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Modélisation Mathématique et Analyse Numérique

NONLINEAR FILTERING FOR OBSERVATIONS ON A RANDOM VECTOR

FIELD ALONG A RANDOM PATH. APPLICATION TO ATMOSPHERIC

TURBULENT VELOCITIES

C. BAEHR 1, 2

Abstract. To filter perturbed local measurements on a random medium, a dynamic model jointly with
an observation transfer equation are needed. Some media given by PDE could have a local probabilistic
representation by a Lagrangian stochastic process with mean-field interactions. In this case, we define
the acquisition process of locally homogeneous medium along a random path by a Lagrangian Markov
process conditioned to be in a domain following the path and conditioned to the observations. The
nonlinear filtering for the mobile signal is therefore those of an acquisition process contaminated by
random errors. This will provide a Feynman-Kac distribution flow for the conditional laws and a N

particle approximation with a O( 1
√

N
) asymptotic convergence. An application to nonlinear filtering

for 3D atmospheric turbulent fluids will be described.

Résumé. Pour filtrer les mesures locales et perturbées d’un milieu aléatoire, un modèle de dynamique
et une équation de transfert sont nécessaires. Certains milieux décrits par une EDP peuvent avoir une
représentation probabiliste locale à l’aide d’un processus stochastique Lagrangien en interaction avec
un champ moyen. Dans ce cas, nous définissons le processus d’acquisition d’un milieu localement
homogène le long d’un chemin aléatoire par un processus de Markov Lagrangien conditionné à vivre
dans un domaine suivant le chemin et conditionné aux observations. Le filtrage non-linéaire du signal
local est alors celui du processus d’acquisition bruité par des erreurs aléatoires. Ceci nous donne un
flot de distribution de Feynman-Kac et une convergence asymptotique de l’approximation particulaires
avec une erreur en O( 1

√

N
). Une application au filtrage non-linéaire de fluides atmosphériques 3D

turbulents sera décrite.
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Introduction

In Applied Sciences the knowledge of a (physical, biological, etc.) state system needs measurements. Often
it is not possible to recover the measured values everywhere in the state space but only on discrete points or
along a path or barely on a grid. Our interest is focused on the case of measurements along a random path in
a random medium. The other situations can be considered as a reduction or combinations of this case. This
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paper is devoted to the definition of a new process called Acquisition Process and using this process to nonlin-
ear filtering of corrupted measurements of a stochastic vector fields made along a random path. The physical
application concerns measurements of atmospheric turbulent fluids with a mobile sensor.

Stochastic nonlinear filtering requires a model for the signal to be denoised. If the studied system can be
represented as a set of equations, global or local, for mobile measurements into this system there are in general
no model. We propose here a method using a local model of the random medium to derive a dynamic model
for mobile measurements signal.

The representation of the solution of partial differential equations by the expectation of a stochastic process
is well known for linear parabolic equation (see [13]). For nonlinear partial differential equations it is not so
clear. Without a general theory sometimes it needs particle systems to have an approximated solution [14]. In
the particular case of the Navier-Stokes equation, there is nonlinear McKean-Vlasov equations to represent the
small scale dynamics as random walks. Some are exact but need implicit calculations ( [7] or [6]), some have
uniqueness and existence proved only for the dimension 2 ( [12] or [15]), some are phenomenological but able
to approach 3D inhomegeneous flows [16] or stratified flows [8].

The measurements along a path are local processes, living on a line. This kind of measurements do not
allow the reconstruction of the entire observed field. On section 1, using a local stochastic representation of
the medium and the known sensor trajectory, we will define a process and will give (section 2) a procedure to
estimate locally the parameters of the medium. Then to denoise the measurements corrupted by instruments,
we suggest a filtering algorithm to compute the conditional distribution of states knowing partial observations.
By the physical context under consideration, this filter have to deal with mean-field processes, indeed the local
estimations are connected with large scale structures, and these connections will be made through the average
of large scale fields. Particle filter are well adapted to compute at the same time the filtering conditional laws
and the mean-field terms. We propose section 3 some algorithmic solutions to solve this probabilist estimation
problems.

Application to measurements of atmospheric wind will be presented on section 4. This application will use all
the material presented in the previous sections and a particular representation of the Navier-Stokes equations
adapted to the atmospheric physics.

1. Acquisition Process

In the problem of the examination of a multidimensional field along a path, there is a clear separation be-
tween the trajectories and the other components of the state space. Then we consider the phase space as the
Cartesian product E ×E′ where E is the configuration space where lie the trajectories and E′ the vector space.
Now we need some definitions. They could have a very wide range of uses and we will detail few of them.

Definition 1.1 (Acquisition System). Let E ⊂ R
d, d ∈ N

∗, be a metric locally compact space of point called
configuration space. E is endowed with the σ−algebra E.

Let E′ ⊂ R
d′

, d′ ∈ N
∗, be a vector space called phase space endowed with the σ−algebra E ′. Let (Ω,F , (Ft)t≥0, P)

be a complete filtered probability space.
Let T < ∞ be a real number and x ∈ E a point of the configuration space. Let Xt be the (E, E)-valued

random variable family on (Ω,F ,Ft) indexed by the time t ∈ [0, T ] and X ′
t,x be the (E′, E ′)-valued random

variable family on (Ω,F ,Ft) indexed by the time t ∈ [0, T ] and the point x ∈ E.
Then, the pair of applications Ft-measurable, (Xt,X

′
t,x) is called the Acquisition System of the random vector

field.
The process Xt is called the Acquisition Path and the family X ′

t,x is called the Acquisition Field.
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This is the choice of the path process Xt, the Acquisition Field X ′
t,x and their possible coupling which makes

sense to the Acquisition System and defines the Acquisition Process which is the statement of the field X ′
t,x

along the path Xt.

Definition 1.2 (Acquisition Process). Let (Xt,X
′
t,x) be a

(
(E, E)× (E′, E ′)

)
-valued Acquisition System on the

probability space
(
Ω,F ,Ft, P

)
. For all t ∈ [0, T ], the Acquisition Process is defined by the (E′, E ′)-valued process

on (Ω,F ,Ft) At with

At
def
= X ′

t,Xt

Example 1: Let x be a fixed point in E. For all t > 0 we consider the stationnary acquisition path Xt = x.
Then the acquisition system is (x,X ′

t,x) and the acquisition process is At = X ′
t,x which can be called, by analogy

with physical applications, the Eulerian Acquisition of the field.

Example 2 Let X ′
t,x be a (E′, E ′)-valued random bounded vector field C∞. Let x0 be a point in E and for

all 0 ≤ t ≤ T , let Wt be a Ft-Brownian Motion on (Ω,F ,Ft, P). We define the stochastic flow (see [4]):

Xx0
t = x0 +

∫ t

0

X ′
s,X

x0
s

◦ dWs

where ◦ signs the Stratonovich integral.
Then the Acquisition Process is At = X ′

t,X
x0
t

. By analogy with Physics, we call this process a Lagrangian

Acquisition.

Example 3 In the last example which illustrates the previous one, we consider an Eulerian velocity vector
field Ut,x for a fluid medium. Let D be a domain of the configuration space E, we define for all t ∈ [0, T ], the
Eulerian velocity field Ut,x as a solution of the Navier-Stokes Equation:







(
∂
∂t + Ut,x∇x

)
Ut,x = −∇xpt,x + µ∆Ut,x x ∈ D

Ut,x = f(t, x) x on ∂D
U0,x = U0(x)

(1)

where f is a well-defined function for each time t. With the point of departure x0 ∈ D, the location of a fluid
element is given by a solution of the Stochastic Partial Differential Equation :

{
dXx0

t = Ut,X
x0
t

dt + σt,X
x0
t

◦ dWt

Xx0
0 = x0

(2)

where (Wt)t≥0 is a cylindrical Brownian Motion and σt,x a known nonzero function. With the regularity hy-
pothesis given by [15], Mikulevicius and Rozovski claim the existence of mild solutions for the two systems (in
small time). The pair (Xt, Ut,x) is an ((E, E)× (E′, E ′))-valued Acquisition System . We define the Acquisition
Process by At = Ut,X

x0
t

. Then At is the Lagrangian velocity usually denoted Vt of a fluid element started at x0

and carried out by the flow Xx0
t .

