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Why complexity metrics are needed ?

Airspace design

Airspace comparison (US-Europe)

Evaluation of Airspace Organisation Schemes

Implementation of flexible use of airspace policies

4D contract framework

4D Trajectory design.

Forecasting of potentially hazardous traffic situations.

Automated Conflict Solver enhancement (robustness of the solution).
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Complexity vs Workload

Workload

Related to cognitive processes for human controllers.

Easy/Hard forecasting of conflict occurence.

Monitoring is a non negligible part of the workload.

Complexity

Related to traffic structure.

Measure of intrinsic disorder of a set of trajectories.

Increases with :

Sensitivity to uncertainties.
Interdependance of conflicts.
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Intrinsic part of complexity

Sensitivity

Uncertainties on positions, wind speed, intents induce inaccuracy on
trajectory prediction.

Depending on the situation, prediction error can grow exponentially
fast !

In such a case, the situation is complex because nearly impossible to
forecast.

Interdependance

Solving a conflict may induce other ones.

Even in conflict-less situations, interactions between trajectories can
rise the perceived level of complexity.

Complexity is related to mixing behaviour.
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Sensitivity-interdependance

No Sensitivity

No conflict

Easy situation

Potential conflicts 
without interaction 
between solutions

Hight sensitivityHight sensitivity

Potential conflicts 
with interactions 
between solutions

Hard situation
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Linear Dynamical System Modeling

The key idea is to model the set of aircraft trajectories by a linear
dynamical system which is defined by the following equation :

~̇X = A · ~X + ~B

where ~X is the state vector of the system :

~X =

 x
y
z


Matrix A and vector ~B are the parameters of the model.
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Regression of a Linear Dynamical System

1V
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V3

X1

X3

X2
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Regression of a Linear Dynamical System

Based on a set of observations (positions and speeds), one has to find
a dynamical system which fits those observations.Suppose that N
obervations are given :
Positions :

~Xi =

 xi

yi

zi


and speeds :

~Vi =

 vxi

vyi

vzi



A LMS precedure is applied in order to extract the matrix A and the
vector ~B.
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Properties of the matrix A

When real part of the eigenvalues of matrix A is positive, the system
is in expansion mode and when they are negative, the system is in
contraction mode.

Furthermore, the imaginary part of such eigenvalues are related with
curl intensity of the field.
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Properties of the matrix A

convergence

fu
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Linear Dynamical System Modeling : An example
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Linear Dynamical System Modeling : An example

Situation 2 Situation 3 Situation 4Situation 1
Parallel trajectories

(relative speed=0) trajectories
Convergent Divergent

trajectories
Round about
trajectories

(relative speed=0)

unit v/d

Position of the eigenvalues of matrix A in the complex coordinate system
eigenvalues
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Linear Model limitations

Give a global tendency of the traffic situation.

Do not fit exactly with all traffic situations.

⇒ Non Linear Extension
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Non Linear Extension in Space

~̇X = ~f (~X )

Optimization problem

~f ? such that :

minE =
i=N∑
i=1

‖ ~Vi − ~f (~Xi )‖2

and

min

∫
R3

‖∆~f (~x)‖2d~x with ∆~f =


∂2fx
∂x2 + ∂2fx

∂y2 + ∂2fx
∂z2

∂2fy
∂x2 +

∂2fy
∂y2 +

∂2fy
∂z2

∂2fz
∂x2 + ∂2fz

∂y2 + ∂2fz
∂z2


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Non Linear Extension in Space

Exact Solution (Amodei)

~f (~X ) =
N∑

i=1

Φ(‖~X − ~Xi‖).~ai + A.~X + ~B

with
Φ(‖~X − ~Xi‖) = Q(‖~X − ~Xi‖3)

and

Q =

264 ∂2
xx + ∂2

yy + ∂2
zz 0 0

0 ∂2
xx + ∂2

yy + ∂2
zz 0

0 0 ∂2
xx + ∂2

yy + ∂2
zz

375
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Non Linear Extension in Space and time

~̇X = ~f (~X , t)

Optimization problem

We are looking for ~f such that :

minE =
i=N∑
i=1

k=K∑
k=1

‖~Vi (tk)− ~f (~Xi , tk)‖2

and

min

∫
R3

∫
t
‖∆~f (~x)‖2 + ‖∂

~f

∂t
‖2d~xdt
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Non Linear Extension in Space and time

Exact Solution (Puechmorel and Delahaye)

~f (~X , t) =
N∑

i=1

K∑
k=1

Φ(‖~X (t)− ~Xi (tk)‖, |t − tk |).~ai ,k + A.~X + ~B

with

Φ(r , t) = diag

(
σ

r .
√
π
.erf

[
r

σ
.

