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Abstract

To deal with high dimensional non-linear filtering problems, an hybrid scheme
called Unscented/Ensemble transform Variational Filter (UEVF) is intro-
duced. This is the combination of an Unscented Transform (UT), an Ensem-
ble Transform (ET) and a rank-reduction method to compute the background
covariance error matrices as well as a variational minimization to conduct the
mean correction. The proposed UEVF is more efficient than the Unscented
Kalman Filter (UKF) to estimate the ensemble mean and covariance by the
blending of a variational optimization instead a Kalman linear correction as
well as the ET-like covariance estimation into the update step. Moreover,
in order to tackle the high dimension dynamics, truncated singular value de-
composition is applied to provide a size reduction of sigma-points set with
an adaptive fashion. For performance verifications, we present two numeri-
cal experiments with different dynamics. The first system is the chaotic and
high dimensional Lorenz-95 model. We show the performance of different
filters including the UEVF as the increasing of dimensionality or noise level.
The second simulation is a model based on the 2D shallow water equation.
The same tests are provided on this hydrodynamical system. All the nu-
merical experiments confirm that the UEVF outperforms the widely applied
Kalman-like filters explicitly.
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1. Introduction

To determine the initial conditions of a numerical weather forecast (NWF)
is one of the major challenge of computational methods [1, 2]. The assimila-
tion is not only necessary to provide an initial state to the NWF, but also to
filter observational noises and to learn the model errors. The techniques have
evolved with the computational capabilities, since the optimal interpolator
to the 3DVAR [3] and recently the 4DVAR [4]. In the classical variational
filters for meteorological problems, the covariance error matrix is learned
statistically offline. At the same time, the engineering community provides
numerous versions of the classical Kalman Filter (KF) adapted to large type
of problem and all, taking advantages of the different systems with Gaussian
noises, and learning their covariance error matrices online.

Regardless of this progress, during the 90’s the particle filter was de-
veloped to solve directly the filtering Bayes formulae ([5] or later [6]). G.
Evensen [7] first combine the KF conception and Monte-Carlo methods with
his Ensemble Kalman Filter (EnKF) which has encountered a real echo in the
geophysical sciences [8]. Then F. LeGland [9] proves that the EnKF is not a
consistent estimator of the filtering problem. Papadakis et al [10] shows that
to regularize the estimator and have a convergence to the filtering process,
the EnKF has to be weighted.

The filtering problem is the estimation of a conditional probability fol-
lowing the Bayes rule. Thinking about a probability density function (PDF)
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transportation, J. Uhlmann and S. Julier proposed [11] the Unscented Trans-
form (UT) which is supposed to rotate and shape the PDF. Some UT variants
of the common filters have been derived (see [12] for the UT Kalman Filter
(UKF) and [13] for the UT Particle Filter (UPF)).

In meteorological or geophysical sciences, the greatest challenge is the
dimensionality of the system. But the dimensionality is not the degrees
of freedom. High dimensional physical systems have correlated dimensions.
The dynamics organizes itself along few directions. Taking up the idea of B.
Moore [14] for engineering, B. Farrell and P. Ioannou suggest [15] to use the
rank-reduced KF for some linearized geophysical problems (see also [16]).
In order to decrease the computational cost, independently some authors
have developed the square root decomposition and some derived KF [17].
Combining with the UT, Van der Merwe have suggested an unscented KF
with a square root decomposition [18].

The ensemblist community has been in keeping with these ideas and settle
some variants of the EnKF using a rank reduction or square root decompo-
sition. X. Luo and I. Moroz have proposed [19] a full mixing of these tech-
niques with the Ensemble Unscented Kalman Filter (EnUKF). The EnUKF
is then able to treat some high dimensional systems with a variable sam-
ple size, which depends of the possible rank reduction and a pre-computed
sample covariance. Although there exists debate on the combination method
[20, 21], but the numerical results are convincing.

Our work takes place at this sensitive point. For all the KF-like filters
the estimate is assumed to be a linear regression with the observation (see
section 2.2.1 for details). This is the core of KF but this is hard to accept
for general situations especially for a dynamics with strong non-linearities
and non-Gaussian perturbations. In certain sense it becomes a bottleneck
for some complex and large dimension applications. Therefore we develop
an assimilation method with an update step that based on variational min-
imization instead of the Kalman regression. Naturally the linear regression
is replaced by quadratic terms of observation. First an UT is applied for
the sample generation and the statistical mean estimation. Then an Ensem-
ble Transform (ET) is used to empirically compute the error covariance. To
deal with the high dimensionality, we incorporate a modified rank reduction
into the UT scheme in order to maintain a size-reduced ensemble generation.
Therefore the new scheme is called the Unscented/Ensemble transform-based
Variational Filter (UEVF). This filter is able to deal with the nonlinear and
chaotic systems with high dimensionality as the numerical experiments show
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in section 5.
It is clear that the suggested method, outlined in section 3, is at the junc-

tion of different technologies: The UT approach in order to give an evolution
to the error covariance matrices, the ensemble transform to implement the
covariance update, the variational minimization to get a state update for a
nonlinear dynamics, the rank reduction to achieve a significant dimension
reduction with an adaptive fashion.

This paper is divided into 6 sections. In section 2, we introduce the
background methodologies, including three update schemes. In section 3,
we derive the UEVF and introduce the variational minimization update, and
the sigma-points generation with a size-reduced dynamics. In section 4, three
implementation issues about the UEVF are discussed. First we present the
rank-reduced covariance approximation, then the conjugate-gradient method
to minimize the cost-function, and finally the computation of the background
error matrix. The section 5 concerns the numerical experiments. There are
two examples, the chaotic high dimensional Lorenz-95 model and a simula-
tion based on the 2D shallow water equation. Finally the conclusion and a
discussion are provided in section 6.

2. Background methods

We assume that we have an n-dimensional discrete dynamical system

xk+1 = Mk,k+1(xk,uk) (1)

and to observe the state xk we could (partly) obtain a measurement sequence
yk using the observer Hk : R

n × R
m → R

m, i.e.,

yk = Hk(xk,vk) , k = 1, 2, · · · (2)

where k ∈ [0, T ] is the discrete-time index and T the total time step, xk ∈
R

n and yk ∈ R
m are the state and the noisy observation at the time k,

Mk,k+1 is the nonlinear transition operator with Mk,k+1 : Rn × R
n → R

n.
uk ∈ R

n is the dynamical noise with a zero mean and non null covariance
Qk, which includes both the ordinary process noise and mismatch errors of
mathematical model. We assume that uk is independent of the observation
noise vk ∈ R

m with a zero mean and known covariance Rk. uk is also
supposed to be independent of the initial state x0.
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The problem of data assimilation is equivalent to estimate the proba-
bility law ηk = Law(xk|y1:k). Two probability laws are used to describe
it completely: the first is the predictor law using the Markov transition
given by the model, ηbk = Law(xb

k|xa
k−1), the second is the update law ηak =

Law(xa
k|xb

k,y1:k). Finding these two laws solves the assimilation or the filter-
ing problem.

Actually the update process has not an unique representation as a Markov
transition. The transformation ηbk may be represented by different trans-
portation processes that are equivalent in mean. This can be see with the
Feynman-Kac formulae [22].

