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Abstract.

Estimating fast turbulence fluctuations in the boundary layer of the atmosphere, using

remote detection instrument is an important scientific issue. Doppler LIDAR, is typically used

to get this kind of information because it can make fast, distant, precise, and non-intrusive

measurements of the wind field by giving the radial component in any direction. The objective

of those measurements is to evaluate as precisely as possible the wind structure using the partial

wind information provided, in order to estimate turbulent parameters. The approach presented

in this paper, consist in coupling the remote detection system and a stochastic Lagrangian

model of the atmosphere. The fluid is represented by a set of interacting particles, evolving

according to an evolution system based on S.B Pope work. Data provided by the instrument

are assimilated in real time in the model using a particle filtering algorithm. The purpose is

to locally correct the properties of particles using measurements, to fit the real fluid observed.

A precise real time estimation of the wind field, allows then to estimate turbulent parameters.

The methodology has produced convincing results on simulated Doppler LIDAR measurements,

in tree-dimensional modeling.

1. Introduction

In various activities, scientists use numerical computation in order to predict the evolution of
physical systems. The initialization is a critical problem to ensure that the numerical system
keeps modeling reality. In many cases, optimizing the model state compared to the true system
state is very difficult. Practically, this estimation consist in using measurement instruments, to
guess as precisely as possible the state of the real system at a given time. This process is called
data assimilation and plays a very important role in the quality of numerical model predictions.

The more classical assimilation methods are based on Kalman Filters. They are widely used
in different scientific fields. Nevertheless, they present some disadvantages. The use of the
Kalman filter requires the random errors of the model and the observations to be Gaussian
which is a strong hypothesis that is not always verified in complex systems. Moreover, this
assimilation technique is slow, in other words, it is not very efficient when the system studied
has fast and important variations. Lastly, especially on high dimensional systems, such as in
geophysical sciences, Kalman Filter becomes numerically very expensive.

Innovative methods, based on applied probability theory, has been pointed out by researchers
such as P. Del Moral (Del Moral (2004)). These methods are called particles filters. If they



are suited efficiently, particles filtering algorithms do not present the disadvantages explained
before example, and therefore have strong potentiality. They are often used in robotic,
telecommunication, but not very much in meteorology. Atmospheric surface layer turbulence
phenomena, are typically fast evolving, complex and non-linear, that is why particles filters
seems to be suitable, event if they are not yet used for operational purposes.

Doppler LIDAR, is an interesting instrument to estimate turbulence as it can make distant
radial wind speed measurements in all direction with high frequency and high accuracy. It emits
a pulse of wavelength λe along a direction and analyses the signal diffused by tracers encountered
by the light beam. In fact, the wavelength λe is chosen close to typical surface layer aerosols (
∼ 1 µm ), such that they radiate, like oscillating electromagnetic dipole, λr wavelength. The
reflected signal is analyzed by the instrument, such that ∆λd = λe − λr the Doppler difference,
leads to the radial velocity component of the wind field. Because the light is emitted by pulses,
and using signal processing tools, a Doppler LIDAR can give radial wind speed in several points
in a given direction. The advantages are high level of precision and accuracy, and the fact that
the LIDAR can target every spatial directions.

The distance between two consecutive measurement points is the spatial resolution of the
LIDAR. In general, the spatial resolution is around 50m and the range of a LIDAR shoot reach
several kilometers in good meteorological conditions. The sampling frequency is close to 1Hz

and the accuracy is close to 1cm.s−1 for the radial velocity.
The standard method to estimate turbulence with this instrument consists in statistic

computation during a scan of the LIDAR (see for example Frehlich et al. (2006)). The approach
presented here is significantly different. The method consist in coupling a turbulent model and
LIDAR measurements using particle filtering tools. Radial velocities measurements in several
direction provided by the LIDAR are assimilated in the model with its highest frequency. Thus
the model provides a real time estimation of the wind field, and by extension, of turbulent
parameter fields such as turbulent kinetic energy.

This paper describes how particle filtering can be used efficiently with a simplified turbulence
model. It presents a method to apply particle filtering formalism in a particular system. But
it also provides ideas to apply it in more general situation. Theoretical aspects and others
applications of this technology can be found in Del Moral (2004), or Baehr (2008).

