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ABSTRACT

We present a new algorithm for the provision of real time
estimations of turbulent parameters (TKE and EDR) as
we filter the perturbed data of a Doppler lidar. The algo-
rithm uses stochastic models for the atmospheric turbu-
lence and for the remote sensor observation. The results
show that we are able to catch fine and fast structures
in the Boundary Layer. Here we applied our method to
the experimental data of the BLLAST experiment which
used a vertical lidar. We finish by comparing the struc-
ture of the estimated TKE profiles to the TKE profiles of
a Meso-NH simulation.

1. INTRODUCTION

There is presently no proven ground-based instrumental
technique able to measure automatically vertical profiles
of turbulence properties (Turbulent Kinetic Energy, TKE
or Eddy Dissipation Rate, EDR) in the boundary layer.
The best approach consists in using aircraft or tethered
balloons. The use of remote sensors has been considered
for quite some time. Some works have also been done
with Doppler lidars that confirms the great potential of
this type of instrument for the observation of small-scale,
fast evolving, atmospheric flows. They suggest that the
Doppler lidar is a possible and interesting remote sensing
technique for the characterization of turbulence ([1; 2]).

We have been working on the characterization of turbu-
lent media (at the aerological scale) using non-linear fil-
tering technique and stochastic modelling of the turbu-
lence or/and the sensor measurements. These techniques
are based on the particle approximation of the probability
laws conditioned by the actual observation. These laws
make it possible to denoise the observations and retrieve
turbulence parameters. We will present the application
of these works to Doppler lidars. This highlights the real
possibility to retrieve wind, TKE or EDR in the Boundary
Layer probed by this instrument.

We show the ability of our method to learn the vertical
profiles of turbulence parameters from real data. We take
examples during the experiment BLLAST held in June-
July 2011 and we compare our results with slow estima-
tions of EDR or TKE using tethered balloon. We also
show how to compare our estimated profiles to numerical
simulations using the Meso-NH model.

2. LEARNING THE RANDOM MEDIA PARAME-
TERS USING NON-LINEAR FILTERING

Before presenting the technological application, we out-
line the theoretical background with the acquisition pro-
cess of a random field along a random path. A more pre-
cise presentation may be found in [3]

Here we consider a configuration spaceE ⊂ R
d,

d ∈ N
∗, a metric locally compact space and a phase

spaceE′ ⊂ R
d′

, d′ ∈ N
∗, a vector space, both endowed

with someσ−algebra,E and E ′. Then for any time
t ∈ [0, T ] whereT < ∞ we considerXt a (E, E)-valued
random variable called the acquisition path and for
any pointx ∈ E we considerX ′

t,x a (E′, E ′)-valued
random variable family (random vector field). Then
we define the pair of applications(Xt, X

′

t,x) as the
Acquisition System of the random vector field and we
define for any measurable functionF the Acquisition

Process byAt
def
= F (X ′

t,Xt
). As an easy example, the

Lagrangian modelling could be seen as the Acquisition
Process of an Eulerian field along the particle trajectories.

For a locally homogeneous medium, given a familly
of balls Bε

t (x) along the random pathXt, we may
compute the expectationE(f(Xt, At) | Xt ∈ Bε

t ). One
may show [3] that there is a Feynman-Kac [4] structure
to this conditional expectation. By this way, we can
propose some algorithm to estimate the probability
laws of this mean-field process with stochastic particle
approximations. This is a two-step scheme. The first one
is the Markovian prediction of the medium evolution.
The second step is a Markovian state selection using a
potential function given by the Acquisition Path. The
selection kernel is composed of an acceptance/rejection
part and a resampling for the rejected states. This update
meets the conditioning of the medium to the Acquisition
trajectory.

Using this background the filtering problem is then an
overlay, the Markovian dynamics being driven by the
Acquisition Process estimation (see [3]). The non-linear
filtering consists in the computation of the probability
laws of an hidden Markov processXt conditionally to the
observationsY[0,t]. Then the filtering learning retrieves



the Markov components, including the non-observed
ones. In this manner we realize the learning of the
random medium as well as the filtering of the dynamical
state.

What kind of prediction model should we use for the
acquisition process estimation? If we have local obser-
vations of a random medium, it may be interesting to
use a local model, such as Stochastic Lagrangian Model
(SLM). The numerical domain is covered with a collec-
tion of local models. These models have local or global
interactions. This is often the case when we have sparse
observations. It is more powerfull to have adjusted local
models instead of a global one with a mean adjustement.
We use this type of dynamics in the case of lidar observa-
tions.