2.1. Unscented transform

The scheme of unscented transform (UT) is designed to solve the following
estimation problem[19, 23, 24]: at time k − 1, we have a Gaussian random
variable xk−1 ∈ R

n with mean xa
k−1 and covariance Pa

xx,k−1, and a Gaussian
perturbations uk−1 with zero-mean and covariance Qk−1, which are assumed
to be independent of each other. Without loss of generality, we can apply a
nonlinear transition M on the xk−1 to obtain a new random variable xk =
M(xk−1)

1. The interesting thing is to estimate the mean and covariance of
the transformed random variable xk.

The UT generates a set of 2L+1 states {X a
k−1,i}2Li=0, which is called sigma-

points and defined by

{X a
k−1,i}2Li=0 =

{
xa
k−1,x

a
k−1 ± (

√
(L+ λ)Pa

xx,k−1)i, i = 1, · · · , L
}
, (3)

where (
√

(L+ λ)Pa
xx,k−1)i denotes the i-th column of the square root ma-

trix
√

(L+ λ)Pa
xx,k−1. λ is a constant used for scaling adjusting. L is the

dimension of augmented state [xT
k ,u

T
k ]

T .
Associated to the sigma-points, a set of weights {Wk−1,i}2Li=0 is allocated

1A more general scenario considers the system y = f (x,u), where x represents system
states and u the perturbations. They are assumed to be independent, and follow Gaussian
distributions. However by introducing the augmented state z = [xT ,uT ]T , the general
form reduces to ours, y = f(z).
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by

Wk−1,0 =
λ

L+ λ
,

Wk−1,i =
1

2(L+ λ)
, i = 1, · · · , 2L ,

(4)

It can be proved that, the weighted sample mean x̄k−1 and sample co-
variance P̄xx,k−1 of the finite set {Xi}2Li=0 perfectly match the mean xa

k−1 and
the covariance Pa

xx,k−1 of xk−1 respectively,

x̄k−1 =
2L∑

i=0

Wk−1,iX a
k−1,i = xa

k−1 , (5a)

P̄xx,k−1 =
2L∑

i=0

Wk−1,i(X a
k−1,i − xa

k−1)(X a
k−1,i − xa

k−1)
T = Pa

xx,k−1 . (5b)

The above identities are independent of the choice of parameters α, λ and
L [23] and this feature will be employed to implement a strategy of PDF
re-approximation in construction of UEVF in section 3.

Once the sigma-points are evolved from analysis set {X a
k−1,i}2Li=0 to the

background {X b
k,i}2Li=0 by Mk−1,k, the pairs of {X b

k,i,Wk−1,i}2Li=0 are used to
estimate the background mean and covariance via

xb
k =

2L∑

i=0

Wk−1,i X b
k,i , (6a)

Pb
xx,k =

2L∑

i=0

Wk−1,i(X b
k,i − xb

k)(X b
k,i − xb

k)
T+

β (X b
k,0 − xb

k)(X b
k,0 − xb

k)
T +Qk , (6b)

where X b
k,i = Mk−1,k(X a

k−1,i). The parameter β in Eq.(6b) is used to compen-
sate the high-order errors introduced by the weighted sample approximation.
An optimal choice of β = 2 is suggested when the state follows a Gaussian
distribution [25].

Unlike the EnKF [26, 27] there the random ensemble members being
used, the UT employs a deterministic sampling scheme [24], as shown, with
the performance superior to the EnKF [19] in some situations.
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2.2. Statistical moment update methods

We divide the estimation procedure into two steps: the statistical prop-
agation step and update step. This corresponds to the approximation of the
two probability laws, ηbk and ηak , discussed previously in Eqs.(1)(2).

For nonlinear problems, different approaches are explored to retrieve the
prediction law ηbk, e.g., EKF, EnKF and UKF as well as their variants [25].
To our knowledge there is no attempt to improve the update law ηbk out
of the Kalman technologies. The linear regression scheme is preserved in
above Kalman-like filters to deal with nonlinear systems. However the linear
regression criterion cannot be accepted for highly nonlinear and complex
systems.

We will review the concept of three update schemes, incorporating the
spirit of the UT reviewed in section 2.1. Then we propose a modified version
of the UKF with the variational correction in section 3.

2.2.1. LUMV-based moment update

The standard KF is a linear optimal estimator and suits for linear/Gaussian
dynamics. The KF-like filters such as the EKF, the UKF and the EnKF as
well as their variants, were proposed to deal with nonlinear problems. But
they all use the same linear regression formulae for the update step to renew
the background statistics.

Let be two matrices of A ∈ R
n and B ∈ R

n×m and the analysis xa of true
state x ∈ R

n represented as a linear function of an observation y ∈ R
m with

m ≤ n, i.e.,
xa = A+By , (7)

xa is a linear analysis of true state x; it realizes a linear minimum vari-

ance(LMV) estimate and minimizes the mean square error. This is a linear

unbiased minimum variance(LUMV) analysis if the LMV estimate xa is un-
biased.

Now, we assume that both of the state x and observation y are ran-
dom variables with unknown distribution and are conditioned by a random
variable z. We denote xb = E[x|z], yb = E[y|z], the estimate error co-
variances Pb

xx = E[(x − xb)(x − xb)T |z], Pb
xy = E[(x − xb)(y − yb)T |z] and

Pb
yy = E[(y − yb)(y − yb)T |z], here Pb

yy is non-singular. By the LUMV cri-
terion, we can determine the coefficients B = Pb

xy(P
b
yy)

−1, A = xb − B yb.
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Then reordering the terms we get

xa
k =

[
xb
k −Pb

xy,k(P
b
yy,k)

−1yb
k

]
+
[
Pb

xy,k(P
b
yy,k)

−1
]
yk

= xb
k +Pb

xy,k(P
b
yy,k)

−1
[
yk − yb

k

]
, (8a)

Pa
xx,k = Pb

xx,k −Pb
xy,k(P

b
yy,k)

−1(Pb
xy,k)

T , (8b)

which is exactly the update formulae in KF.

2.2.2. ET-based linear mean update

There are some suboptimal KF as the ensemble transform KF (ETKF)
[28]: it provides new framework for observation assimilation and forecast
covariance estimation.

In particular, if we suppose that there are N members in a ensemble
assimilation cycle, by using a numerical decomposition algorithm, a n × N
square root matrix Sb

x,k can be obtained from the background error covariance

such that Pb
xx,k = Sb

x,k(S
b
x,k)

T . Similarly let be Sa
x,k a n × N square root

matrix of analysis error covariance Pa
xx,k, then Sa

x,k can be updated from Sb
x,k

by multiplied a N ×N matrix Tk [28], such that

Sa
x,k = Sb

x,kTk , (9)

where the transform matrixTk = Vk(Dk+IN×N)−1/2 withVk the eigenvector
matrix of (Hx

kS
b
x,k)

TR−1
k (Hx

kS
b
x,k). H

x
k is the linearization of Hk with respect

to xk, i.e., H
x
k = ∂Hk/∂ xk. Tk is linked with a singular value decomposition

as
(Hx

kS
b
x,k)

TR−1
k (Hx

kS
b
x,k) = VkDkV

T
k , (10)

whereDk is a diagonal matrix containing the eigenvalues of (Hx
kS

b
x,k)

TR−1
k (Hx

kS
b
x,k).

