax

n ≤ αn) = 1 where αn < 1. A fourth regime
occurs when all particles have a.s. the weight 1/N which corresponds to an
ill-adapted system. In the case of Lorenz-96 model, with the chosen selection
rule, the critical number of particles seems to be O(d), while Snyder et al

have shown for IS an exponential critical number. Keep in mind that for
other models or other selection scheme, the result could be very different.
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Fig. 1. Empirical histograms of maximum of weight W max

n
for a PF with 1000 par-

ticles and a genetic selection for the Lorenz-96 model with dimension d = 200 (top
left), d = 600 (top right) and 1500 (bottom left). On bottom right, we summarize
the 3 regimes w.r.t. to the dimension (1- collapsed filter, 2- transition regime, 3-
convergent filter) and a 4th regime when the system is ill-adapted.
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4 Couple together a EnKF and a Local Particle Filter

To filter or assimilate data for meteorological system, operational forecast
centers begin to use the EnKF. Joined to ensemble forecast systems, this
way is very promising. But ensemble assimilation do not face rapid and local
evolutions brought by nonlinear phenomena. A PF may be more efficient
to catch these nonlinearities, and with an equal number of elements, PF are
cheaper than EnKF. To bypass the problem of computational costs induced
by PF in high dimension problems, it could be interesting to couple locally
some Ensemble Filter and Local Particle Filter (LPF). This section is the pre-
sentation of a numerical example using a 1D Burgers equation. Discretized
on the interval [0, 1] with a spectral computation scheme, this equation could
be seen as the propagation of a wave along a latitude circle with the gen-
eration of a front. The Burgers equation has been chosen for its ability to
generate nonlinearities. As a reference, we consider a fine scale model all over
the domain, with 361 points (blue dot on each part of fig. 2 ) and generate
with it perturbed observations. Then we use an EnKF (canadian type with
2 ensembles) with 100 elements, a larger grid with 161 points and we assimi-
late the observations every 10 time steps. On fig. 2 top left, we examine the
results after a cycle of 37 assimilations. Due to the nonlinearities, the EnKF
(green curve) shows some spatial shift in its reaction, and does not follow the
discontinuities, rejecting the observations too close to the front. The black
dash line is the same model without assimilation. These areas are therefore
where the covariance prediction error matrix has its bigger values (see the
dispersion of the ensemble on fig. 2 bottom right, the green curve). Then we
place a smaller domain centered on the first front (light blue longdash rect-
angle on top right) with a refined grid, the state vector has 161 dimensions
on the intervalle [0, 1

2 ] and a Limited-Area Model (LAM). There, we use a
LPF with 100 particles to filter the same set of observations (green crosses).
The LAM has an adapted set of parameters : time, diffusion coefficient, etc.
On fig. 2, top right, we see with the red curve that the LPF fits correctly the
front and perform the best assimilation in the LAM area for an equivalent
cost than EnKF in this case. Then a coupling of the LFP with large scale
model is performed. To feedback the information of the LAM particles to the
EnKF elements, for each element of the ensemble we randomize a particle
according to the a posteriori law. The result is shown on fig. 2 bottom left
and we see clearly the contribution of this coupling EnKF-LPF technique.
On the fig. 2 bottom right the variance error of the LPF coupled with the
EnKF is largely reduced in the LAM area.

5 The Filtering of Atmospheric turbulent Wind with

Local Particle Filter

Regionalization of PF seems to be a response to the problem of dimensional-
ity. It is possible to go one step forward with pointwise PF (one PF per grid-
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Fig. 2. Observed 1d Burgers system, on each part the true state is in blue dots
and black dash lines are the EnKF without assimilation. The observations (green
crosses) are pertubed by white noise. On top left, the green line is the EnKF
estimation with 100 elements. On top right, the red line is the LPF estimation in
the LAM area with 100 particles and a genetic selection. Bottom left part, in red
line is LPF coupled with large scale EnKF. Bottom right part is the dispersion of
the EnKF in green and the red line is the coupled LPF-EnKF in the LAM area.

point). This technique requires two ingredients. The first one is a stochastic
representation of the medium, for the atmospheric wind this is a Stochastic
Lagrangian Model (SLM), and then a conditioning process to a ball centered
on each gridpoint. Large scale components may be learned from the ensemble
assimilation system, each PF estimates subgrid quantities and uploads the
information to the larger scale model or learned from observations. The PF
for turbulent wind and the conditioning process are described in [1]. Here we
present the result of real data numerically perturbed and filtered by a LPF
with a SLM for 3D stratified turbulent flows inspired by [2]. The model has
7 dimensions (3 for the location, 3 for wind components and one for temper-
ature). The figure shows series of horizontal wind with the perturbed signal
in blue, in black the real signal and in red the denoised signal with LPF us-
ing 300 particles. On the right part of the picture we examine the energetic
structure with Power Spectral Density (PSD) and see that the corrections
are very impressive even if the noises are strong.
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Fig. 3. Left, series of horizontal wind (velocity (m.s−1) vs time step number) and
right, PSD (with a log-log scale, power (dB) vs frequency (Hz)). The series on the
top is the U componant and the bottom the V componant. Time series are taken
the 18th of July 2006 between 16h58 and 17h00 UTC. In light blue the perturbed
signal to be denoised, in black the reference signal and in red the filtered with 300
particles.

This estimation technique provides not only unperturbed states but also
the estimation of quantities used is the dynamical model. In our case, it
could be able to produce series of turbulent dissipation rate, kinetic energy,
buoyancy coefficient, etc. With these estimations it is possible to close the
large scale model not with empirical closures but with the observations. For a
model with fully decorrelated dimensions, pointwise PF is a cheaper technique
than global PF even if a pointwise filter is computed for each gridpoint.

6 Outcomes and further developments

In this short paper we have seen that EnKF converges to a mean-field process
which is not the filter process, while the PF converges to the optimal filter.
Particle Filter is a generic name, everything takes place in the stage of selec-
tion. We have seen that it is worthwhile to use a genetic selection instead of
IS for high dimensional problems. But anyway the PF requires a lot of par-
ticles as the dimension of the state space goes to infinity. We have developed
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a strategy to couple together EnKF and LPF, and test it on a discretized toy
model. We have pursued our investigations with Pointwise PF and seen that
they are efficient for filter measurements in the domain of turbulence. Our
next step will be the use of LPF, with stochastic representation or not, to
assimilate data with strong nonlinearities for a barotropic model and carry
information to an ensemble assimilation system. In this work we have seen
that nonlinear filters have a non-unique representation with a kernel Kn,ηn

.
Correction process with the kernel Cn,Yn,ηn

and genetic selection Sn,ηn
are

known answers. It may have other responses, with for instance a combina-
tion of the 2 previous kernels, but also with adaptive resampling procedure
(see [4]). There are also some strategies of piloting/tuning of the selection
parameters. Find new kernels and more efficient selection rules will be the
next challenges for atmospheric data assimilation.
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