3. STOCHASTIC FILTERING FOR VERTICAL
LIDAR OBSERVATIONS

The theoretical background being settled, the adaptation
of the general problem to the lidar observation concerns
mainly the management of a 1D medium observed by
point measurements. In this study the lidar beam is ver-
tical, therefore we use bounded column model splitted
in several segments centered on the lidar measurement
points. Therefore we have regular intervals driven by
the observation with a minimum level and a maximum
level. We use a stochastic particle approximation to feed
a Stochastic Lagrangian Model, a conditionning to the
finite size column and a filtering with respect to the ob-
servations. The SLM for the vertical velocity is derived
from the SLM that we have developed for our pointwise
filtering [3]:
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i
n) is the location and the vertical velocity

of any particlei ∈ [1, N ], θin is its associated absolute
temperature and(∆BX,i

n ,∆BW,i
n ) its Brownian pertur-

bation. The Eulerian average< w > (resp. < θ >) is
the expectationE(Wn|Xn = x) (resp.E(θn|Xn = x))
approximated with the particle using a Gaussian inter-
action kernel. This local mean is also used forkin is the
local Turbulent Kinetic Energy.∆t is the time mesh and
C0, C1 andC2 are fixed constants. For the filtering step,
for each segment the observations select the stochastic
particles keeping alive the most adapted. For this
selection phase, we have chosen to adopt a genetic kernel
in order to minimize the variance errors [4]. At each step
and for each segment,An andεn are learned as the mean
and the quadratic mean of the velocity time increments.
In this modelεn is the Eddy Dissipation Rate. In order
to not have to model the temperatureθn, we drown out

the whole term
θn− < θ >

< θ >
in a random variable and

we have chosen a truncated normal distribution with a
support[−1, 1] and a standard deviation about0.01.

In our method we use a stack of SLM and the stochas-
tic particles are free to leave their segment. This may
have (at least) two consequences. We have to deal with
overloaded or underloaded segments. This is particularly
true at the limits of the domain. The outgoing particles
are randomized into the domain using an importance rule
favouring the less loaded segments. The management of
the particle number in the different segments is performed
using min and max bounds around a mean profile deter-
mined at the beginning of the experiment using the atmo-
spheric density. This profile is computed with a rough
estimation of the temperature gradient. It is only used
for the determination of the bound numbers for each seg-
ment. Using the max bounds if a segment overshoots the
particle number, we withdraw particles and randomize
them in other segments according to the importance rule.
Using the same idea, if a segment is starved of particles,
we withdraw some particle to the most filled segments
using the importance rule. These different rules linked to
the particle numbers ensure we have enough particles for
the conditional expectation estimations. But whatever the
precautions, the accuracy of the first and last level are af-
fected by the algorithmic choices and suffer of the lack of
physical sense. We will give some clues in the conclusion
in order to improve this situation.

4. APPLICATION TO THE BLLAST EXPERI-
MENT LIDAR DATA

We present some results using the vertical lidar data
recorded between 12h41 and 14h05 UTC the June
18th, 2011 at Lannemezan, France during the BLLAST
experiment (http://bllast.sedoo.fr/). We
have vertical profiles every 6 seconds with 10 stacked
lidar observations (from 100m to 500m with 50m steps).
They are used as a reference signal or truth for the
mean vertical velocity. We add a numerical noise to get
perturbed observations. Then the challenge to our filter
consists in denoising the perturbed signal to retrieve
the turbulent parameter and a realization of the original
medium. Therefore we can compare the results with the
signal considered as a reference. Obviously the main
advantage of the method, besides the denoising, lies in
the on-line estimation of the turbulence parameters with
our SLM. For each time step, i-e every 6s, we have an
estimation of Eulerian quantities like TKE or EDR.

First we examine time series (figure 1) of the vertical
wind with the three kind of values (reference, perturbed
and filtered) at the altitude of 250m. One can see that the
general shape is well estimated, steep variations are also
retrieved. The original signal and the filtered one are two
realizations of the same random medium if the turbulent
parameters are correctly assessed by the filter. This is
the reason why they do not superimpose exactly. To
extend the analyzes we can examine the Power Spectral
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Figure 1: Detail of the vertical wind reference series at 250m
(black), observations (cyan), filtered signal (red), with their
PSD, sample number as x-axis. Data recorded the June 18th,
2011 every 6s between 12h41 and 14h05 UTC at Lannemezan,
France.
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Figure 2: Time profiles averaged on 60s (10 time step) of fil-
tered wind (above), estimated TKE (middle) and EDR (bottom).
Data recorded the June 18th, 2011 between 12h41 and 14h05
UTC in Lannemezan, France.

Density (PSD) to have a look on the energy properties.
The figure 1 presents the three PSD with the same
colorcode. Clearly the spectrum of the filtered signal is
better than the reference spectrum. The noise has been
really switched off and we see that the lidar spectrum is
perturbed by the spatial average of the instruments.

We may present (figure 2) the results as vertical profiles
with a 1 minute (10 time steps) average, for the filtered
velocities (upper part), the TKE (middle part) and the
EDR (lower part). For the wind profiles, positive val-
ues are in red, negative are in blue. It is difficult to have
an opinion on the behavior of the TKE or EDR with re-
spect to the wind structures. We can notice that the TKE
is more important at the transition between upward and
downward stream.