The analysis error covariance Pa
xx,k is given by

Pa
xx,k = Sa

x,k(S
a
x,k)

T = Sb
x,kTkT

T
k (S

b
x,k)

T . (11)

Once xa
k and Sa

x,k are determined, the analysis ensemble {xa
k,i}Ni=1 for the next

assimilation cycle can be computed by

xa
k,i = xa

k +
√
N − 1(Sa

x,k)i , i = 1, · · · , N , (12)

where (Sa
x,k)i is the i-th column of the square root matrix Sa

x,k.
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2.2.3. Variational-based nonlinear mean update

For the mean update involved in a nonlinear assimilation, one attractive
way is to apply a Variational Filtering (VF) [29, 30]. One assumes that the
background and observation errors are independent and the total PDF can
be expressed by P = PbPo = exp(lnPb + lnPo). The maximum of the total
PDF is equivalently the minimization of the cost-function J = − lnPb− lnPo.
Then we define εbk = x − xb

k and the linearized error εok = yk − Hk(x
b
k) −

Hx
k(x− xb

k). Bk and Rk denote the matrices of background and observation
error covariance. The expression of J at time k, Jk(x) = J b

k(x) + Jo
k(x), is

J b
k(x) =

1

2
(x− xb

k)
TB−1

k (x− xb
k) , (13a)

Jo
k(x) =

1

2

(
yk −Hk(x

b
k)−Hx

k(x− xb
k)
)T

R−1
k ×

(
yk −Hk(x

b
k)−Hx

k(x− xb
k)
)
, (13b)

Hx
k =

∂Hk (xk,vk)

∂ xk

∣∣∣∣
xk=x

b

k

vk=0

, (13c)

The background error matrixBk is a function ofMk−1,k. A further discussion
about its implementation will be seen in section 4.3.

Finally, we minimize at each time step the Jk(x) from a point x 6= xa
k

with a constraint of its gradient J ′

k(x) = ∂Jk(x)/∂ x being nonnegative, such
that xa

k = argminx Jk(x) with J ′

k(x) ≥ 0, where J ′

k(x) is derived as

J ′

k(x) = B−1
k (x− xb

k)− (Hx
k)

TR−1
k

(
yk −Hk(x

b
k)−Hx

k(x− xb
k)
)
. (14)

To minimize the cost-function as a quadratic form, there are a number of
efficient algorithms [38, 39]. A further discussion about the cost-function
minimization can be seen in section 4.2.

3. Unscented/Ensemble transform Variational Filter (UEVF)

We propose the UEVF to meet the following requirements:

• Accuracies of the mean estimation and sample size: The EnKF esti-
mation sometimes introduces spurious modes even if the ensemble mean
and covariance are correct [19]. On the contrary for UT mean estima-
tion, the sigma-points are chosen to match the true mean and covari-
ance. The sample size is fixed, i.e., twice the degrees-of-freedom plus
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one. Actually the sample size determined with trial and errors in the
EnKF is not usable especially for high dimension problems. The ad-
justable parameters in the UT provide a capability to counterbalance
the mismatch in system model or the observation perturbations.

• Accuracies of the mean update: The KF-like estimations, such as the
UKF [12], perform a correction with respect to the LUMV criterion.
The variational mean update reviewed in section 2.2.3 implements a
minimization with nonlinear quadratic terms. Theoretically in terms
of update accuracies, the later is better than the former. This moti-
vates us to replace the KF-like update by a variational minimization
update. Nevertheless the background error covariance Pb

xx,k has also
to be updated, to deal with the online covariance renew, we adopt the
ensemble transform like designed in the ETKF in Eq.(11).

Now we will present our new method. It incorporates the scheme of un-
scented mean estimation with the variational minimization update and an
ensemble covariance computation. On the other hand, to implement our
method for systems with large degrees-of-freedom, we adopt the technique of
rank reduction as presented in geophysical literature [19, 31, 32].

We express Pb
xx,k with a square root matrix Sb

x,k and a residue Qk, and

have Pb
xx,k = Sb

x,k(S
b
x,k)

T +Qk.
For the initial step, the state xa

0 and its error covariance Pa
xx,0 are given.

We get Sa
x,0 from the square root decomposition of Pa

xx,0 = Sa
x,0(S

a
x,0)

T .
We assume that the sigma-points have been computed during the initial-

ization step. Details will be seen at the end of the time loop.
Then the iterative filtering procedure begins, and for the kth time step

we have:

• Mean estimation step :
Propagate forward the analyzed sigma-points with the model Mk−1,k

and generate the background sigma-points, {X b
k,i = Mk−1,k(X a

k−1,i)}
2ℓk−1

i=0 .

The associated weights {Wk−1,i}2ℓk−1

i=0 are inherited from the previous
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cycle k − 1. Then we get

xb
k =

2ℓk−1∑

i=0

Wk−1,i X b
k,i , (15a)

Sb
x,k =

[√
W β

k−1,0(X b
k,0 − xb

k),
√

Wk−1,1(X b
k,1 − xb

k),

· · · ,
√

Wk−1,2ℓk−1
(X b

k,2ℓk−1
− xb

k)
]
, (15b)

Pb
xx,k = Sb

x,k(S
b
x,k)

T +Qk , (15c)

where W β
k−1,0 = Wk−1,0 + β.

• Mean update step :

xa
k = argmin

x

Jk(x) , subject to J ′

k(x) ≥ 0 , (16a)

Jk(x) =
1

2
(yk −Hk(x

b
k,0)−Hx

k(x− xb
k))

TR−1
k ×

(yk −Hk(x
b
k,0)−Hx

k(x− xb
k))+

1

2
(x− xb

k)
T (Pb

xx,k)
−1(x− xb

k) , (16b)

J ′

k(x) = (Pb
xx,k)

−1(x− xb
k)− (Hx

k)
TR−1

k ×
(yk −Hk(x

b
k,0)−Hx

k(x− xb
k)) , (16c)

V̂kD̂kV̂
T
k ≈ VkDkV

T
k = (Hx

kS
b
x,k)

TR−1
k (Hx

kS
b
x,k) , (16d)

Tk = V̂k(D̂k + Iℓk×ℓk)−1/2 , (16e)

Sa
x,k = Sb

x,kTk , (16f)

where a singular value decomposition is applied to the covariance ma-
trix (Hx

kS
b
x,k)

TR−1
k (Hx

kS
b
x,k) (Eq.(16d)). In Dk and Vk, the eigenvalues

{σ2
k,i}Li=1 and the eigenvectors {ek,i}Li=1 are sorted in descending order.

D̂k = diag(σ2
k,1, · · · , σ2

k,ℓk
) is a ℓk × ℓk diagonal matrix formed with the

first ℓk-th bigger eigenvalues and is the rank-diminished version of Dk.
Associated with, V̂k = [ek,1, · · · , ek,ℓk ] is a L× ℓk eigenvectors matrix.
The approximation by truncation will be explained later in section 4.1.