With these first three examples, we can notice that the stochastic process At located Xt do not require the
knowledge of the vector field everywhere. More, the nature of At is utterly linked to the process Xt. Thus, the
probabilistic properties of the field (Markovian, ergodicity, etc.) will not be given only relatively to the random
variable At, but more precisely relatively to the pair (Xt, At).
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For all t ∈ [0, T ], we suppose the absolute continuity of the law of the pair (Xt, At) w.r.t. Lebesgue measure
with the density pXt,At . We assume that for any x ∈ E,

∫

E′ pXt,At(x, a)da > 0 and the existence of the

conditional density pAt|Xt . By the definition of the conditional expectation knowing Xt for all boounded
measurable functions f from (E,E′) to R :

E(f(Xt, At)|Xt) =

∫

E′

f(Xt, a)pAt|Xt(a|Xt) da

the conditional law is given by the joint pdf :

pAt|Xt(a|x) =
pXt,At(x, a)

∫

E′ pXt,At(x, a)da

In physical experiments or in engineering applications, it could be necessary to evaluate only the expectation
for At instead of for the pair (Xt, At). It is the case of measurements on a random medium where no information
of the geometry of the medium is available (fluid flow, small configuration of a nuclear reactor, etc. ). Then
the classic method requires to use a weak regularizing C∞ kernel Kδ of the Dirac measure, δ being a cut-off
parameter. Then for all t ∈ [0, T ], for any measurable bounded function f , the conditional expectation of At

given Xt is :

E
δ(f(At)|Xt) =

∫

E×E′

f(a) Kδ(Xt, z) pAt|Xt(a|z) da dz

More exactly, using the joint law pXt,At , we define the regularized integral:

F
δ(f(At))(Xt) =

∫

E×E′

f(a)Kδ(Xt, z)pXt,At(z, a)dzda

We assume here that
∫

E×E′ Kδ(Xt, z)pXt,At(z, a)dzda is not null. Then the regularized expectation can be

expressed in terms of F
δ:

E
δ(f(At)|Xt) =

F
δ(f(At))(Xt)

Fδ(1)(Xt)

with some necessary regularity properties on the density given by a supplementary hypothesis, it holds

lim
δ→0

E
δ(f(At)|Xt) = E(f(At)|Xt)

Now, here come two applications directly connected to our previous examples.

Application 1 This is the trivial case where for a fixed point x ∈ E, for all time t > 0, we have the sta-
tionnary Acquisition Path Xt = x. We define the Acquisition Field as the Eulerian velocities vector field Ut,x

given by the NSE (1). Then Ut = Ut,x is an Acquisition Process and for all bounded measurable function f ,

we have E(f(Ut,Xt
)|Xt = x)

p.s.
= E(f(Ut)). This is the usual Eulerian velocities mean usually written in fluid

mechanics literature (with a chaotic point of view) by the Ensemble Average < f(U) >t,x. In the sequel we
will use this remark and replace for a fluid, the ensemble average < f(U) >t,x by the conditional expectation
E(f(Ut,Xt

)|Xt = x).

Application 2 Another direct application, to stay in the fluid mechanics domain, let Ut,x be the Acquisition
Field given by the Eulerian velocities vector field . Let Xx0

t be the Acquisition Path defined by the trajectory
associated to the field with the point of departure x0 ∈ E. This trajectory is given by the solution of the
equation 2.
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The Lagrangian Acquisition is defined by Vt = Ut,X
x0
t

and using the regularised expectation we have

E(f(Vt)|Xt) = lim
δ→0

F
δ(f(Vt))(Xt)

Fδ(1)(Xt)

with F
δ(f(Vt))(Xt) =

∫

E×E′ f(v) Kδ(Xt, x) pXt,Vt(x, v) dx dv.
For example, in the case of homogeneous turbulent flows using the Kraichnan model of turbulence, the

regularizing kernel can be given by the Gaussian function:

Kδ(Xt, x) = Gδ(Xt − x) = e
−‖Xt−x‖2

2δ

S.B Pope in [16] proposes other kernels built using spline functions and phenomenological considerations.

Remark A filtering problem can be considered as the symmetrical problem of the Acquisition estimation.
Indeed an observation Yt ∈ E′ of a state Xt ∈ E are connected together by the observational equation Yt =
H(t,Xt,Wt) where Wt is a canonical random process, and H is a bounded transfer function. Clearly the

transfer function H(t,Xt, ·) def
= Ht,Xt

(·) plays the role of a random field and Yt is the Acquisition Process of the
acquisition field H along the path Xt in E. The acquisition problem consists in the computation of E(f(Yt)|Xt)
while the filtering problem is the calculation of E(f(Xt)|Yt). This remark is fruitful to suggest an algorithm
estimating the Acquisition expectations.

2. Estimation for discrete acquisition in locally homogeneous medium

As said previously the estimation of the medium parameter along a path is a pointwise process and we have
to derive the dynamics of the mobile measurements from a local model. In this section, we propose a sequential
algorithm for the computation of the Acquisition Process expectation given the Acquisition Path. We consider
an Acquisition System (X,X ′) with a discrete time dynamics. Let be n ∈ N, ∆t > 0 a time step, and for all

i ∈ {0, . . . , n} we denote ti = i∆t and (Xi,X
′
i,x)

def
= (Xti

,X ′
ti,x).

Definition 2.1 (Locally homogeneous Acquisition Process). For all n ∈ N, let (Xn,X ′
n,x) be an (E × E′)-

valued Acquisition System and An = X ′
n,Xn

an Acquisition Process. The Acquisition System is said to be locally
homogeneous if :

• E is a metrisable locally convex space with a convex set covering A =
⋃

i∈I Ai, where I is an index set.
• ∀n ∈ N and ∀x ∈ E, there exists εn > 0 and i ∈ I such that :

B(x, εn) ⊂ Ai with B(x, εn) =
{
z ∈ E s.t. |x− z| ≤ εn

}
and ∀y ∈ B(x, εn) = Bε

n(x), and for all a ∈ E′

we have P(An ∈ da | Xn = x) = P(An ∈ da | Xn = y)

This is the law of An given Xn belonging to the ball Bε
n(x), denoted Law(An | Xn ∈ Bε

n(x)).

In the locally homogeneous case, it will be possible to evaluate the expectation E(f(Xn, An) | Xn ∈ Bε
n).

First of all, we highlight that :

E(f(Xn, An) | Xn ∈ Bε
n) =

∫

E×E′

f(x, a) pAn|Xn∈Bε
n(a|x) dx da

=

∫

E×E′

f(x, a)
1Bε

n
(x) pXn,An(x, a)

∫

E
1Bε

n
(x)pXn(x)dx

dx da

=
E(f(Xn, An) 1Bε

n
(Xn))

E(1Bε
n
(Xn))

(3)
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Figure 1. Set of homogeneity balls for a Acquisition Path

As described in the figure 1, this definition is directly extendable to the trajectorial processes. For n > 0, we
denote X[0,n] = {Xi, i ∈ {0, . . . , n}} the discrete path of the process Xn. Let B[0,n] be the hull of the balls set
(Bε

i )i≤n :

B[0,n] =
⋃

i∈{0,...,n}
Bε

i (xi)

We denote X[0,n] ∈ B[0,n] the event {X0 ∈ Bε
0(x0), . . . ,Xn ∈ Bε

n(xn)}.

In this trajectorial situation we attempt to the computation of the probability measures χn such that for any
bounded measurable function f we get the acquisition expectation along the path X[0,n] :

χn(f) = E(f(Xn, An)|X[0,n] ∈ B[0,n])

The structure of the conditional expectation χn suggests with its product of (indicatrice) functions a possible
Feynman-Kac shape (see [10] for a complete description of Feynman-Kac measures).

2.1. Mean-field interpretation for the discrete acquisition process

Up to now, we have introduced the Acquisition Systems in their general form, with examples coming from fluid
mechanics. To go further, we have to specialize the description mainly taking into account a local dynamical
structure. General Acquisition Processes indeed have structures close the ones occur in a filtering problem.
There is an a-priori evolution of the medium ( i-e without interaction with the Acquisition Path ) and then a
conditioning to the Acquisition Field statement along the Acquisition Path. This procedure can be decomposed
in 2 steps, one for the medium’s prediction stage and the second for a selection along the Acquisition Path.

Since the medium is only locally known by the Acquisition, the model can be local and we choose to use a
probabilistic representation with a Lagrangian dynamics. We have also seen that a Lagrangian dynamics is a
specific Acquisition Process and we realize the coupling between this Lagrangian Acquisition and the Acquisition
Process associated with the random path of measurements.

For a path initiated at x0 ∈ E, we denote X ′
i = X ′

i,X
x0
i

the discrete Lagrangian Acquisition. Let Z0, . . . , Zn

be a discrete path in the configuration space E independant of the Lagrangian Acquisition dynamics.
In the situation of a locally homogeneous medium, the knowledge of the Acquisition Field can be restricted

to a ball Bε
n excluding the values of the field outside this ball.