1√
2 + θ.|t|

])
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Non Linear Extension in Space and time

Gradient close form

∂Φ(r , t)

∂x
= (α− β).x

with

α =
2.σ

r2.π
.

1√
2 + θ.|t|

.e
− r2

σ2.(2+θ.|t|)

β =
Φ(r , t)

r2

r =
√

x2 + y2 + z2
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Characterization of sensitivity

How fast two neighboring dynnamical system trajectories diverge ?

Let γ(t, s), t : [a, b], s ∈ V be a family of trajectories of the dynamical
system in the neighborood V of a given point s0 .

We assume that the nominal trajectory is t 7→ γ(t, s0).

A perturbed trajectory is t 7→ γ(t, s) with s ∈ V .

Divergence to nominal trajectory with respect to time is thus
‖γ(t, s0)− γ(t, s)‖ = D(t, s).

Computing D(t, s)

Main idea : when t 7→ γ(t, s) is the solution of a differential equation with
initial condition γ(0, s) = s, it is possible to show that D itself satisfies a
differential equation.
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local behaviour of trajectories

γ(t,s)

γ(t,s )0
0

s

s
V

D(t,s)
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Local behaviour of trajectories

The variational equation I

The value of D(t, s) is the result of a cumulative process.

Assume that γ(t, s) is defined to be a flow :

∂γ(t, s)

∂t
= F (t, γ(t, s)) γ(0, s) = s

with F a smooth vector field.

Given a nonimal trajectory γ(t, s0), then divergence of nearby
trajectories can be found up to order one in ‖s − s0‖ by solving :

∂D(t, s)

∂t
= DF (t, γ(t, s0)).D(t, s) D(0, s) = ‖s − s0‖

with DF the jacobian matrix of F (with respect to s).
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Lyapunov exponents

The variational equation II

Since the previous equation is linear, it can be described by a matrix
M(t) that obeys :

dM(t)

dt
= DF (t, γ(t, s0)).M(t) M(0) = Id

This equation is called the variational equation of the flow.

The variational equation describes in some sense a linear dynamical
system “tangent” to the original one.
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Lyapunov exponents

Lyapunov exponents

Let Ut(t)Σ(t)V (t) = M(t) be the SVD decomposition of M(t).

The Lyapunov exponents are mean values of the logarithms of the
diagonal elements of Σ(t):

κ(s) = − 1

T

∫ T

0
log(Σii (t))dt ∀Σii (t) ≤ 1
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Summary

Based on trajectories observations, a 4D non linear dynamical system
model is buit.

The associated 4D vector field is then computed on a cube of
airspace.

Lyapunov exponents are computed on each point of the cube in order
to built a complexity map.
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Interpretation of Lyapunov exponents

Given an initial point, the Lyapunov exponents and the associated
SVD decomposition provide us with a decomposition of space in
principal directions and corresponding convergence/divergence rate.

It is a localized version of the complexity based on linear systems.
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Results
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Conclusion

An intrinsic trajectories complexity metric has been developped.

This metric can be computed as a map.

Give the areas of airspace where the traffic is organized and the ones
where there is desorder
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Current work

Parallel computation by the mean of Local linear Model

~Vi (~Xi , ti ) = ~f (~X , t) +
∂~f (~X , t)

∂t
(ti − t) +~f (~X , t) +

∂~f (~X , t)

∂~X
(~Xi − ~X )+

O(|ti − t|+ ‖~Xi − ~X‖)

= ~a + ~b(ti − t) + C .(~Xi − ~X ) + O(|ti − t|+ ‖~Xi − ~X‖)

min
~a,~b,C

N∑
i=1

‖~Vi (~Xi , ti )−~a + ~b(ti − t) + C .(~Xi − ~X )‖2.ψ(ti − t, ~Xi − ~X )

Robustness improvement by taking into account uncertainties on time
position of aircraft on their trajectories
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