• sigma-point generation step :
Generate the sigma-points {X a

k,i}2ℓki=0 = {xa
k,x

a
k ± (

√
ℓk + λ Sa

x,k)i, i =
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1, · · · , ℓk}, where the symbol (·)i denotes the i-th column of the square
root matrix

√
ℓk + λ Sa

x,k. To the sigma-points, the associated weights
given by {Wk,0 = λ/(ℓk + λ),Wk,i = 0.5/(ℓk + λ), i = 1, · · · , 2ℓk}.
The sampling size ℓk is determined to satisfy ℓk < L, where L is the
dimension of augmented state [(xa

k)
T ,uT

k ]
T .

4. Implementation of the UEVF

4.1. Construction of the sigma-points based on a truncated Covariance

For high dimensional problems, the sampling size of the ensemble methods
is a difficulty. To tackle the problem, similarly to the works suggested by
literatures [31, 32, 33, 34, 19], we use the technique of truncated singular value
decomposition (TSVD) to generate perturbations of the ensemble forecast.
A rank-reduction of the covariance matrix is adopted to approximate the
original one using the TSVD. This approximation is a compromise between
the computational cost and the accuracy [19].

A singular value decomposition is applied to Pa
xx,k = VkDk(Vk)

T , where
Dk = diag(σ2

k,1, · · · , σ2
k,L) is the eigenvalues σ2

k,i’s of P
a
xx,k sorted in descend-

ing order. L is the dimension of [xT
k ,u

T
k ]

T and Vk = [ek,1, · · · , ek,L] is the
matrix of eigenvectors. Then we get

Pa
xx,k =

L∑

i=1

σ2
k,iek,ie

T
k,i ≈

ℓk∑

i=1

σ2
k,iek,ie

T
k,i = V̂kD̂k(V̂k)

T , ℓk < L , (17)

where ℓk is called the truncation size of the sigma-points. Therefore the V̂k

and D̂k are with a reduced dimension, L× ℓk and ℓk × ℓk, respectively.
With too small values of ℓk, we lost some important structures of Pa

xx,k

and too big values lead to prohibited computational costs. ℓk is an integer
and can be determined by an efficient scheme [19] below:

σ2
k,i > trace(Pa

xx,k)/γk , i = 1, · · · , ℓk ,
σ2
k,i ≤ trace(Pa

xx,k)/γk , i > ℓk + 1 ,
(18)

where γk is an adjustable threshold with a lower bound ℓl and an upper
bound ℓu specified in order to prevent ℓk to be too large or too small. We
adjust the threshold γk to keep ℓl ≤ ℓk ≤ ℓu.

To determine γk the scheme is also given by [19]: at the initial step we
specify a threshold γ1, if γ1 is a proper value such that ℓ1 satisfies ℓl ≤ ℓ1 ≤ ℓu,
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then in next iteration, we put γ2 = γ1. If γ1 is too small, ℓ1 < ℓl, then γ1
increases. If γ1 is too large, ℓ1 > ℓu, then replace γ1. This procedure will be
continued until ℓ1 falls into the specified range. After this adjustment, let
ℓ2 = ℓ1 at the next iteration. Then adjust it to let ℓ2 fall into the specified
range. By this way, the truncation size ℓk varies in time.

When the truncation size ℓk is determined, the L × L square root ma-
trix Sa

x,k is replaced by the L × ℓk matrix {(Ŝa
x,k)i , σk,iek,i, i = 1, · · · , ℓk}.

Following the Eq.(3), the (deterministic) sigma-point truncated set is given
by

{X a
k−1,i}2ℓki=0 =

{
xa
k−1,x

a
k−1 ± (ℓk + λ)1/2(Ŝa

x,k)i , i = 1, · · · , ℓk
}
. (19)

Its associated weights set is :

Wk−1,0 =
λ

ℓk + λ
,

Wk−1,i =
1

2(ℓk + λ)
, i = 1, · · · , 2ℓk .

(20)

Consequently the truncated version of the sigma-points, given by Eq.(19) and
(20), balances the requirements in terms of computational cost and accuracy.

4.2. Minimization of the cost-function

The minimization of cost function in Eq.(16) plays a key role in the UEVF
implementation. For meteorological models, the number n of state variables
easily exceeds 108. If the degrees of freedom N < n, the calculation of the
full background matrices (x − xb

k)
T (Pb

xx,k)
−1(x − xb

k) (Eq.(16b)) has order
of O(N2) complexity. For a typical NWF, N2 is generally about 1016 [37].
Therefore a direct solution is not feasible for operational applications.

Different minimization algorithms are available [35], such as the steepest
descent method, Newton and quasi-Newton methods, etc. However conjugate-
gradient algorithms outperforms them in storage requirement and convergent
rate [36, 37, 38, 39]. The method becomes often the only implementable
choice for large-scale nonlinear minimization considering the computational
efficiency and the accuracy as main criteria [37] and is used in the Variational
Filters (VF) involved in operational data assimilation systems.

In order to apply the conjugate-gradient method efficiently, we rewrite the
background term via the relation εbk = Ukzk, where ε

b
k = x−xb

k is the analysis
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increment. The transform matrix Uk is well designed to dimensionalize the
variational problem. The condition number of Uk is small and the product
UkU

T
k match the full background error covariance Pb

xx,k, i.e., UkU
T
k ≈ Pb

xx,k.
In terms of analysis increments, the Eq.(16b) and (16c) can be rewritten

Jk(zk) =
1

2
zkz

T
k +

1

2
(Yk −Hx

kUkzk)
TR−1

k (Yk −Hx
kUkzk) , (21a)

J ′

k(zk) =zk −UT
k (H

x
k)

TR−1
k (Yk −Hx

kUkzk) , (21b)

where Yk , yk −Hk(x
b
k,0) is innovation vector and Hx

k the Jacobian of the
Hk defined in Eq.(13c). The second derivative of cost function, J ′′

k (zk) ,

∂J ′

k(zk)/∂zk, can also be obtained by

J ′′

k (zk) = I+UT
k (H

x
k)

TR−1
k Hx

kUk , (22)

where I denotes a unit matrix with an appropriate dimension. For the
conjugate-gradient method we denote by Gk the residual

Gk = J ′

k(zk) . (23)

We use the convention β−1 = d−1 = 0, and we give initialization values to
U0, z0 and Hx

0 . The conjugate-gradient minimization [40, 37] for the time
step k is the procedure:

• Compute the gradient J ′

k(zk) and the second derivative J ′′

k (zk):

GI
k ,J ′

k(zk) = zk −UT
k (H

x
k)

TR−1
k (Yk −Hx

kUkzk) , (24a)

Pk ,J ′′

k (zk) = I+UT
k (H

x
k)

TR−1
k Hx

kUk . (24b)

• Compute the descent direction dk, the step size αk and update the zk:

dk =− GI
k + βk−1dk−1 , (25a)

αk =
(GI

k)
TGI

k

dT
kPkdk

=
‖Gk‖2
dT
kPkdk

, (25b)

zk =zk + αkdk . (25c)

where ‖ · ‖ denotes Euclidean norm.
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• Compute a new gradient J ′

k(zk) and update βk:

GII
k ,J ′

k(zk) = zk −UT
k (H

x
k)

TR−1
k (Yk −Hx

kUkzk) , (26a)

βk =
‖GII

k ‖2
‖GI

k‖2
. (26b)

• A convergence criterion for stopping the iterations is tested: even ‖GII
k ‖

is less than a threshold ξeps, even the iteration number is larger than a
specified number. Finally we get the analyzed state xa

k = Ukzk + xb
k.