Then to achieve the estimation we have to couple 2 Acquisition Systems:

• The first one is given by the Lagrangian model (1 point model) and put out the Lagrangian Acquisition
with the point of departure x0 ∈ E: (Xx0

n ,X ′
n,X

x0
n

) = (Xn,X ′
n).
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Figure 2. Coupling between a Lagrangian Acquisition and an Acquisition along an indepen-
dant random path

• The second Acquisition system is the statement of the Lagrangian Acquisition along the independant
Acquisition Path Zn : (Zn, An)

To express what An could be, we have to consider a set of Lagrangian Acquisition starting from different
initial points and arriving to the different points of the Acquisition Path. Thus, we have the explanation of the
figure 2 :

• At the step n − 1, the Acquisition Path is at Zn−1, and acquires the value X ′
n−1 in the phase space

given by the Lagrangian Acquisition X
xn−1
0

n−1 = Zn−1 started from xn−1
0 and then A

xn−1
0

n−1 = X ′
n−1,Zn−1

.

The superscript xn−1
0 is to emphasize the departure point of the Lagrangian Acquisition.

• At time n we change of Lagrangian Acquisition to acquire those started from the initial point xn
0 and

arrived at Zn. Then we got A
xn
0

n = X ′
n,Zn

.

But we do not have any informations of the point of departure for each Lagrangian trajectory. It would
be suitable to compute the expectation An =

∫
Ax

nP
X0(dx). This expectation is hard to approach, it is an

integration along the ancestral lines.

Therefore, using the locally homogeneous medium hypothesis, we propose to give in each point of the Ac-
quisition Path Zn a parameter εn > 0 and a ball Bε

n(Zn) = {x ∈ E : |x−Zn| ≤ εn}. Then we estimate the two
probability measures χn and χ̂n such that for any test function f :

χ̂n(f) = E(f(Xn, An) | X0 ∈ Bε
0(Z0), . . . ,Xn ∈ Bε

n(Zn))

χn(f) = E(f(Xn, An) | X0 ∈ Bε
0(Z0), . . . ,Xn−1 ∈ Bε

n−1(Zn−1))

Complementary with the Lagrangian hypothesis, the pair (Xn,X ′
n) is supposed to be Markovian and the

evolution is described by the mean-field transition kernel :

Mn+1,πn
((x, x′), d(z, z′)) = P((Xn+1,X

′
n+1) ∈ d(z, z′)|(Xn,X ′

n) = (x, x′))

where πn is the probability law of (Xn,X ′
n). Later we will call the evolution using the transition kernel Mn+1,πn

a mutation. The mean-field hypothesis is made to take into account the macroscopic structures of the random
field locally represented by (Xn,X ′

n).
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Figure 3. Discrete evolution of the Acquisition Process for a Lagrangian dynamics

Being inspired by (3), we can write :

χ̂n(f) =
E(f(Xn,X ′

n)
∏n

p=0 1Bε
p(Zp)(Xp))

E(
∏n

p=0 1Bε
p(Zp)(Xp))

χn(f) =
E(f(Xn,X ′

n)
∏n−1

p=0 1Bε
p(Zp)(Xp))

E(
∏n−1

p=0 1Bε
p(Zp)(Xp))

which confer on the probability measures χ̂n and χn their Feynman-Kac distribution structure.

Without any change we do not only consider the conditioning given the ball 1Bε
p(Zp) but given the cylinder

1Bε
p(Zp)×E′ and we define the potential Gp for (Xp,X

′
p):

Gp

(
(Xp,X

′
p)

)
= 1Bε

p(Zp)×E′

(
(Xp,X

′
p)

)

Associated to this potential function, we define the selection kernel:

SZ
n+1,χn+1

(
(x, x′), d(y, y′)

)

= 1Bε
n+1(Zn+1)×E′(x, x′)δ(x,x′)(d(y, y′))

+
[
1 − 1Bε

n+1(Zn+1)×E′(x, x′)
]1Bε

n+1(Zn+1)×E′(y, y′)χn+1(d(y, y′))

χn+1(Bε
n+1(Zn+1) × E′)

where χn+1(d(y, y′)) = P((Xn+1,X
′
n+1) ∈ d(y, y′) | X0 ∈ Bε

0(Z0), . . . ,Xn ∈ Bε
n(Zn)).

Starting from the Acquisition initial distribution

χ0(d(x, x′)) = P((X0,X
′
0) ∈ d(x, x′))

we have the sequential scheme, for n ≥ 0 :

χ̂n
Mn+1,πn−−−−−−→ χn+1

SZ
n+1,χn+1−−−−−−−→ χ̂n+1

which is a stochastic dynamical system : χn+1 = χn SZ
n,χn

Mn+1,πn
.
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In terms of the state vector evolution, Figure 3 illustrates the procedure which corresponds to :

(X̂n, X̂ ′
n)

Mutation−−−−−−→ (Xn+1,X
′
n+1)

Selection−−−−−−→ (X̂n+1, X̂
′
n+1)

After the selection step, the state (X̂n+1, X̂
′
n+1) is the estimation of the Acquisition System, where X̂n+1 is

the location of the system and X̂ ′
n+1 is the estimation of the required Acquisition Process An+1 = X ′

n+1,Zn+1
.

The coupling between the 2 Acquisition Systems is a localization after a Lagrangian mutation. Written like
this, the evolution is not Markovian and the potential can nullify. The figure 3 is quite abusive, we must have
a covering of the trajectory Z0, . . . , Zn by balls (Bε

j (Zj))0≤j≤n with non-empty intersections as seen in Figure 2.

For each time step n and each state point (x, x′), we suppose that 0 < Mn+1,πn
(1Bε

n+1(Zn+1)×E′)(x, x′).

This hypothesis means that the probability to arrive in a ball Bε
n+1(Zn+1) coming from x is not null. This

hypothesis is important, without we lost the Markovian nature of the process. It has a non-trivial implications.
For example in physical applications, the time-discretization should be tight enough.

Now we define the modified Markov kernel and the new potential function to restore Markovian property:

M̃n+1,πn

(
(x, x′), d(y, y′)

)
=

Mn+1,πn

(
(x, x′), d(y, y′)

)
1Bε

n+1(Zn+1)×E′(y, y′)

Mn+1,πn
(1Bε

n+1(Zn+1)×E′)(x, x′)

and

G̃n+1(x, x′) = Mn+1,πn
(1Bε

n+1(Zn+1)×E′)(x, x′)

The Markovian kernel M̃n+1,πn
((x, x′), d(y, y′)) is a local transition restricted to the domain Bε

n+1(Zn+1)

while the potential function G̃n+1(x, x′) gives the chance to evolve in Bε
n+1(Zn+1) × E′. This implies that the

Lagrangian Acquisition follows the path Z0, . . . , Zn+1 and the potential can not be degenerate.

We start at initial step from the cylinder Bε
0(Z0) × E′ using the probability χB

0 and the law π0 of the pair

(X0,X
′
0). We use for all the time step the Feynman-Kac potential and kernel (G̃n, M̃n+1,πn

) to produce the
Feynman-Kac distribution at each time step n. We denote χB

n and χ̂B
n the stochastic flows of the process

restricted to the cylinders Bε
n+1(Zn+1)×E′. This corresponds to an interacting mean-field process, solution of

the nonlinear equation χB
n+1 = χB

n KB
n+1,χB

n ,πn
.

We know that the dynamical system χB
n+1 = χB

n KB
n+1,χB

n ,πn
have a non-unique McKean representation and

we choose to write :

KB
n+1,χB

n ,πn
= S̃n,χB

n
M̃n+1,πn

The non-unicity is brought by the selection kernel S̃n,χB
n
. Using the potential function G̃n+1 we choose a

particular form for S̃n,χB
n
, called genetic selection :

S̃n+1,χB
n
((x, x′), d(y, y′))

= G̃n+1(x, x′)δ(x,x′)(d(y, y′)) + [1 − G̃n+1(x, x′)]
G̃n+1(y, y′)χB

n (d(y, y′))

χB
n (G̃n+1)
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The choose of the genetic selection is the justification of the name “mutation” given to the prediction step.
This dynamical system produces a sequential scheme for the evolution laws restricted to the Acquisition Path:

χ̂B
n

M̃n+1,πn−−−−−−→ χB
n+1

S̃
n+1,χB

n+1−−−−−−−→ χ̂B
n+1

and in terms of the state space points we have the algorithm:

(XB
n ,X

′B
n )

︸ ︷︷ ︸

∈ (Bε
n(Zn)×E′)

Selection−−−−−−→ (X̂B
n , X̂

′B
n )

︸ ︷︷ ︸

∈ (Bε
n(Zn)×E′)

Mutation restricted to Bε
n+1−−−−−−−−−−−−−−−−−−→ (XB

n+1,X
′B
n+1)

︸ ︷︷ ︸

∈ (Bε
n+1(Zn+1)×E′)

The Acquisition flow restricted to the balls centered to the Acquisition Path is therefore a solution of the dy-
namical system χB

n+1 = χB
n S̃n,χB

n
M̃n+1,πn

with initial χB
0 and describes the coupling between the 2 Acquisition

Systems along the random path Z0, . . . , Zn and it is a mean-field process.

Now we have to develop a particle approximation of this Acquisition Process.