The next section is a description of the turbulence model considered. It is a stochastic
Lagrangian model inspired by the work of S.B Pope. Section 3 is an overview of non linear
filtering principles and an algorithmic description of a localized particle filtering process. In
the last section, the complete system behavior is studied on an experiment. The objective
is to demonstrate that the system constructed is able to estimate correctly the wind field
characteristics (strength, direction, and turbulence) and to react quickly in case of strong
variations.

2. A stochastic Lagrangian model for turbulent fluids

This section is a presentation of the turbulence model considered. Let X and V be general
Euclidean spaces. X is called the position space. V is the value or parameter space. In this
case, the model only takes velocities into account, then V is the space of velocities. But, most
of the following definitions can be adapted for more complex model (for example taking account
temperature or humidity). Let be Z = X × V.

In this paper, the experience described has been performed in a three-dimensional frame.
Then X is a subspace of Rdx and V is a subset of Rdv , where dx and dv = 3. In the following
sections, the variable x refers to position ( in X ), v to velocity ( in V ), and z = (x, v) to an
element of Z.



2.1. Time continuous system
The initial equations used to form our dynamical model are the system (1) & (2). It is a standard
stochastic differential equation, representing the evolution of the position and the velocity of a
fluid particle put inside a turbulent flow. The solution of the system is not a deterministic
function but a random process.

dxt = vtdt (1)

dvt = atdt−
1

TL
t

(vt− < vt >)dt+ σtdwt (2)

where at is an acceleration term, < vt > represents the spatial Eulerian average velocity and
TL
t the Lagrangian time of the model. wt is a standard Brownian motion ( a Gaussian random

process) and σt is a covariance term.
The construction of a turbulence equation system based on these equations consists in finding

the expression of the terms at, σt and TL
t such that the random process solution behave as

turbulent atmosphere flow. S.B Pope proposes a construction. Here, his model is simplified
and adapted for surface layer turbulence. To be consistent with Kolmogorov K41 theory, Pope
proposes to model σt by (3): C0 is the Kolmogorov constant and Et is the dissipation rate tensor.
Using standard turbulence relation (Pope (2000)), a way to model the Lagrangian time TL

t is
(5), where Kt is the turbulent kinetic energy (TKE). With this form, 1

TL
t

acts as a isotropic

return term. The TKE can be deduced from the velocity field by the formula (4). The operator
< . > is for the Eulerian average. The turbulent energy is then equal to the half of the variance
of the Eulerian velocity. The term acceleration at, is given by (6). ρ is the mass density of the
fluid and ∇x < P > the gradient of the spatial mean pressure. In this work, this pressure term
is voluntary ignored. In fact, this model is used in a filter, then this gradient pressure term will
be learned from the observation by the update step, and the incompressibility assumption will
be restored.

σt =
√

C0Et (3)

Kt =
1

2
< (vt− < vt >)2 > (4)

1

TL
t

= (
1

2
+

3

4
C0)

Et
Kt

(5)

at =
1

ρ
∇x < P > (6)

Et is a term not simply computable. That is why a classical K − E parametrization,
which links the dissipation rate and the TKE, is used. The term Et is expressed as a
function of Kt (8), where C1 is a constant, and Lscale is a turbulence scale length. To sum
up, the continuous model equation system used in this work is the system (1) & (2) with

σt =

√
C0C1

Lscale

K
2
3
t (7)

Et = C1
K

2
3
t

Lscale

(8)

1

TL
t

=
(12 + 3

4C0)C1

Lscale

K−
1
3

t (9)

at = 0 (10)

The advantage is that this equation system is closed by the Eulerian velocity variance, each
term is constant, or computable from the velocity field.



2.2. Discrete interacting particle system
It is necessary to deduce a time and space discrete model from the previous one. Let note ∆t

a small real number, the elementary time unit. Now, each quantity is denoted with the integer
n ∈ N. Instants considered are t0, t1, ..., tn where tn = n∆t. Qn refers to the variable Q at time
n∆t. A Lagrangian representation for the flow is chosen. At time tn, the fluid is represented
with a set of N particles belonging to the space Z. pin = (xin, v

i
n) ∈ Z is the ith particle. xin is

the position, vin the velocity of the particle. Let us formalize the model state in terms of particle
network denoted RN

n .