The conjugate-gradient method may be seen as the solution of J ′

k(zk) = 0
in the m-th iteration [42], where m is the number of distinct eigenvalues of
I−UT

k (H
x
k)

TR−1
k Hx

kUk. Moreover when these eigenvalues are clustered into
groups of approximately equal number, the method will converge even faster.

4.3. Computation of the background error matrix Bk

From the Eq.(13), the quadratic cost function is completely characterized
by the background error matrix Bk and observation error covariance Rk. If
Rk is nearly fixed and mostly a constant, the matrix Bk plays a key role.
Different strategies for the determination of the guess covariance error matrix
Bk were explored (see [26, 27, 43, 44] for details):

• In the VF framework, Bk is seen as a function of nonlinear evolution
Mk−1,k and supposed to be known and time-variant. It can be com-
puted with the empirical statistics of a one-step-ahead prediction of
an ensemble. In the UEVF we simply choose to put Bk ≈ Pb

xx,k in
Eq.(16b).

• In 3DVar (Pointwise Variational Filter) or 4DVar (Trajectorial Varia-
tional Filter), Bk is assumed to be constant in time and learned statis-
tically offline.

• In other situations, Bk is a time-variant statistic and can empirically
computed as a conditional background covariance online. Particularly,
if Bk comes from a random ensemble members {X b

k,i} with size N ,

one may show that BN
k ≈ Pb

xx,k = 1
N−1

∑N
k=1(X b

k,i − xb
k)(X b

k,i − xb
k)

T ,

where xb
k =

∑N
i=1 X b

k,i/N . We call EnVar a Variational Filter using the
empirical BN

k matrix. This scheme is simple and direct, we will use it
for the numerical comparisons.
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In next section, we propose two numerical simulations that based on the
Lorenz-95 model and the 2D shallow water equation. We want to test the
ability of our filter to estimate the reference signal.

5. Simulation and discussion

This section examine the performance of the UEVF using numerical simu-
lations. Two other filters are used to compare the performances: the EnUKF
and the EnVar. The EnUKF uses deterministic members to perform an UT
estimation, see [19, 45] for details. The EnVar have an estimation with ran-
dom members to reduce the collapse effects. We add to the EnVar a spherical
simplex centering scheme following [19, 46] for a convenient comparison.

To estimate the filters errors, we choose the dimension-averaged relative
root mean square (RMS) error given by

Ek =
1

n

n∑

i=1


 1

M

M∑

j=1

(
xa,j
i,k − xtrue,j

i,k

xtrue,j
i,k

)2


1/2

, k = 1, · · · , T , (27)

where n is the dimension of state. A time k < T , xtrue,j
i,k and xa,j

i,k are the
i-th component of the truth and the analyzed state for the j-th Monte Carlo
simulation. M is the total number of Monte Carlo runs.

The positive semi-definiteness of the root square matrices in Eq.(15) have
to be guaranteed. The problem comes from the varying sampling size ℓk in
Eq. (17). Indeed the weight Wk−1,0 in Eq.(20) may be negative if λ < 0 or

ℓk + λ < 0. Consequently the effective weight W β
k−1,0 in Eq.(15b) is defined

by Wk−1,0+β where β ≥ 0 is a constant. Then the parameters λ and β verify
Wk−1,0 + β ≥ 0 and ℓk + λ > 0. It means that λ ≥ −βℓk/(1 + β). Since ℓk is
bounded within the interval [ℓl, ℓu], we choose λ ≥ −βℓl/(1 + β).

Three additional techniques are implemented both to the EnUKF and
the UEVF in order to improve the performance of these filters. Nevertheless
they are not necessary for good working order of the algorithms. We put
them to be consistent with the experiments of Luo and Munoz using the
EnUKF [19]:

To apply the spherical simplex centering scheme to the ensemble trans-
form in the UEVF and the EnUKF, we follow the algorithm in [25] to build
a centering matrix U, where U is given by Eq. (C15) in [47]. It is time-
invariant and does not involve the dynamical model and observation opera-
tor.
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The second technique is the covariance inflation. Many investigations
point out the systematic underestimation of the covariance of analysis errors
in the EnKF. The inflation of these covariance matrices is the solution sug-
gested by some authors [45, 48]. We choose to multiply the perturbations to
the mean xa

k of the analysis by a coefficient 1+ δ. It is equivalent to increase
the covariance matrix by a constant (1+ δ)2. We set the covariance inflation
factor δ = 0.5 in the experiments.

At least we use a covariance filter method [49, 50]. It is based on the
Schur-product in order to reduce the effect of sample error of the covariance
matrix. Following [19], the scale length ℓc of the covariance filter is seen as
an optimum within a certain range. It minimizes the relative RMS error and
we follow the suggestion of the authors to set ℓc = 200.

5.1. The Lorenz-95 model

First to analyze our results, we propose to use the Lorenz-95 model. This
is a chaotic dynamical system introduced by E.N. Lorenz ([51] or [52]). It
describes a simplified propagation of an atmospheric wave along a meridian
circle. The circle is divided into n intervals at time k and the simplified
model is given by

∂xi,k

∂tk
= (xi+1,k − xi−2,k)xi−1,k − xi,k + F , (28)

where i = 1, · · · , n is the dimension index. The cyclic boundary conditions,
x0,k = xn,k and x−1,k = xn−1,k as well as xn+1,k = x1,k, are adopted to
determine the state components xi. The constant F is set to F = 8 (for
F > 4.4 the system is chaotic with positive Lyapunov exponents). The
solutions of the system are obtained by a numerical integration with a fourth-
order Runge-Kutta method. The time-step ∆t = 0.05 unit corresponds to
a 6-hours physical time mesh [52]. Moreover we add a dynamical Gaussian
perturbation uk with a zero-mean and a covariance Qk.

The observer Hk in Eq.(2) is simply chosen as a time-invariant identity
matrix with an additional Gaussian noise. Therefore yk = xk + vk where
xk = [x1,k, · · · , xn,k]

T is the state vector and vk denotes a n-dimensional
Gaussian distribution N (0,Rk).

The UEVF is nearly the same as the EnUKF except for the correction
step. In particular for the UEVF, the mean update formulae in Eq.(16) can
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be reduced to

xa
k =argmin

x

Jk(x) , with J ′

k(x) ≥ 0 , (29a)

Jk(x) =
1

2
(yk − x)TR−1

k (yk − x) +
1

2
(x− xb

k)
T (Pb

xx,k)
−1(x− xb

k) , (29b)

J ′

k(x) =−R−1
k (yk − x) + (Pb

xx,k)
−1(x− xb

k) . (29c)

Therefore the cost function Jk(x) is a linear combination of the two quadrat-
ics terms (yk − x)T (yk − x) and (x − xb

k)
T (x − xb

k). At the opposite the
EnUKF update mean given in Eq.(8a) is directly a linear combination be-
tween observation yk and background xb

k:

xa
k =

(
Pb

xy,k(P
b
yy,k)

−1
)
yk +

(
I−Pb

xy,k(P
b
yy,k)

−1
)
xb
k , (30)

where I denotes an unit matrix. The performance improvement achieved by
the UEVF compared to the EnUKF comes from the difference of the previous
update formulae in Eq.(29-30).