2.2. Particle approximation of Acquisition Processes on locally homogeneous medium

The Acquisition Process is given by the solution of stochastic integrals. These integrals have only approx-
imated solutions. We describe briefly the interacting particle algorithm. The algorithm will be more detailed
in the next section where the Acquisition Process will be used to filter pointwise measurements on a random
medium.

We have by hypotheses a E-valued Acquisition Path (Z0, . . . , Zn) and because of the locally homogeneous
medium a set of real numbers 0 < (εi)0≤i≤n with the existence of homogeneity balls Bε

i (Zi) for i ∈ {0, . . . , n}.

To establish the asymptotic approximations of the particle system, the Markovian transition have to be
sufficiently regular, at least for a class of function. So we assume that the Markovian transition M̃n+1,πn

follows
a regularity hypothesis: For any measurable bounded function f and any measure π, ∀n ∈ N, there exists some
constants cn(π) and a finite set of bounded functions h with ‖h‖ ≤ 1 such that for any measure µ

‖M̃n+1,π(f) − M̃n+1,µ(f)‖ ≤ cn(π)‖f‖
∑

h

|π(h) − µ(h)|

For the initial step, we consider a ball Bε
0(Z0)×E′ and a particle system with cardinal N > 0, (ξi

0, ξ
′i
0 )1≤i≤N ,

i.i.d. following χB
0 and we denote :

χB,N
0 =

1

N

N∑

i=1

δξi
0,ξ

′i
0

The empirical law χB,N
0 is an approximation of the exact law χB

0 and the technical lemma 3.1 gives the
existence for all p > 0 of a constant C0(p) such that :

E(‖χB,N
0 − χB

0 ‖p
H)

1
p ≤ C0(p)√

N
I(H)

At the beginning of the nth time step, we have a particle system (ξ̂i
n, ξ̂

′i
n )1≤i≤N located in the ball Bε

n(Zn)×E′

and following the sequential scheme

(ξ̂i
n, ξ̂

′i
n )

Mutation−−−−−−→ (ξi
n+1, ξ

′i
n+1)

Selection−−−−−→ (ξ̂i
n+1, ξ̂

′i
n+1)
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The exact flow χB
n+1 = χB

n KB
n+1,χB

n ,πn
is approached by χB,N

n+1 obtained by the empirical transition KB
n+1,χB

n ,πn

of the discrete law χB,N
n = 1

N

∑N
i=1 δ(ξi

n,ξ′i
n ) .

As we will see in the next section, to estimate πn the a priori law of the random medium it is necessary
to have an auxiliary system with d particles evolving separately with the transition kernel M̃n+1,πn

. Then the
following theorem holds :

Theorem 2.2. For all n ≥ 0 and for all p ≥ 1, there exists some constants Cn and C ′
n such that

E(‖χB,N
n − χB

n ‖p
H)

1
p ≤ [

Cn√
N

+
C ′

n√
d
]I(H)

The proof of this theorem is similar to the proof of theorem 3.2. The definitions of the subset H, the integral
entropy I(H) and the norm ‖.‖H are given in section 3.

One of the difficulties of this particle estimation, where the Acquisition Path is recovered with a discrete
set of balls, is the possibility to nullify the potential function, Gn(x, x′) = 1Bε

n(Zn)×E′(x, x′) or the possibility
to fail the positivity hypothesis for Mn+1,πn

(1Bε
n+1(Zn+1)×E′)(x, x′). In these cases, the algorithm is stopped

and the estimated state is put to a cimetery point ℧. The estimation of this stopping time is always an open
problem. Nevertheless denoting τN the first time of extinction, for some supplementary hypothesis, it is possible
to estimate :

Theorem 2.3. ( Del Moral-2004 [10] Theorem 7.4.1)
Suppose we have, for any n ≥ 0, E(

∏n
p=0 1Bε

p(Zp)(Xp)) > 0. Then for all N ≥ 1 it yields

P(τN ≤ n) ≤ a(n)e−N/b(n)

For a complete proof, see [10].

This inequality is not optimal, but could indicate that with a large enough number of particles, the extinction
becomes weakly probable. This could be seen as a constraint in numerical experiments and suggests that the
recovering set of ball have to be wide enough without failure of the medium homogeneity hypothesis.

3. Non-linear Particle Filter for Acquisition Processes

We present in this section the specific filter necessary to denoise corrupted Acquisition Process on homo-
geneous medium. To perform this filtering, we have to develop an original particle algorithm and prove its
convergence. This filtering is not only suitable to Acquisition Process but is available for all mean-field pro-
cesses. So we use generic notations which can be applied to all situations where the dynamical processes move
according to a probability law.

Considering Xn a discrete process taking values in a Polish space (E,F , P), we denote πn the law of the
process Xn. For the initial step, we suppose that X0 is a random variable distributed with the probability η0.

For any n ≥ 0, we assume that the pair (Xn, πn) is Markovian with the dynamical equation :

Xn+1 = Xn + b(Xn, πn)∆t + σX
n ∆WX

n

where ∆WX
n is a sequence of i.i.d. centered Gaussian random variables with variance ∆t, b is a locally bounded

function and Lipschitz in law, ∆t is the time step and σX
n is a positive bounded constant.
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This equation is a discrete version of a McKean SDE widely studied by A.S. Sznitman [17] and S. Méléard [14],
and we know, with the previous hypotheses, the pathwise existence and uniqueness of the solution. For the
interacting particle systems, A.S. Sznitman [17] proved the propagation of chaos property and gave some es-
timations for the particle approximation errors. M. Bossy and D. Talay [5] complete these works with the
convergence estimations of the discretization Euler scheme.

We choose a particular shape for the function b and suppose that for any x ∈ E and for any probability
measure µ on E:

b(x, µ) = D(x) +

∫

B(x, y)µ(dy)

where D is a bounded function and B is a bounded function for the first variable, which means that there
exists CB such that for all x′ ∈ E, ‖B(., x′)‖ ≤ CB . Moreover we suppose that the function b : (x′, µ) ∈
E × M1(E) → b(x′, µ) is Lipschitz with the parameter LB for its second variable and for all x ∈ E and
(µ, ν) ∈ M1(E) ×M1(E),

‖b(x, µ) − b(x, ν)‖ ≤ LB ‖µ − ν‖H
where ‖ · ‖H is the seminorm for H the sub-class of functions defined as follows :

We consider H a subset of bounded measurable functions h such that ‖h‖ ≤ 1 completed with the unity
function (See [10] for details). For two measures µ and ν in M1(E), we denote the seminorm in H by :

‖µ − ν‖H = sup{ |µ(h) − ν(h)| s.t. h ∈ H }

To measure a class of H, we count the minimal number of covering Lp-balls with radius ε > 0. This number is

denoted N (ε,H), and we defined the associated integral entropy I(H) =
∫ 1

0

√

log(1 + N (ε,H))dε.

Now we given a very useful technical lemma for convergence estimation of empirical processes.

Lemma 3.1 (Technical Lemma). For any p ≥ 1, any measure µ in M1(E) and its N -empirical approximation
µN , N ∈ N

∗, we have

E(‖µ − µN‖H)
1
p ≤ c [p/2]! I(H) (4)

This technical lemma and its proof are given by Del Moral in [10].

Our interest is put on the nonlinear filtering for Xn is a hidden Markov mean-field process observed by the
random process Yn. For any time step n ≥ 0, we have the system:







Xn+1 = Xn + b(Xn, πn)∆t + σX
n ∆WX

n

Yn = h(Xn) + σY
n WY

n

X0 ∼ η0

Y0 = y0

(5)

where h : E → F is a bounded function and we assume that F is a Polish space. WY
n is a sequence of i.i.d.

centered reduce Gaussian random variables independant of ∆WX
n , and σY

n a non-negative function.

We denote the two Feynman-Kac flows (ηn, η̂n). For all bounded measurable test function f , the predictor
is defined by ηn(f) = E[f(X0 . . . Xn) | Y0 . . . Yn−1], and the filter flow by η̂n(f) = E[f(X0 . . . Xn) | Y0 . . . Yn].

The stochastic filtering problem consists in the calculation of the Law(X0 . . . Xn|Y0 . . . Yn).
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When the mean-field law is unknown (unfortunately, it is the general case), we have to approach this law with
a (auxillary) particle system. Thus, for any time n ≥ 0, we need two particle systems, the first one (Xi,N )1≤i≤N ,
N > 0 is dedicated to the filtering of the perturbed observations Yn and the second system (Zi,d

n )i≤i≤d, d > 0
is devoted to learn the a-priori law of the medium.

For this second system, the point of departure is given by the particles (Zi,d
0 )1≤i≤d distributed according to

η0 = Law(X0) and we suppose that for all n > 0, each particle Zi,d
n moves with the transition kernel Mn+1,πn

where πn is the law corresponding to the dynamical equation Zi,d
n+1 = Zi,d

n + b(Zi,d
n , πn)∆t + σX

n ∆WZ,i
n , where

∆WZ,i
n is a sequence of i.i.d. centered Gaussian random variables with variance ∆t independant of ∆WX

n and
WY

n .