RN
n =

N∑

i=1

δZ(xi
n,v

i
n)

(11)

where δZ represents the standard Dirac distribution on Z. RN
n is a distribution on Z containing

all the informations of the model at time tn.
With this notation, the model evolution process consists in an transformation of RN

n into
RN

n+1. The key point is to set an expression to < . > terms in this discrete frame. In other

words, it is necessary to define for all x ∈ E, < V N
n (x) >, the mean velocity at point x at time

tn, from the particle network RN
n . The goal is to spatially interpolate the discrete distribution

RN
n to get something similar to the mean and the variance of velocity at any point x ∈ E. Let

define the standard Gaussian spatial interpolation function of length λ, noted gλ by:

gλ : X −→ R
∗
+

x −→ gλ(x) = exp[−(
||x||X
λ

)2]

||.||X represents the standard Euclidean norm on X . With this function, an interpolation of
the velocity for any point x can be formalized. The choice of the spatial interpolation function
is arbitrary. This one is one of the simplest but other functions g are possible. Therefore, let
define:

< V N
n (x) >

def
=

∫
z∈Z

RN
n (z)gλ(x−ΠX (z))ΠV (z)dz∫

z∈Z
RN

n (z)gλ(x−ΠX (z))dz
(12)

=

∑N
j=1 g

λ(x− x
j
n)v

j
n

∑N
j=1 g

λ(x− x
j
n)

(13)

where ΠX (resp. ΠV) represents the canonical projector from Z to X (resp. V). For
z = (x, v) ∈ Z, ΠX (z) = x and ΠV(z) = v. The equation (12) is easiest to understand in
its discrete form (13). The equality between both comes from elementary distribution theory.
< V N

n (x) > can be viewed as the barycenter of the velocity of network RN
n at point x, pondered

by the function gλ. Because the mean is done on a neighborhood of x, < V N
n (x) > is an

approximation in discrete time of the spatial Eulerian mean < vt > introduced before. In the
same way, the TKE can be spatially discretized and approximated at any location x by:

KN
n (x)

def
=

1

2

∑N
j=1 g(x− x

j
n)(v

j
n− < V N

n (x) >)2

∑N
j=1 g(x− x

j
n)

(14)

With formulas (13) & (14), it is possible to compute the spatial average velocity and the TKE
for any position x from the particle network RN

n . The Brownian motion dwt is time-discretised
using the fact that:

dwt ≈ wt+∆t − wt = ξ
√
∆t (15)



Where ξ is a realization of a standard normal Gaussian variable.
Then, using the standard Euler time discretization scheme, the discrete evolution model

system at time tn can be written for any i ∈ {1, ..., N} :

xin+1 = xin + vin∆t (16)

vin+1 = vin − 1

TL
n (x

i
n)

[vin− < V N
n (xin) >]∆t+ σn(x

i
n)ξ

i
n

√
∆t (17)

1

TL
n (x

i
n)

=
(12 + 3

4C0)C1

Lscale

KN
n (xin)

−
1
3 (18)

σn(x
i
n) =

√
C0C1

Lscale

KN
n (xin)

2
3 (19)

KN
n (xin) =

1

2

∑N
j=1 g(x

i
n − x

j
n)(v

j
n− < V N

n (xin) >)2

∑N
j=1 g(x

i
n − x

j
n)

(20)

where ξin are independent standard normal Gaussian variables. The evolution algorithm consists
in calculating the values < V N

n (xin) > and KN
n (xin) for each particle (xin, v

i
n) using all the other

particles of the network RN
n , and then deducing (xin+1, v

i
n+1) for every particles to get RN

n+1.

2.3. Discussion about this model
It is important to keep in mind that our system is an interacting particle system. In
fact, interactions between particles are contained in terms containing mean operators such as
< V N

n (x) > and KN
n (x) because the computation for a particle depends on all the others. This

fact reveals a very important point of this discretization. The choice of the spatial interpolation
function g has a strong influence on the model. For example, in the case of gλ, high values
of λ greatly enlarge the range of the interaction, whereas small values create week interactions
between particles which are far one from another. Therefore, this choice has to be done very
carefully depending the scale of the turbulent phenomenon wanted to be modeled. In the same
way, the choice of the constants C1 and Lscale, strongly impact on the model behavior.

Even if the model presented is simplified, it provides an interesting frame for experiments on
particles filtering algorithm, which is the main point of this work.