In this experiment, we set other parameters: λ = −2, β = 2, the initial
threshold γ1 = 1000. For a state dimension n, we set the initial ensemble
size ℓ1 < n/2.

To explore the effect of different levels of dynamic and observation noises,
as well as the dimension n on the filtering performance, we consider five cases
as follows:

Case 1: Low level of noise
In this case, we set the state dimension n = 40, the initial sample size ℓ1 = 15,
the lower bound ℓl = 10 and the upper bound ℓu = 20, Qk = 5.× Id(40, 40),
Rk = 0.1 × Id(40, 40). We use 50 Monte Carlo simulations. The relative
RMS error, and the evolution in time of the sampling size ℓk correspond to
the figures 1(a) and 1(b) respectively. Averaged computation time : EnUKF
is 8.4448s, UEVF is 8.6661s, and EnVar is 2.562s.

It seems (Fig.1(a)) that the UEVF has the best accuracy and the EnVar
behaves as an approximation of the UEVF. However the EnVar is unstable
and has many biases with surprising amplitudes. The EnUKF has a constant
gap with the UEVF. Fig.1(b) shows that, with the same initial sample size
ℓ1, the evolution of ℓk is different: EnUKF quickly increases to the upper
bound ℓu and keeps the level to the end, while UEVF tends to decline with
a constant adjustment. A more interesting point is about the ensemble size.
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A larger value does not necessarily guarantee a smaller RMS error. This is
relevant with the well-known behaviour of the ensemble. They reach a sat-
uration score as the number of elements increase [53]. For the computation
time, the UEVF is almost equal to EnUKF and both are more than three
time of EnVar.

Case 2: High level of noise
Now we use the same dimension n = 40 and initial sample size ℓ1 = 15, but we
increase the noise levels to Qk = 10.× Id(40, 40) and Rk = 0.5× Id(40, 40).
The relative RMS error and evolution of ℓk are computed with 50 Monte
Carlo runs (Figs. 2(a) and 2(b)). Averaged computation time : EnUKF is
8.9178s, UEVF is 9.2549s, and EnVar is 2.7443s.

The relative RMS UEVF errors is still oscillating with a small amplitude
(Fig.2(a)). EnUKF series appears more flat but keeps a large gap with the
UEVF. The RMS error of the EnVar is most of the time far bigger than
the UEVF and the EnUKF. The sample size of the UEVF tends to increase
quickly (Fig.2(b)) and reaches the upper bound. The computation times of
the three methods are slightly increased compared with case 1.

Case 3: High state dimension and low noise level
We increase the dimension to n = 200, and we specify a lower level of noise
Qk = 5. × Id(200, 200), Rk = 0.1 × Id(200, 200) and initial sample size
ℓ1 = 15. We perform 50 Monte Carlo simulations. The relative RMS error
and the evolution of ensemble size ℓk, are plotted in Figs. 3(a) and 3(b). Av-
eraged time elapsing: EnUKF is 144.1208s, UEVF is 150.3785s, and EnVar
is 14.4913s.

As the dimension have been increased from 40 to 200 with a low noise
level, the EnUKF becomes sensible to the dimension effects (Fig.3(a)) and
its RMS error tends to a larger amplitude and maintains high values. Both
the UEVF and the EnVar do not seem to be impacted by the increased di-
mension and still keep lower error amplitude. The dimension size affects the
computational time: for both the UEVF and the EnUKF, the average time is
more than 17 times that the time used in case 1. There is no surprise to this
increase of time: the matrix algebra and optimization are time-consuming
mathematical operations in high dimension. This can be also observed for
the EnVar but only with a factor about 6.
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Case 4: High state dimension and noise level
Then we do not change the initial ensemble size ℓ1 = 15, but we use a
dimension n = 200 and higher noises levels Qk = 10. × Id(200, 200) and
Rk = 0.5 × Id(200, 200). The results with 50 Monte Carlo runs are given
in Figs. 4(a) and 4(b) respectively. Averaged computation time: EnUKF is
152.8557s, UEVF is 156.8607s, and EnVar is 15.4724s.

The RMS errors produced by both the EnUKF and the EnVar have large
gap compared with UEVF (Fig.4(a)). The UEVF is the only filter not af-
fected by the coupled of strong perturbations and high dimensions. Talking
about the sample size, the two methods behave with the fashion (Fig.4(b)).
To compare the time consumption, the average time is roughly multiply by
1.05 comparing with the case 3. It should be remarked that the EnVar oc-
casionally reports numerical problems (ill-conditioned minimizations) with a
divergent filtering process. When more Monte-Carlo runs are performed, the
relative RMS error curve of EnUKF tends to diverge.

Case 5: Higher state dimension
In this last case there are no change in the initial ensemble size and noise
levels, but we use a 4-fold state dimension n = 800. Thus we have again
Qk = 10. × Id(800, 800) and Rk = 0.5 × Id(800, 800). The lower and up-
per bound of sample size are changed to [ℓl, ℓu] = [10, 50]. The results with
only one run are given in Figs.5(a) and 5(b). Averaged computational time:
EnUKF is 4285.2601s, UEVF is 4361.1175s, and EnVar is 580.8696s.

The error curve of the UEVF (Fig.5(a)) shows a remarkable stability and
maintains lower errors compared with the other filters. The EnVar error
curve has again large oscillations and stays largely above the UEVF errors.
For the ensemble size, both the UEVF and the EnUKF quickly reach the top
bound and stay in the level to the end. The other effect of high dimensions
is on the computational times. The computation time increase due to the
sigma-points methods is roughly 17 times the cost in the case 4 and 36 times
the computation cost of the EnVar. During the minimization procedure in
the EnVar, a number of error reports appears and indicates the appearance
of ill-conditioned minimization problem and lost of computational accuracy.

To finish with the numerical tests, we compare the averaged trajecto-
ries produced by the three methods (Fig.6) and the reality according to
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parameters used in case 5. The averaged trajectories are calculated by
xa
k = 1

n

∑n
i=1 x

a
k,i, where xa

k,i denotes the i-th component of analysis xa
k. We

present figure 6 one of the component of the state vector. The behaviour of
the 3 filters is then clear with an EnVar divergence from time to time.

In term of the relative RMS error and the evolution of the ensemble size or
the computation time via 5 cases, we have showed that the UEVF exhibits a
better accuracy in state estimate than the EnUKF and the EnVar. However
the UEVF’s time cost is far larger than the EnVar’s and roughly equals to the
EnUKF. The similar conclusion held when facing the super-large-dimension
situation.