In fact πn is unknown and each particle uses the empirical law πd
n−1 = 1

d

∑d
i=1 δZi,d

n−1
. So for i ∈ {1, . . . , d},

Zi,d
n evolves according to Mn,πd

n−1
(Zi,d

n−1, ·).

The error to the exact law can be evaluated by:

πn − πd
n = πn−1Mn,πn−1

− πd
n−1Mn,πd

n−1

−[πd
n − πd

n−1Mn,πd
n−1

]

In an usual manner,
√

d[πd
n − πd

n−1Mn,πd
n−1

] converges weakly to 0, function by function, or almost surely,

to a Gaussian random variable. We retain only the first part of the expression and consider that (πn − πd
n)

is approached with (πn−1Mn,πn−1
−πd

n−1Mn,πd
n−1

) for which the technical lemma 3.1 gives an usable error control.

Back to the filtering problem, we assume that for any time n ≥ 0, the dynamics/observation pair (Xn, Yn) is
Markovian and follows the system (5). For any measurable bounded test function f , the filtering process moves
forward according to the stochastic dynamical system:

ηn+1(f) = ηnKn+1,ηn,πn
(f) = ηnSn,ηn

Mn+1,πn
(f)

Now we use a set of N particles to estimate the filtering laws ηn and η̂n, and a set of d particles to sample
the mean-field law πn.

The d particles (Zi,d
n )1≤i≤d are in interaction through their mean-field, and follow the empirical dynamics:

Zi,d
n+1 = Zi,d

n + b(Zi,d
n , πd

n)∆t + σX
n ∆WZ,i

n

These particles Zi,d
n ignore the observations and evolve without selection step.

In the particle approximation of the nonlinear filter ηN
n+1(f) ∼ ηN

n Sn,ηN
n

Mn,πd
n
(f), the empirical filter-

ing process, the selection kernel and the mutation transition are computed using the interaction particle set
(Xi,N

n )1≤i≤N and the dynamical model:

Xi,N
n+1 = Xi,N

n + b(Xi,N
n , πd

n)∆t + σX
n ∆WX,i

n

where ∆WX,i
n is a sequence of i.i.d. centered Gaussian random variables with variance ∆t.

We have to control the error estimation of the law ηn+1(f) by the empirical law ηN
n+1(f) and we prove the

theorem:
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Theorem 3.2. With the hypotheses mentioned above, for any n ≥ 0 and p ≥ 1, there exists finite constants
Cn(p) > 0 and C ′

n(p) > 0 such that

E(‖ηN
n − ηn‖p

H)
1
p ≤ [

Cn(p)√
N

+
C ′

n(p)√
d

] I(H)

Proof. The complete proof is in the paper of Baehr and Le Gland [2] (or in [1] for this particular case) where
this case and others can be found. But we can give a sketch of the proof which use triangular inequalities and
argue by induction. At the initial step, the technical lemma 3.1 gives the inequality

E(‖ηN
0 − η0‖p

H)
1
p ≤ cp(0)√

N
I(H)

where C0(p) = c0(p) and C ′
0(p) = 0. We show that if the statement occurs at step n, then it also holds at step

n + 1. We use the following decomposition :

ηN
n+1(f) − ηn+1(f) = ηN

n+1(f) − ηN
n Kn+1,ηN

n ,πd
n
(f) (∗)

+ ηN
n Kn+1,ηN

n ,πd
n
(f) − ηN

n Kn+1,ηn,πn
(f) (∗∗)

+ ηN
n Kn+1,ηn,πn

(f) − ηnKn+1,ηn,πn
(f) (∗ ∗ ∗)

The quantity (∗) is a fluctuation term where we obtain the control E((∗)2 | ηN
n ) ≤ C

N ‖f‖2 for some constant
C independant of N and d. The difference (∗ ∗ ∗) uses the induction hypothesis, and with the notation
Qn+1,πn

(z, dy) = Gn(z).Mn+1,πn
(z, dy), the equalities

ηN
n Kn+1,ηN

n ,πn
(f) − ηnKn+1,ηn,πn

(f)

= ηN
n Kn+1,ηN

n ,πn
(f) − ηN

n Kn+1,ηn,πn
(f) + ηN

n Kn+1,ηn,πn
(f) − ηnKn+1,ηn,πn

(f)

= [1 − ηN
n (Gn)]

( ηN
n

ηN
n (Gn)

− ηn

ηn(Gn)

)
Qn+1,πn

(f) + (ηN
n − ηn)Kn+1,ηn,πn

(f)

=
[1 − ηN

n (Gn)]

ηN
n (Gn)

(
(ηN

n − ηn)Qn+1,πn
(f) + (ηN

n − ηn)(
Gn

ηn(Gn)
)ηnQn+1,πn

(f)
)

+ (ηN
n − ηn)Kn+1,ηn,πn

(f)

which gives the straightforward Lp estimation.

For the last term (∗∗), the work is put on the mean-field law estimation and we have to use the Lipschitz
hypothesis for the function b.

For any bounded measurable function f , the difference between the exact and empirical McKean kernel is
expressed by:

ηN
n Kn+1,ηN

n ,πd
n
(f) − ηN

n Kn+1,ηN
n ,πn

(f)

=

∫

f(y)ηN
n (dx)Sn,ηN

n
(x, dz)[Mn+1,πd

n
− Mn+1,πn

](z, dy)

Recalling that for two M(E)-valued measures µ and ν and any x ∈ E,

Mn+1,µf(x) − Mn+1,νf(x) =

∫

dyf(y)
[
e

−A(x,y,µ)2

2σX2
n ∆t − e

−A(x,y,ν)2

2σX2
n ∆t

]
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with A(x, y, µ) = y − x − b(x, µ)∆t and using the Lipschitz hypothesis plus the Gaussian properties, it yields
for any p > 0

(
E‖ηN

n Kn+1,ηN
n ,πd

n
(f) − ηN

n Kn+1,ηN
n ,πn

(f)‖p
) 1

p ≤ C ′
n(p)

1√
d
I(H)

Using the induction, the technical lemma 3.1 and the Marcinkiewicz’ inequality, the sketch of the proof is
therefore completed.

The filtering of an a-priori mean-field process requires two particle systems, one with cardinality N , the other
with cardinality d, to produce bounding errors O( 1√

N
+ 1√

d
).

Now we can modify the problem and consider a dynamical system conditioned to the observation Yn, or more
exactly to the law of the filter η̂n and following the SDE :







Xn+1 = Xn + b(Xn, η̂n)∆t + σX
n ∆WX

n

Yn = h(Xn) + σY
n WY

n

X0 ∼ η0

Y0 = y0

where η̂n is the Law(Xn|Y0 . . . Yn).

The filtering of this kind of process needs only one particle systems with N interacting particles, and we
prove the theorem:

Theorem 3.3. With the hypotheses of this section, for all n ≥ 0 and for all p > 0 there exists constants
0 ≤ Cn(p) < ∞ such that

E(‖ηN
n − ηn‖p

H)
1
p ≤ Cn(p)√

N
I(H)

Proof. We argue by induction with analogous arguments to the previous proof. For n = 0 invoking the technical
lemma, the statement holds.

We assume that it holds for n > 0 and for all p > 0. For any measurable bounded function f , the difference
ηN

n+1(f) − ηn+1(f) can be decomposed in:

ηN
n+1(f) − ηn+1(f) = ηN

n+1(f) − ηN
n Kn+1,ηN

n ,η̂N
n

(f) (∗)
+ ηN

n Kn+1,ηN
n ,η̂N

n
(f) − ηN

n Kn+1,ηN
n ,η̂n

(f) (∗∗)
+ ηN

n Kn+1,ηN
n ,η̂n

(f) − ηn Kn+1,ηn,η̂n
(f) (∗ ∗ ∗)

Terms (∗) and (∗ ∗ ∗) are already known. To be controled the term (∗∗) uses the Lipschitz hypothesis of the
function b and a supplementary inequality gives the induction.

Indeed by construction, we have η̂n = ηnSn,ηn
, then the bounding verifies the inequality

|ηnSn,ηn
(f) − ηN

n Sn,ηN
n

(f)|
≤ |ηnSn,ηn

(f) − ηnSn,ηN
n

(f)| + |ηnSn,ηN
n

(f) − ηN
n Sn,ηN

n
(f)|

With some calculations on the selection kernel we have the last bound :

sup
‖f‖≤1

E|ηnSn,ηn
(f) − ηnSn,ηN

n
(f)| ≤ 2

1 − ηn(Gn)

ηn(Gn)
‖Gn‖ sup

‖f‖≤1

E|ηn(f) − ηN
n (f)|
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We use the recurrence hypothesis and obtain the required Lp inequality for n + 1.