3. Non linear filtering

This section shows how a non-linear data assimilation method works, and how particle filtering
tools can be used on a simple example. Usually, simulation processes with data assimilation
consist is an succession of two steps which can be symbolized by :

RN
n −→

update
R̂N

n −→
evolution

RN
n+1

The evolution step consists in computing the particle network RN
n into RN

n+1. This step is
explained in section 2. The update step (selection, in particle filtering vocabulary), consists

in a transformation of RN
n (called a priori particle network) into R̂N

n (a posteriori) using
measurements made on the real fluid. The goal is to make the numerical model better fit
the reality.



3.1. An example of particle filtering algorithm
In this case, the measurement instrument is a Doppler LIDAR. The principle is then to re-sample
particles of the network to make them coherent with the radial velocity informations provided
by the LIDAR, and then to force the particle network to estimate the true fluid.

Particle filtering methods are based on applied probability theory. The precise notations,
formalism and justifications can be found in P. Del Moral references. Here, only the basic ideas
are presented, with a simplified formalism.

The operation described in this part is the transformation of the particle network from the

a priori network RN
n into R̂N

n , the a posteriori one. Let us consider that the measurement
made by the LIDAR at time tn, noted Ln, consists in a set of K couples (position,radial
velocity) (y1n, r

1
n)...(y

K
n , rKn ). We set un ∈ X the direction targeted by the LIDAR. un is chosen

unitary. With the LIDAR measurements description given in introduction, let us consider that
ykn = klrun, lr represent the spatial resolution of the LIDAR shoot.

The first thing to do is to extract from RN
n the set of particle affected by the shoot Ln.

For each couple (ykn, r
k
n), it is necessary to build Ck

n the set of particles concerned. Without
detailing more, once may consider that a particle pin = (xin, v

i
n) is in Ck

n if xin belongs to a certain
neighborhood of ykn. For example let consider that:

pin ∈ Ck
n if ||xin − ykn||∞ <

lr

2
(21)

||x||∞ is equal to max(|xx|, |xy |, |xz|). The choice of the neighborhood is of course not unique.
In fact the term localized concerning particle filtering indicates that the selection step is done in
a spatially limited domain. From this point the position of the particle will not impact anymore
during the process.

The second part consists in giving a potential to the particles (p
(k,1)
n , ..., p

(k,ckn)
n ) of Ck

n (where
ckn denotes the cardinal of Ck

n). The more a particle is coherent with a measurement, the higher
its potential is. In this example, because the LIDAR measurement concern radial velocities, the

potential of each particle p
(k,j)
n , denoted s

(k,j)
n , is computed from the velocity v

(k,j)
n of particles

(equation (22)). Πun represents the canonical projection in the direction un. Theoretically, the
expression of the potential function for a measurement depends on the laws of the measurement
error. The example given in (22) corresponds to a normal distribution with variance σ2

l . Thus,
according to the form of the measurement error, the potential function can be inferred. It is clear
that with this expression, the more the velocity of a particle is close to the measurement, the

higher the potential is. Let compute µ
(k,j)
n (equation (24)). This term is the re-normalization of

s
(k,j)
n . µ

(k,j)
n may be seen as the probability of particle p

(k,j)
n given the observation (ykn, r

k
n). The

last step consists in a random re-sampling of particles depending on their potential. In other
words, it is a re-sampling conditionally to the measurements. Before the filtering step, the law
ηkn of the particles velocity in Ck

n is given in (23). Before the observation, each particle of Ck
n has

the same weight 1
ckn
. Equation (25) give the theoretical expression of η̂kn, the updated particle

velocity law in Ck
n.

s(k,j)n

def
= e

−
(Πun (v

(k,j)
n )−rkn)2

2σ2
l (22)

ηkn
def
=

1

ckn

ckn∑

j=1

δ
v
(k,j)
n

(23)

µ(k,j)
n

def
=

s
(k,j)
n

∑ckn
i=1 s

(k,i)
n

(24)

η̂kn
def
=

ckn∑

j=1

µ(k,j)
n δ

v
(k,j)
n

(25)



After the filtering step, the weight of particle p
(k,j)
n is µ

(k,j)
n . Therefore an high potential

implies, good correspondence with the measurements, and then large probability for the particle.
It is necessary to compute a equi-weighted probability law because a particle must have a single
velocity after this step. In practice, the operation consist in re-sampling velocities of particles

of Ck
n, v

(k,j)
n transforms randomly into v̂

(k,j)
n

def
= v

(k,ĵ)
n with probability µ

(k,ĵ)
n . Then, a particle

which has a realistic velocity given the measurements survives with an high probability, whereas
a particle with a low potential is killed and regenerates into a velocity with high potential.