5. COMPARISONS WITH CLASSICAL METH-
ODS OR MESO-NH MODEL OUTPUTS

5.1. Balloon-borne in-situ measurements

For a first comparison we consider data taken from an
aerodynamic ballon at Lannemezan on 19 June 2010
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Figure 3: Mean profiles of wind variance (left) and TKE (right).
Data recorded the June 19th, 2011 every 6s between 13h26 and
14h49 UTC at Lannemezan, France.

Figure 4: Time profiles produce by a Meso-NH simulation (time
step 60s) of vertical wind (above), TKE (bottom).

between 13h26 and 14h49 UTC in the vicinity of the
lidar location. The sonic anemometer shipped by the
balloon provides 10 Hz relative wind measurements. The
ground speed estimated using the INS/GPS information
is substracted from the relative wind to obtain an absolute
wind. The ballon flew at 60m during the period. Then
using the lidar observation, we compute the filtered wind
and the TKE, the first level at 100m is representative of
the 75-125m segment, and we compare.

The aerodynamical balloon measurements of the wind is
at 0.1s. We subsample the wind at 6s and we compute a
variance about 0.39m2s−2. We can compute directly the
variance of the filtered lidar signal at 100m and we obtain
0.42m2s−2. The two values are very close. For the same
period, the average TKE is assessed at 0.25m2s−2. It
is possible to produce a mean profile of wind variance
with respect to the height and a mean profile of TKE.
The figure 3 shows these profiles which are typical of a
convective boundary layer.

5.2. Meso-NH profiles outputs

We have some difficulties to analyze the figure 2 because
it is too early to assess the structures of the TKE or EDR
in the boundary layer at this rate. In order to evaluate
the realism of the TKE or EDR structures seen by lidar,
we compared lidar profiles to a Meso-NH simulation.
The code is not ready yet for the BLLAST experiment,
therefore we use a numerical experiment of a well-know
and published case [7].

The simulation is a Large-Eddy Simulation realised
with Meso-NH over a domain of10 × 10 × 5km3



with a horizontal resolution of 100m. This simulation
represents a clear boundary layer observed over the
Southern Great Plains during one day (June 14th, 2002)
of the IHOP field campaign. It starts at 07h00 LT from
an observed radiosounding profile and uses prescribed
surface fluxes. It has been evaluated with observations
up to 14h00 LT (see [7]). This simulation is run for 14
hours. Profiles have been extracted every 60s from this
simulation and are compared to the observations.

In this comparison, we only examine the general shape
of TKE and the order of the value both for the simulation
and the 18th of June estimation. On the vertical wind,
we have both for the filtered profiles and for the simula-
tion, downward structures. It is consistent with advected
ascending columns or descending areas seen by a verti-
cal profile and the upper part of the advected structure is
first observed. The simulation and the filtered signal have
the same range of values. About the TKE, the structures
are different with greater values in the bottom. While the
simulation of the TKE is smoother, the filtered TKE re-
acts faster and gives profiles with more dynamical small
scales. But is the reality smooth or coarse ? we have no
answer at the moment. However we can remark that the
structures are the same for the simulation and the filter-
ing, with higher values of TKE at the transitions between
upward and downward winds, with the same range of val-
ues.

6. OUTCOMES AND FURTHER DEVELOP-
MENTS

We have presented a new algorithm to estimate the tur-
bulent parameters using lidar measurements. This al-
gorithm is based on non-linear filtering, on a stochas-
tic modeling of the medium and on a stochastic model-
ing of the sensor behavior. Applying our method to real
data demonstrated the capability of the algorithm to es-
timate not only the vertical wind but also turbulent pa-
rameters such as the TKE or the EDR. The comparisons
with pointwise balloon measurements and with a Meso-
NH simulation are qualitatively and quantitatively good.

We have to improve the processing of the first level to
avoid the algorithmic perturbations. A nice idea may be
to use a ground anemometric measurement (for instance
with sonic anemometer) with a particle approximation of
the turbulent parameters. Therefore this ground system
would be considered representative of the 0-75m layer
and used to feed the first layer (75-125m) of the lidar
particle system. It would be better than the current and
purely algorithmic solution.

We intend to complete the measurement system with an
X-band radiometer to provide some temperature vertical
profiles. This slow observation would be helpful in order
to include in the system an equation on temperature that
will guide the vertical motions.

We have develop some mock-up for 3D estimations us-
ing lidars scanning the atmosphere within an hemisphere

([8]). In this work, the vertical interactions have not been
taken into account. With the present studie about verti-
cal lidar, we have developed the algorithmic solutions to
finish the job and have full 3D estimations of wind, TKE
and EDR.

At the same time we have to continue the work of com-
parison with other BLLAST cases and we are waiting
for the Meso-NH simulations for the same experimental
cases. It will end the qualification of our methodology.
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