In this second case, with a modified dynamical equation, with only N particles we have Feynman-Kac
distributions erros bounded by O( 1√

N
). This remark could be a clue to reduce the numerical cost of a filter for

physical systems with mean-field dynamics. Accepting an error in the model we have a faster algorithm. But
in counterpart, the filtering estimation is very dependant on a good representation of the observations by the
used observation equation, otherwhise the filter could experience serious disturbances.

4. Application to atmospheric turbulence measurements

In the previous two sections, we have developed a tool to inspect locally a random field, and a filtering
algorithm to denoise the sort of processes implied by these local representations.

Now we propose to apply our methods to a physical problem. We consider the measurements of turbulent
fluids with a special focus on observed atmospheric wind.

First, we have to choose local stochastic Lagrangian models for turbulent fluids. It will be necessary to adapt
them to the measurement problem. For the adapted models, we will be able to couple the Acquisition Process
dynamics and the nonlinear filtering for mean-field processes to write a performing algorithm.

We suggest here a method of closure for the dynamical system by conditioning the evolution (kernel) to the
observation. With our particle approximation we will see that we have the opportunity to learn the missing
parameters with the large scale observations dynamics.

For our applications, we intend to simulate data using the chosen model and the acquisition process or to use
recorded real data chosen for their quality with the minimum of intrument’s noises, for not to say without noise
at all. These data will be called reference signals. Then, we add numerical noise with various possible type of
probability laws to obtain the perturbed signal. Using this noisy signal our algorithms have to estimate the
parameters of the random medium and estimate a filtered signal. As a result we can compare our estimation
to the reference data which is one realization of the random medium along the path.

4.1. Adapted Stochastic Lagrangian Models for Nonlinear Filter

This section is devoted to the adaptation of two models for turbulent fluids. The first one is the Simplified
Langevin Model (SLM) for incompressible homogeneous turbulence proposed by S.B. Pope (see [16] for exam-
ple). The second model is proposed by Das and Durbin (see [8]) for relative dispersion in stratified turbulent
flows.

In our filtering problem, there are no other informations on the fluid flows except the observations themselves.
Thus we have to use these observations and their dynamics to learn the missing parameters. The filtering of
such turbulent flows needs to constrain the model to the observations in order to give relevant estimation of
the Eulerian quantities of large eddies. This conditioning to the observations of a Markovian kernel is a new
method of closure for a stochastic model. Now, we detail the different necessary adaptations.

Consider for all t ∈ [0, T ] with T ≤ ∞, the (E×E′, E ×E ′)-valued Acquisition System (Xt, Ut,x) on (Ω,F , P).
Then vector field Ut,x is the (E, E)-valued Eulerian fluid velocities.

The Eulerian average is given for the stationnary Acquisition Path Xt = x ∈ E and for all bounded measur-
able function f by the equality < f(U) >t,x= E[f(Ut,x)] P − ps.
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Let x0 ∈ E be an initial fixed point. We consider the Lagrangian Acquisition System (Xx0
t , Ut,X

x0
t

= Vt)

where Xx0
t is the flow coming from x0. For any measurable function f we have

E
δ
x0

(f(Vt)|Xx0
t ) =

δ→0

F
δ
x0

(f(Vt))

Fδ
x0

(1)
(Xx0

t )

using the weakly regularizing kernel Gδ with parameter δ ≥ 0 mentioned section 1:

F
δ
x0

(f(Vt))(X
x0
t ) =

∫

f(v)Gδ(Xx0
t , z)pX

x0
t ,Vt(z, v)dzdv

This expectation is dependent on the initial point x0. If we assume that the transportation by the Lagrangian
flow is without density variation (no loss or gain of mass), we can take as point of departure a random variable
X0 with the distribution π0 and all the Acquisition Processes arrived at time t in x ∈ E, and we evaluate
the expectation E[f(Vt) | Xt = x,X0] and with the same regularization technique for any measurable bounded
function f

Πδ
t (f(Vt))(x)

def
= E

δ[f(Vt)|Xt = x,X0]

and without mass density variations, we have P − ps:

E
δ[f(Vt)|Xt = x] = lim

δ→0
Πδ

t (f(Vt))(x)

This approximation Πδ
t (f(Vt))(x) will be used to replace the (unreachable) Eulerian average < f(U) >t,x.

In its continuous version for 1D or 2D isotropic flows, the simplified SLM given by S.B. Pope for incompressible
isotropic homogeneous turbulence is the It process

{
dXt = Vt dt
dVt = −∇x < p > dt − ( 1

2 + 3
4C0)

εt

kt
(Vt− < v >) dt +

√
C0εtdBt

(6)

where Vt is the Lagrangian velocity, ∇x < p > is the gradient of mean pressure, εt is the turbulent dissipation
rate, kt the Eulerian average of the turbulent kinetic energy, < · > are Eulerian means, C0 is the Kolmogorov
constant and Bt is a Wiener process. The incompressibility of the fluid requires an hypothesis : the divergence
of the velocity field have to be null. This hypothesis is guaranteed by the pressure term −∇x < p > dt (see [16]).

As usually for Itô processes, the time discretization uses a classical explicit Euler scheme, here with a time
step ∆t > 0.

In the Pope model, the quantities −∇x < p > and εt act as exogeneous parameters. These two commands
of the model realize a micro-macro coupling for the Lagrangian system with the large Eulerian scale.

First we express a remark due to the particular shape of the equation (6) : the asymptotic behaviour of the
expectation of the velocities increments as the parameter δ tends to 0 is

E[ Vn − Πδ
n(Vn)(Xn) ]

δ→0−−−→ 0

Since ∇x < p >n is independant of the pair (Xn, Vn), it holds:

E[ ∆Vn| Xn ] = −∇x < p >n ∆t (7)
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Then we propose to model the right handside of (7) by a random variable E′-valued such that

E[ ∆Vn ]
def
= E[ αn ]

Here we consider also that the density (more exactly 1
ρ ) is included in the term αn. Our filter will have to

learn this random variable αn using the observation process.

Back to the continuous model we remark that E[dVt dVt] = C0εtdt, and we propose another model for εn

taking the expectation of a random variable (yet denoted) εn:

E[ εn ]
def
=

E[ ∆Vn ∆Vn ]

C0∆t

By our models for the 2 commands, there will be some errors on the velocity representation, then we have
to add a random error ∆WX

n on the location equation. Thus the discrete adapted Pope model is the system :







Xn+1 = Xn + Vn ∆t + σX
n ∆WX

n

Vn+1 = Vn + E(αn) + C1
E(εn)

kn
[Vn − Πδ

n(Vn)(Xn)]∆t

+
√

C0E(εn)∆WV
n

(8)

If we use this model without any care, the incompressible hypothesis is disrupted, but using the filtering method
and observation of incompressible fluids, we hope that this quality will be restored.

Now, the system (8) has to be modified to express the coupling between the Lagrangian Acquisition system
and the Observation Acquisition by a conditioning of the probability laws.

This coupling is a new closure method and we think with this technique to improve the accuracy and the
computational performance of the filtering. Indeed, as seen in section 3, when we condition a Markov kernel
by observations, we reduce the number of particles necessary to filter the mean-field process. In return, the
accuracy will be very linked to a good representation of the observation process.

Let us formalize the physical situation to be closer to the filtering problem. The system (8) can be rewritten
in the dynamical system:

Xn+1 = Xn + b(Xn, η̂n)∆t + σ(Xn)∆Wn

where Xn = (Xn, Vn−1, Vn) is the conditional mean-field fluid-signal and η̂n is probability law of the filter,
η̂n = Law(X[0,n]|Y[0,n]), b is a function with the hypotheses of section 3 and a Lipschitz constant depending on
δ. In this model σ is a function of the state vector Xn. We have to assume that this is a positive, non-zero and
bounded function. This model is more general than the system (5). But with the hypotheses, the control is easy
to obtain (see [1], theorem 6.5.1). In the physical applications, this hypothesis relative to the finite energy of
the physical system will be insure. This is our stochastic model and we have to use it to filter the measurements
of a turbulent fluid.

We consider the perturbed observations of the velocities Yn = H(Xn) + σY
n Wn, and the filtering problem is

to compute the Law(X[0,n] | Y[0,n]).

Xn is then a conditional Markov process with the transition law Mn+1,η̂n
where

Mn+1,η̂n
((x, u), d(z, v)) = P

Xn+1|Xn,Yn
0 (d(z, v)|(x, u))

Section 3 claims that the particle approximation requires a system of N particles and provides an error in O( 1√
N

).
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In its spread out form the fluid-system is:







Xn+1 = Xn + Vn∆t + σX
n ∆WX

n

Vn+1 = Vn + E(αn|Y0 . . . Yn)∆t

− C1
E(εn|Y0...Yn)

kn
[Vn −

R

vGδ(Xn−x)P(Xn,Vn|Y0...Yn)(d(x,v))
R

Gδ(Xn−x)P(Xn,Vn|Y0...Yn)(d(x,v))
] ∆t

+
√

C0E(εn|Y0 . . . Yn) ∆WV
n

Yn = H(Vn) + σY WY
n

with

kn = 1
2

∫
[w −

R

vGδ(z−x)P(Xn,Vn|Y0...Yn)(d(x,v))
R

Gδ(z−x)P(Xn,Vn|Y0...Yn)(d(x,v))
]2 P

(Xn,Vn|Y0...Yn)(d(z, w)).