The particles shaped after the filtering are noted p̂in. For a particle not concerned by a

measurement, p̂in
def
= pin. Then, R̂N

n

def
= 1

N

∑N
i=1 p̂

i
n, the a posteriori distribution is computed.

After this step, the population of particles is naturally closer to the truth, because coherent
particles have survived and not adapted ones have been killed.

3.2. Discussion
The efficiency of non linear filtering is mathematically demonstrated in continuous spaces. Thus,
to ensure that the algorithm presented here is still efficient, it is necessary to verify some
conditions. It is very important that the number of particles concerned by each observation
is sufficient. In other word, the phase space V have to be sufficiently explored. In fact if no
particle is close to the observation, it is clear that the filtering step explained before will not be
efficient.

Particularly, in the model presented in 2, the exploration of the phase space is due to the
random term coming from the Brownian motion. This problem of model exploration can appears
problematic in no random models, but works are in progress to test a generalization of this
algorithm applied to Eulerian deterministic models.

It is important to note that the algorithm presented here is very general and can be applied
with others instruments or in more complicated spaces. For example, the particle space is
Z = X × V, but in more complex models it might be Z ′

= X × V ′

, with a set of values V ′

taking account the temperature or the humidity. In such case, it would be possible to assimilate
data provided by others instruments. The only requirement to assimilate those data would be to
formalize the observation operator. In this algorithm, measurements are supposed punctual with
an influence neighborhood. A lot of instruments can be represented this way, but the method
can even be adapted in more complicated situations. With the error law of the measurement
and the appropriated projector in the observation space, the potential function can easily be
computed. At last, the re-sampling step have to be properly implemented.

A great advantage of this formalization in term of particle network is that it allows to strongly
reduce the complexity of the filtering problem. The step of localization, and the fact that
the scoring and re-sampling processes do not depends on particles positions, allows in fact
the filtering operation to be of dimension dv = dim(V), the number of model variables. This
technique reduces the dimension of filtering operation to low values, even for complicated models.
Moreover, the computational complexity of the particle filtering process only increase linearly
with the number of particle concerned. At last, this filtering process is naturally adapted for
parallelization.

On the contrary, in Kalman filter based algorithms, it is necessary to make very
expensive algebra operations as the optimization process implies manipulations (inversions,
multiplications,...) on high dimension matrix.

Particle filtering technique presents many advantages, and has an important potential in
various field. The next section consists in demonstrating that the algorithm produce interesting
result in a simple frame, and seem well adapted for the estimation of the turbulence with a
remote detection instrument in the boundary layer.



4. Experiments

This section is devoted to detail an experiment performed with the model presented in 2, with
the particle filtering of LIDAR measurements presented in 3. In, this simulation, LIDAR
observations are simulated from an artificial reference wind field. The principle is to study
how the numerical model react with the assimilation of LIDAR measurement in a controlled
environment. The area considered is

B = {x = (xx, xy, xz) ∈ X , ||x||X < R, xz ≥ 0}

The LIDAR is located at the center of this half bowl. The radius of the half bowl is fixed
to R = 1km. Figure 1, shows a schematic 3D view of the measurement process. Segments
represents the direction targeted by the LIDAR. The measurement process consists in a
succession of circular scans of the LIDAR over two elevation angles.

Figure 1. Description of the
scanning process

In this experiment a LIDAR shoot consist in K = 10
radial velocity measurements. The spatial resolution of the
LIDAR is lr = 100m. The condition (21) is chosen for
the influence zone of an observation. For each elevation
angle, φ1 = π