5.2. 2D-Shallow Water simulation

The shallow water equations (SWE) are a set of hyperbolic PDE’s. It
used to model the perturbations propagation of the water height (or other
incompressible fluids). The equations are derived from depth-integrating
Navier-Stokes equations considering the horizontal length scale much greater
than the vertical length scale. In the case of no frictional forces, the SWE
can be written as :

∂Q

∂t
+

∂F (Q)

∂x
+

∂H(Q)

∂y
= 0 , (31a)

Q = [h,ha,hb]T , (31b)

F (Q) = [ha,ha2 + gb2/2,hab]T , (31c)

H(Q) = [hb,hab,hb2 + gh2/2]T , (31d)

where the time t and the two space coordinates x and y are independent.
The dependent variables are the fluid height h and the 2D fluid velocities a
and b. The gravitational constant set to g = 9.8. We add a dynamical noise
u assumed to be a 2D centered Gaussian process with covariance Q.

Similarly to the tests with the Lorenz-95 model, we choose a time invari-
ant observer Hk with yk = Hk(Qk,vk) = hk + vk where the hk is a function
of space coordinates (x, y), vk denotes a 2D Gaussian distribution N (0,Rk).

For this experiment, we confine our simulation domain to a square region
with the size of 40 × 40 unit. We choose a Dirichlet boundary conditions
with a reflection. By hypotheses a = 0 on the vertical sides of the square
and b = 0 on the horizontal sides.

We adopt a second order Lax-Wendroff scheme [54, 55] to compute the
numerical solution. At the initial step we set a1 = 0 and b1 = 0 for all
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the square domain. Then we choose randomly a position within the domain,
and we add there a 2-dimensional Gaussian shaped peak h1 (central height
of 2 units). This Gaussian spike simulates a local disturbance like a droplet
hitting the surface. Then the generated wave propagates forward and back-
ward in our domain. The observations are obtained by adding Gaussian noise
vk to the state vector. In the following simulations, we choose the EnVar to
compare with the proposed UEVF. For the two filters we start with the same
initial condition xa

1, and use the same observation sequence {y0 · · ·yk}.
Concerning the UEVF, we set the parameters β, λ, the threshold γ1,

the covariance inflation factor δ to the same values as in the experiment
5.1. The covariance filtering scale is ℓc = 250, the sample size bound are
[ℓl, ℓu] = [5, 25], the time step is ∆t = 0.1s, the space mesh is ∆x = ∆y = 1.0
units, the initial sampling size is ℓ1 = 15.

We consider different scenarios in terms of depth hk(x, y) with different
noise levels, i.e., Qk = Rk = 0.003 × Id(40, 40) and Qk = Rk = 0.03 ×
Id(40, 40). These different cases may explore the effect of noises on the
performance of the UEVF and the EnVar. The corresponding depth hk(x, y)
at a same time step and the relative RMS error, are plotted in Fig.7 and
Fig.8.

Different noise levels leads to different behaviour of estimates. The UEVF
estimates perceptibly outperform the EnVar. During the first experiment,
the noise is relatively weak and the shape of the estimates is similar to the
reality. The UEVF filtered field is sharper than the EnVar with a cleaner
background. This is obvious for k = 20 (Fig.7(a)) or k = 40 (Fig.7(b)).
Moreover when the time increases, the EnVar filtered signal is more fuzzy
and only a little improvement over the background noise is achieved.

Then, the noise level is increased by 10-fold the previous one (Fig.8). The
estimate of the UEVF still preserves the shape of the reality (Fig.8(a)) with
a tiny background noise. On the other hand the EnVar estimates show a
worse shape. The deformation and shrinkage are more than the previous
experiment. After 20 steps propagation (k = 40) the situation is similar.
The EnVar has no more improvement, while UEVF still maintains a level of
confidence.

In order to quantify the effect of different noise on the accuracy, to com-
pute the relative RMS error (Fig.9), we adopt the relative 2-norm based RMS
error [19] to quantify the matrix-posed sequence hk(x, y), which is defined by
Ek =‖ xa

k−xtrue
k ‖2 / ‖ xtrue

k ‖2, where ‖ · ‖2 denotes L2 norm. One can see by
comparing Fig.9(a) and Fig.9(b) that whatever the level of noise, the EnVar
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tends to diverge with big rate. As the noise level increases, the RMS errors
for both methods become larger. The gap between the two curves becomes
wider. This indicates that the EnVar is more sensible to the noise level. In
the case of high noise level, although the RMS error of the UEVF undergoes
to an increase signal-to-noise ratio, the height field is still well-reconstructed
(Fig.8(a)). Finally whatever the experiment, the UEVF seems to be more
consistent with the nonlinear filtering estimation while the EnVar seems to
be noise dependent and its results could be divergent.

6. Conclusions

In this work, an efficient estimator based on the concept of the variational
optimization and the unscented transform as well as the ensemble transform,
therefore called the Unscented/Ensemble transform-based Variational Filter
(UEVF), is developed.

Roughly speaking the improvements achieved by the UEVF holds in two
points: to attempt to break the linear assumption of the KF and to learn
online the background error covariance matrix. Indeed in practice consid-
ering the complex dynamics characterized by strong nonlinearity and high
dimensional, the relation between estimate and observation is not necessary
linear and the linear assumption may introduce strong errors. It could wreck
all efforts of performance enhancement. Therefore, we suggest in UEVF
that, the scheme of KF-like mean update could be replaced by a variational
minimization. Then the estimate is a quadratic function of the observation
and the background state. Moreover, the background error matrix Bk in
the variational minimization is replaced by a rank-reduced error covariance,
which is designed by a deterministic statistics and updated from a set of
size-truncated ensembles.

The generation of ensembles in the UEVF inherits from the Unscented
Transform (UT), as that in EnUKF [19]. In the UT for the purpose to gen-
erate a symmetric ensemble associated to the weights and to propagate it
forward, the weights are centered and spread out in positive-negative direc-
tions. It helps to localize the distribution of ensemble and benefits to the
convergence of filtering.

In the UEVF, mean update is implemented via a variational analysis. It
reduces the problem of statistical moment estimation to a quadratic opti-
mization. This scheme extends the linear update of the KF to a quadratic
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minimization and therefore it is not surprising to find an unique numerical
solution which enhances the performance with a considerable quantity.

With the comparison of nonlinear statistics estimation between the EnKF
and the UKF in appendix, we show that the UT adopted by the UEVF has
a best accuracy, at least up to second order of Taylor series expansion for
an arbitrary distribution of random variable. The accuracy of estimation
can be increased to third order when a symmetric distribution is given by
the random variable. In addition, the filter parameters ( λ, β, the ensemble
size ℓk, the threshold γk, lower and upper boundaries ℓl and ℓu) provide
extra flexibilities to guarantee better accuracies with respect to the filtering
problem and the dynamics of the model.

With numerical experiments, we have demonstrated the improvement of
estimation accuracies, the filtering convergence as well as a correct behavior
in front of the high dimensional effects via two kinds of dynamical systems:
the Lorenz-95 model and the 2D perturbed shallow water equation. We have
compared the proposed UEVF with the EnUKF and the EnVar in terms
of the relative RMS error and time consumption by a number of Monte
Carlo runs, the estimation accuracy and the computation cost confirm the
outperforming and efficiency of the UEVF.
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Appendix: Comparison the accuracies of mean estimation between
the EnKF and the UKF

We compare the mean estimation accuracy of the EnKF and the UKF is
performed as below.