Now we have to add the localization step to couple the system with the Acquisition Path of the sensor. This
second coupling means that the different conditional expectation and the Eulerian average < . > are in fact
approximated by E(. | X[0,t] ∈ Bε

t (Z[0,t]), Yt). This third part of the algorithm is an acceptation/rejection step
with a redistribution in the set of balls Bε

t (Z[0,t]).

For 3D atmospheric flows, the SLM model made for homogeneous flows is unappropriate and we suggest to
build a model following the proposition of Das and Durbin (see [8]) for dispersion in a stratified turbulent flow.
Our stochastic model can be seen as the dispersion of a fluid particle with respect to a virtual element following
the mean flow :







dXt = Vt dt
dVh,t = −∇h < p > dt − C1

2
εt

kt
(Vh,t− < V >h,t)dt

+(C2θ − 1) (Wt− < W >t)
d<V >h,t

dz dt + (C0εt)
1
2 dBVh

t

dWt = d < W >t −C1

2
εt

kt
(Wt− < W >t)dt

+(1 − C5θ) βg(θt− < θ >t)dt + (C0εt)
1
2 dBW

t

dθt = d < θ >t −(C1θ − C1

2

)
εt

kt
(θt− < θ >t)dt

−(Wt− < W >t)
d<θ>t

dz dt + (Cθ)
1
2 dBθ

t

(9)

where Vh,t is the horizontal speed, ∇h is horizontal gradient operator (the partial derivatives of the horizontal

components), W is the vertical speed, θ is the temperature and BVh

t , BW
t , Bθ

t are independant Wiener processes.

The system (9), using the dispersion of a fluid particle with respect to the mean flow, is a first adaptation
of the Das and Durbin model. We add some simplifications particularly on the constants : C0 becomes the
universal Kolmogorov constant with C0 = 2.1, and using the paper of Das and Durbin [8] we set the other
constants to C1 = 1.8, C1θ = 2.5, C2θ = 0.6 and C5θ = 1/3, Cθ will be learned as εt can be.

The buoyancy coefficient βt is approximated by the reciprocal of the local mean temperature Πδ
t (θt)(Xt),

βt = 1
Πδ

t (θt)(Xt)
. It remains hidden parameters, the vertical gradients Γh

t = d<V h>
dz and Γθ

t = d<θ>
dz , where

z is the vertical dimension. The particle filter will learn these gradients using the selected and well-adapted
particles.
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Applying the same methods used for the SLM model, we write :

Ah
n = E[V h

n − V h
n−1] Eh

n =
E[V h

n − V h
n−1]

2

C0∆t

AW
n = E[Wn − Wn−1] EW

n =
E[Wn − Wn−1]

2

C0∆t

Aθ
n = E[θn − θn−1] Cθ =

E[θn − θn−1]
2

C0∆t

For the kinetic energy, we use different forms for the horizontal and the vertical components to restore the
stratified medium : kh

n = 1
2Πδ

n([V h
n −Πδ

n(V h
n )]2)(Xn) and kW

n = 1
2Πδ

n([Wn−Πδ
n(Wn)]2)(Xn). For the temperature

equation, we choose k2
n = (kh

n)2 + (kW
n )2 and E2

n = (Eh
n)2 + (EW

n )2.
These models are made to learn from the observations the hidden parameters and close the system by

conditioning the transition law. The dynamical system is therefore:







Xn+1 = Xn + Vn ∆t + σX∆BX
n

V h
n+1 = V h

n + Ah
n − C1

2
Eh

n

kh
n

[V h
n − Πδ

n(V h
n )(Xn)] ∆t

+(C2θ − 1) [Wn − Πδ
n(Wn)(Xn)] Γh

n∆t + (C0 Eh
n)

1
2 ∆Bh

n

Wn+1 = Wn + AW
n − C1

2
EW

n

kW
n

[Wn − Πδ
n(Wn)(Xn)] ∆t

+(1 − C5θ) βn g [θn − Πδ
n(θn)(Xn)] ∆t + (C0 EW

n )
1
2 ∆BW

n

θn+1 = θn + Aθ
n −

(
C1θ − C1

2

)
En

kn
[θn − Πδ

n(θn)(Xn)] ∆t

−[Wn − Πδ
n(Wn)(Xn)] Γθ

n ∆t + (Cθ)
1
2 ∆Bθ

n

X0 = x0

V h
0 = v0, W0 = w0

θ0 = θ0

(10)

We have seen previously that the Markov kernels have to be conditioned to the path, this has a consequence for
the dynamic model. Indeed denoting V A

n the Acquisition velocity (velocity of the fluid of along the Acquisition
Path), V Z

n the course velocity along the Acquisition Path, and V L
n the velocity of the Lagrangian fluid particle

following (10) using the implicite derivation :

V A
n+1 = V L

n+1 + GA
n,Z V Z

n ∆t + σXGA
n,Z∆BX

n (11)

where GA
n,Z is the gradient of fluid velocity along the Acquisition Path. In the case of a particle resolution of

the system, GA
n,Z is approached by ĜA,N

n,Z the empirical gradient in the direction [Zn − Zn−1] computed using
the selected particles.

The Markov kernel associated to (11) is denoted MB
n+1,η̂n

. In 1d flow (resp. 3D flow) we consider Xn =

(Xn, Vn) (resp. Xn = (Xn, V h
n ,Wn, θn)). The superscript Bn means ’conditioned to be in the ball Bε

n(Zn)’.
The discrete filtering algorithm is then described by the following sequence :

XBn
n

w.r.t. Sn,ηn−−−−−−−−→ X̂Bn
n

w.r.t. MB
n+1,η̂n−−−−−−−−−−→ X̃n+1

w.r.t SZ,B
n+1,η̃n+1−−−−−−−−−−→ XBn+1

n+1

where η̃n+1 = Law(X̃n+1 | X[0,n] ∈ Bε
n(Z[0,n]), Y[0,n])

These two examples of adaptation of turbulent fluid models are necessary to filter simulated or real data in
1D, 2D or 3D atmospheric wind. Others models or parametrizations or learning techniques are possible. In the
next section we will use the 3D stratified model (10) to filter real data.
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4.2. Application to 3D real wind measurements

We have described all the algorithms for the various parts of the problem put down by the filtering of the
mobile measurements of a fluid.

It is necessary to test our methods on simulated or real data. To check the ability of our filter to perform
good estimations, we propose to use a reference signal, real or not. We perturb this signal with a random noise
using simple or complex probability laws. Then, our algorithms are used to deliver a filtered signal. By this
procedure, we are able to compare the filtered signal with the initial reference signal. The use of real data
requires some precautions especially on the high quality of the measurements to be considered as a reference.

We have to interpret the results with care. The reference signal is one realization of the random medium
taking into account its parameters, the filtered signal is built with the estimated parameters of the observed
medium. So, there is a natural difference between the two series, but they have to give the same turbulence
characteristics particularly on large scale and in their energetic cascades, seen with their Power Density Spectra
(PSD).

The quality of the estimations have to be evaluated with several manner. The first one is the filtering of fluid
velocities simulated data. This examination enables to test the sequences of the algorithms. We do not present
these results on 1D or 2D simulated fluids and prefer to examine here directly the capacity of the method with
real 3D flows.

Real or simulated, the first comparison will be visual with the examination of their filtered and reference
series and the PSD. We remind that atmospheric turbulent flows, in the domain of our measurements, follow
the empirical Kolmogorov law (K41) (see for example U. Frisch’s book [11]). In log-log diagram, the PSD have
to follow a slope in −5/3 and we expect this kind of energetic cascade for the reference signal and for the filtered
one. Another possible control of the filter quality can be the calculation of some large scale classical turbulence
indicators. We will present these calculations in a further publication.

Here, we present the results of filtering using atmospheric data recorded at 5 Hz with an ultrasonic anemome-
ter in the experimental field of the French Weather Service Research Center in Toulouse, France, at 2 moments:
first on the 12th of May 2006 between 12h03 and 12h07 UTC and second on the 14th of June 2006 between
15h33 and 15h37 UTC.