8 and φ2 = 3π
8 , the LIDAR makes Nθ =

8 measurements turning anticlockwise. Measurements
errors are supposed standard Gaussian with variance σl =
0, 01m.s−1. The frequency of LIDAR shoots is chosen
equal to 0, 2Hz (at this frequency the time spent by the
LIDAR to change direction is taken into account). The
period of the LIDAR scan process is then equal to T = 80
seconds. The time discretization ∆t is chosen equal to
5 seconds. For n ∈ N, tn = n∆t. In this experiment,
the LIDAR measurement are simulated from a reference

wind v
ref
n . The simulation is divided in 4 phases. For

tn ∈ [0, τ1[, v
ref
n = (2, 0, 0). Then, for tn ∈ [τ1, τ2[,

the wind turn regularly anticlockwise from (2, 0, 0) to
(−2, 0, 0). During the phase 3, for tn ∈ [τ2, τ3[ the wind

stay constant with value v
ref
n = (−2, 0, 0). A time τ3,

the wind change instantaneously to v
ref
n = (−

√
2,−

√
2, 0)

and keep this value to the end of the simulation. Here,
τ1 = 3000s, τ2 = 6000s and τ3 = 8000s.

A limit condition in put on the ground. It consist in assimilating a virtual measurement vz = 0
with the filtering method presented in section 3. In this experiment, particles are concerned by
this observation if their altitude is less than 15m. This form of limit condition is satisfying for
the purpose, and easier to implement than a real soil.

The model particles are initialized with an uniform random position on B and with a tree-
dimensional normal law of zero mean and covariance matrix σ2

init = Id3 for the velocity.
Results are presented in figure 2. The evolution of two parameters is shown in logarithmic

coordinate. The dotted line represents the mean of the TKE Kn whereas the plain line represents
the relative error compared to the reference wind, En. At the beginning of the simulation,
particles learn quite fast the wind tendency (shown in figure 2), because the decrease is
exponential while the turbulence stabilizes. In the second part of the simulation, for tn ∈ [τ1, τ2[,

the reference wind direction change continuously from v
ref
n1 = (2, 0, 0) to v

ref
n2 = (−2, 0, 0) in



3000 seconds. The error and the turbulence increase during this phase, but remain stable.
This mean that the filtering system keeps tracking the wind signal. At time tn3 = n3∆t the

reference wind change instantaneously to v
ref
n3 = (−

√
2,−

√
2, 0) (as confirmed by figure). It is

interesting to notice that the response in the TKE (dotted line) is immediate. Figure 3 show a
three-dimensional view of the TKE field at a given instant during this transition phase. High
turbulent zones are identified by dark color. The model parameters used in this simulation are
summarized in a tabular.

Figure 2. Evolution of the mean of the
TKE K̄n (dotted line), and the mean rela-
tive error compared to the reference wind
En (plain line), in logarithmic coordinate.

Kn
def
=

1

N

N∑

i=1

KN
n (xin) (26)

En
def
=

||vrefn − vn||V
||vrefn ||V

(27)

vn
def
=

1

N

N∑

i=1

vin (28)

This simple experiment aims at demonstrating that the system is able to react properly and
quickly to the observation even if the information provided by the LIDAR is partial. Moreover,
it is important to notice that the filtering process is efficient even if the number of particle
concerned by each LIDAR shoot is not very important ( almost 500 particle, about ∼ 2, 5%).
The interactions term between particles, are very useful for both.

5. Conclusion

The results of the experiments, prove that the methodology and the algorithm of particle filtering
is efficient in this simplified model. Conditioning the wind field by this non linear filtering process
allows to estimate precisely the wind direction. Then, TKE field, can be estimated, because the
numerical fluid react to the wind field and generate turbulence.

The next step of this work is to test the algorithm in with real LIDAR measurements on a
physical turbulent fluid. More complete experiences are currently being prepared. One consists
in testing the model in real boundary layer atmosphere, with a complete independent set of other
observations (for example with a network of in situ instruments). This should allow to validate
the methodology and to improve the model, for example by adjusting the different constants.
Another necessary experience is to use the numerical model in a simulation laboratory. In such
totally controlled environments, it would be possible to quantify precisely the estimations errors
made by the model.

More generally, if the results are satisfying, it would be interesting to implements particle
filtering algorithms in more complex models, with many types of observations and to compare
particle filtering assimilation methods to more classical ones such as Kalman filter technique for
example.



Model constants:

N ∆t C0
C1

Lscale
λ R

20000 5s 2.1 0.001 100m 1000m

It is possible to adjust those constants to
modify the model behavior. For example,
a high value of λ make the interactions
more strong. In this case, the model
learning time will be short. But, it would
be impossible to observe little turbulences
structure. Figure 3. 3D representation of the

particles. The color represents the TKE,
black for high values.
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