The EnKF uses an ensemble of state models to represent the empiri-
cally statistic errors [26, 44]. Accordingly we assume that at the end k − 1
time step, the of N members are updated and form the analysis ensemble
{X a

k−1,i}Ni=1. The analyzed members are propagated forward by the nonlinear

dynamics in Eq.(1) and generate the background members, {X b
k,i : X b

k,i =
Mk−1,k(X a

k−1,i,0)}Ni=1.
For the convenience of the discussion, we only focus on the observation

function Hk in Eq.(2). We assume that Hk can be expanded in a Taylor
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series with finite differential order. The time index in subscript is dropped
in this appendix. So based on the background members X b , {X b

i }Ni=1, the
ensemble mean via Taylor expansion can be written as

yb = E[H(X b,v)] = E[H(xb + X̃ b,v)]

= H(xb,0) +
1

2!
∇T

[
1

N

N∑

i=1

X̃ b
i (X̃ b

i )
T

]
∇H

+
1

3!
∇T

[
1

N

N∑

i=1

X̃ b
i (X̃ b

i )
T (∇X̃ b

i )
T

]
∇H + · · ·

≈ H(xb,0) +
N − 1

N × 2!
∇TPb

xx∇H +

∑N
i=1 D

3
˜
X

b
i

H
N × 3!

+

∑N
i=1 D

4
˜
X

b
i

H
N × 4!

+ · · · ,
(32)

where {X̃ b
i = X b

i −xb}Ni=1 denotes the background errors, the statistical mean

is xb =
∑N

i=1 X b
i /N , the statistical covariance Pb

xx =
∑N

i=1 X̃ b
i (X̃ b

i )
T/(N −1).

The theoretical mean xb and covariancePb
xx are substituted by their empirical

approximation, i.e., xb ≈ xb, Pb
xx ≈ Pb

xx. The symbol D˜
X b

i

, (X̃ b
i )

T∇ is used

to simplify expression. Similarly, the ensemble covariance Pb
yy is given by the

expansion

Pb
yy = E[(y − yb)(y − yb)T ]

≈ ∇TPb
xx∇H +

∑N
i=1(D˜

X
b
i

H)(D2
˜
X

b
i

H)T

(N − 1)× 2!
+

1

N − 1
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X
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i
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˜
X

b
i

H)T
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i=1(D

2
˜
X
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i

H)(D2
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X

b
i

H)T

2!× 2!
+
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i=1(D

3
˜
X

b
i

H)(D˜
X

b
i

H)T
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− N − 1

N

(∇TPb
xx∇H)(∇TPb

xx∇H)T

2!× 2!
+ · · · . (33)

We can see from the above expression with the higher terms (more than
second order in RHS of (32) and (33)) that spurious modes may appear.
They vanish as the ensemble size N tends to infinity. Moreover if the size N
is finite, the term∇TPb

xx∇H in (32) and the term (∇TPb
xx∇H)(∇TPb

xx∇H)T

in (33) are always uncentered.
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In order to analyze the accuracies of the unscented transform estimation
in the UKF, similarly we apply the Taylor expansion to the observation
function H. Then for the sigma-points X b , {X b

i }2Li=0 generated from the
background mean xb and its covariance Pb

xx, the unscented mean can be
written as

yb =
2L∑

i=0

WiH(X b
i ,0)

= E[H(X b,v)] = E[H(xb + X̃ b,v)]

= H(xb,0) +
∇TPb

xx∇H
2!

+
1

2(L+ λ)

2L∑

i=1

(
D4

˜
X

b
i

H +D6
˜
X

b
i

H + · · ·
)
, (34)

where X̃ b , {X̃ b
i = X b

i − xb}Ni=1 stands for the background error. One can
see that all the odd terms will vanish because of the symmetry of the sigma-
points. The unscented covariance may be expanded in the series of

Pb
yy =

2L∑

i=0

Wi[H(X b
i ,0)− yb][H(X b

i ,0)− yb]T

= E[(y − yb)(y − yb)T ]

= ∇TPb
xx∇H +

1

2(L+ λ)
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i

f)T
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i=1(D
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˜
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i

H)(D2
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X

b
i

H)T

2!× 2!
+
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i=1(D

3
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b
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H)(D˜
X

b
i

H)T

3!




− (∇TPb
xx∇H)(∇TPb

xx∇H)T

2!× 2!
+ · · · , (35)

The Eq.(34) shows that the first three-order terms are exact. The approxi-
mation begins with the fourth order. In Eq.(35) there is no spurious mode
attributable to the sample size due to the higher terms than the third order.
For the accuracies of nonlinear estimation, explicitly the unscented transform
is better than the pure ensemble algorithm. Thus for the UEVF suggested in
Section 3, we have chosen the unscented transform to shape the covariance.
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(a) Comparison between the relative RMS errors Ek of the UEVF, the EnUKF
and the EnVar
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Figure 1: Effects of the low level of state and observation noise covariance Qk = 5. ×
Id(40, 40) andRk = 0.1×Id(40, 40) on the estimate accuracy and the evolution of sampling
size ℓk. State dimension n = 40 and 50 Monte Carlo simulations of the Lorenz-95 model.
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Figure 2: Effects of the high level of noise with covariance Qk = 10. × Id(40, 40) and
Rk = 0.5 × Id(40, 40) on the estimate accuracy and the evolution of sampling size ℓk.
State dimension n = 40 and 50 Monte Carlo simulations of the Lorenz-95 model.
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Figure 3: Effects of the dimension n = 200 with ordinary covariance Qk = 5.×Id(200, 200)
and Rk = 0.1× Id(200, 200) on the estimate accuracy and the evolution of sampling size
ℓk. 50 Monte Carlo simulations of the Lorenz-95 model.
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Figure 4: Effects of the high dimension n = 200 with ordinary covariance Qk = 10. ×
Id(200, 200) and Rk = 0.5 × Id(200, 200) on the estimate accuracy and the evolution of
sampling size ℓk. 50 Monte Carlo simulations of the Lorenz-95 model.
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Figure 5: Effects of the high state dimension n = 800 with ordinary covariance Qk =
10.× Id(800, 800) and Rk = 0.5× Id(800, 800) on the estimate accuracy and the evolution
of sampling size ℓk. 50 Monte Carlo simulations of the Lorenz-95 model.
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Figure 6: Comparison between the averaged trajectories of the UEVF, the EnUKF, the
EnVar and the reality for one component of the state vector of the Lorenz-95 model
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(a) The depths hk(x, y) estimate by the UEVF and the EnVar compared to the noisy obser-
vation and the reality, at time k = 20
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(b) The depths hk(x, y) estimate by the UEVF and the EnVar compared to the noisy obser-
vation and the reality, at instant k = 40

Figure 7: Effects of dynamical and observational noises with Qk = Rk = 0.003×Id(40, 40)
on the estimates, for two time step k = 20, 40 of the shallow water simulation.
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(b) The depths hk(x, y) estimate by the UEVF and the EnVar compared to the noisy obser-
vation and the reality, at time k = 40

Figure 8: Effects of dynamical and observational noises with Qk = Rk = 0.03× Id(40, 40)
on the estimates, for two time step k = 10, 40 of the shallow water simulation.
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Figure 9: Effects of the different level of state and observation noises on the accuracies in
the estimation of water heights in the shallow water simulation.
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