The choice of this two dates and the hours is only determined by the measurement quality. The ultrasonic
anemometer gives a measure of the sonic temperature, which is converted in a real temperature with ther-
modynamics laws. We choose this method of measurement for the temperature to insure a colocalization of
all the measurements (wind and temperature). But it is well known that ultrasonic anemometer are far from
being the best thermometer. So the temperature signal is taken as reference but it is a stopgap. For further
experimental campaigns we will add to the anemometer a thin wire thermometer to measure a fast temperature.

In the two cases we choose to add a random noise built using the local empirical variance of the reference
signals and a Gaussian law. This noise is an upper limit for turbulence, and there is a memory effect which can
give dramatic errors if the filter does not return the right parameter of the fluid. Sometimes our noise is quite
big, barely too strong, but it provides a good test on the robustness of our filter.

For the first experiment on 12th of May, the figures 4 (horizontal wind) and 5 (vertical wind and temperature)
show in light blue dash line the noisy signal of the 3 components of wind and temperature, the black line is the
signal of reference to retrieve. The filter uses the algorithm described in the previous sections with 800 particles
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Figure 4. Left, series of horizontal wind (velocity (m.s−1) vs time step number) and right,
PSD (with a log-log scale, power (dB) vs frequency (Hz)). The series on the top is the U
componant and the bottom the V componant. Time series are taken the 12th of May 2006
between 12h03 and 12h07 UTC. In light blue the perturbed signal to be denoised, in black the
reference signal and in red the filtered with 800 particles.

for the approximation. The red signal is the output of our filter using a SCILAB code.

Even if the perturbations are strong, the filtered signal compares well with the reference component. On the
diagram of PSD , the correction is very sharp, with a decreasing of power following the reference spectrum, far
from the perturbed signal. In detail, there are slight differences between the filtered and the reference signals,
it comes from our method itself. Indeed, the algorithm estimates the characteristic parameters of the fluid
through the model used by the filter, and returns a filtered signal, while the output is one possible realization
of the medium. This is the reason why the spectral correction is very good, while the series show differences.
In conclusion, the noise is entirely subtracted out of the perturbed signal.

Our method, which estimates some characteristic terms, retrieves also turbulence parameters at high fre-
quency which are accessible by the prediction model. It could be possible to evaluate the turbulent dissipation
rate or buoyancy coefficient or 3-d gradients of Eulerian averages, etc. and of course the Acquisition Path of the
measurement sensors. The figure 6 gives an example of the series of turbulence dissipation rates and the vertical
gradient of temperature. These estimations with high frequency of turbulent quantities are something very new.
Usually in meteorological sciences these parameters are estimated with long time series, empirical means and
doubtful ergodic hypothesis. Our method provide estimations of these quantities at the same frequency as the
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Figure 5. Series (x-axis is time step number). On the top, the vertical velocity (m.s−1), on
the bottom, the temperature (K) ) and PSD (power (dB) vs frequency (Hz)). Time series are
taken the 12th of May 2006 between 12h03 and 12h07 UTC. In light blue the perturbed signal
to be denoise, in black the reference signal and in red the filtered with 800 particles.

measurements and a real sense for the Eulerian averages.

This result is very promising but we do not have to forget that the filtered signal is very dependant on the
chosen model. If the model is not pertinent relatively of the dynamics of the random medium, it could have
some disturbances, sometimes annoying. To illustrate this fact, we can present an experiment where the filtered
temperature signal has a poor quality. The figures 7 (horizontal wind) and 8 (vertical wind and temperature)
show, with the same color code, the 3 signals (noised, filtered and of reference) for the second date on the 14th
of June 2006 at 15h30 UTC. The (horizontal or vertical) wind is always properly filtered, but the temperature
response is not correct as indicates by the PSD.

There is two leads. The first one is the relevance of the model for this specific real meteorological situation.
The second is the quality on the measurement used as reference.

In the stratified Lagrangian model, the four components are coupled and the filtering of the wind is dependant
on a good estimation of the temperature. But the 3 wind components behave correctly, while the temperature
signal seems very different from the reference. At this point there is no unique answer, the problem could
be on the measurement of temperature, or in the choice of the model or its adaptation or may be there is a
specific behaviour of the atmosphere not taken into account by the model (water vapor, water content, etc.). To
insure that the problem does not come from too big numerical perturbations, we have proceeded with various
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Figure 6. Left, estimation of εn parameter (m2.s−3) and right gradient of mean temperature
(K.m−1) with 800 particles. Time series are taken the 12th of May 2006 between 12h03 and
12h07 UTC. X-axis is time step number.

level of noises without any improvement of the filtered temperature structure. The conclusion could be that
the dynamics of the reference temperature and the dynamics of the temperature deduced by the model are
different, while the 3D wind is correctly represented, but we have no argument yet to say if the problem lies in
the chosen reference for temperature.

For all the distinct experiments we have made, with various regime of wind, period of the year, hour of the
day, etc, in the majority of the cases the filtering is good with an accurate correction. Nevertheless, when the
atmospheric turbulence is too weak (early morning, no wind situation, etc.), the filtered signal remains too
turbulent just because the laminar regime is not well fitted by our Lagrangian models. Out the case of laminar
flows, sometimes there are some problems with the temperature filtering while the wind is accurately estimated.
The situation shown previously, the 14th of June 2006, is an example of this fact. For the moment, there exists
no satisfying explanations. It illustrates the difficulties of this exercise in real conditions and gives some clues
for the further experiments and improvements.

5. Outcomes and further developments

In this paper, we have described how to filter perturbed observations of a random medium taken along a
random path and applied the result to real meteorological data. First, we define precisely the Acquisition
Process as the statement along a path of a random medium. We provide some examples of use and describe an
algorithm of estimation in the case of homogeneous medium represented by its Lagrangian flows. Subsequently
we have developed new algorithms for the filtering of mean-field processes and suggest particle approximations.
We give their asymptotic behaviour when the number of particles goes to infinity. Then to apply to fluid veloc-
ities measurements we have adapted some existing physical models to be able to learn turbulence parameters.
These adaptations correspond to the coupling of the model with the Acquisition Path and the Observational
Acquisition Process. We have seen that these couplings with a conditioning of the model to the observations
are a new manner to close a dynamical system.

For the physical applications, we have chosen two real meteorological situations. We have corrupted the
reference signal with coloured Gaussian noises, occasionally with very strong perturbations. Our filter provides
quite good estimations with pertinent series of filtered signals and a sharp correction of the energetic cascades.
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Figure 7. Left, series of horizontal wind (velocity (m.s−1) vs time step number) and right,
PSD (with a log-log scale, power (dB) vs frequency (Hz)). The series on the top is the U
componant and the bottom the V componant. Time series are taken the 14th of June 2006
between 15h33 and 15h37 UTC. In light blue the perturbed signal to be denoise, in black the
reference signal and in red the filtered with 800 particles.

High frequency estimations for turbulent parameters with a sense of the Eulerian means are an important in-
novation given by the Acquisition Process and stochastic filtering for mean-field processes.

But nonlinear filtering never lives in a perfect world and we have seen that problems may occur especially
with laminar flows or in the treatments of the temperature. About the temperature, the question of the perti-
nence of ultrasonic anemometer for the measurements or the pertinence of our stochastic model for temperature
component had not be decided.

But this work is a first stage. For atmospheric data assimilation we have successfully used the Acquisition
Process to enhance the performance of an Ensemble Kalman Filter with a coupled Local Particle Filter (see
the short report of C. Baehr and O. Pannekoucke [3]). We hope to use in future developments these different
techniques to estimate turbulent parameters for high resolution atmospheric forecasting model assimilation.

Using the Acquisition Process and the data fusion particle techniques, it is also our intention to contribute to
the design of new integrated systems for airborne turbulence measurements and with a more physical modeling
to filter numerically more complex atmospheric set of parameters including water content, chemical or aerosol
concentration, droplets counting, etc. Theoretical works are also in progress to modify the algorithm presented
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Figure 8. Series (x-axis is time step number. On the top, the vertical velocity (m.s−1), on
the bottom, the temperature (K) ) and PSD (power (dB) vs frequency (Hz)). Time series are
taken the 14th of June 2006 between 15h33 and 15h37 UTC. In light blue the perturbed signal
to be denoise, in black the reference signal and in red the filtered with 800 particles.

here and not break the incompressibility hypothesis like the modification of the model proposed here does.

Back to the mathematical part of this work, there is also some study to complete the understanding of the
filter based on Acquisition Process and particularly to characterize the closure of a model by observations.
The article of Baehr and Pannekoucke [3] explain that in high dimension genetic filtering algorithms require a
critical number of particles to insure the non-divergence of the filter. We have to deal studies about this aspect
and propose new filter coupling various nonlinear filters and separating the treatment of linear and nonlinear
components of a system and find strategies of piloting/tuning of the selection parameters to be adapted to
models with large degrees of freedom. Local Particle Filter with Acquisition Process presented here should be
a partial answer.

Acknowledgements : The author thanks to the referee for its very careful review and comments that include many points
and improve significantly the clarity of this paper.
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