New trends in Air Traffic Complexity

D. Delahaye and S. Puechmorel

Applied Math Laboratory, ENAC

March 8, 2010

D. Delahaye and S. Puechmorel (Applied Mannet New trends in Air Traffic Complexity

- Why complexity metrics are needed ?
- Dynamical system modeling of aircraft trajectories
- How a complexity map is built ?
- Results

- Why complexity metrics are needed ?
- Dynamical system modeling of aircraft trajectories
- How a complexity map is built ?
- Results

Why complexity metrics are needed ?

Airspace design

- Airspace comparison (US-Europe)
- Evaluation of Airspace Organisation Schemes
- Implementation of flexible use of airspace policies

Why complexity metrics are needed ?

Airspace design

- Airspace comparison (US-Europe)
- Evaluation of Airspace Organisation Schemes
- Implementation of flexible use of airspace policies

4D contract framework

- 4D Trajectory design.
- Forecasting of potentially hazardous traffic situations.
- Automated Conflict Solver enhancement (robustness of the solution).

Workload

- Related to cognitive processes for human controllers.
- Easy/Hard forecasting of conflict occurence.
- Monitoring is a non negligible part of the workload.

Workload

- Related to cognitive processes for human controllers.
- Easy/Hard forecasting of conflict occurence.
- Monitoring is a non negligible part of the workload.

Complexity

- Related to traffic structure.
- Measure of intrinsic disorder of a set of trajectories.
- Increases with :
 - Sensitivity to uncertainties.
 - Interdependance of conflicts.

Intrinsic part of complexity

Sensitivity

- Uncertainties on positions, wind speed, intents induce inaccuracy on trajectory prediction.
- Depending on the situation, prediction error can grow exponentially fast !
- In such a case, the situation is complex because nearly impossible to forecast.

Intrinsic part of complexity

Sensitivity

- Uncertainties on positions, wind speed, intents induce inaccuracy on trajectory prediction.
- Depending on the situation, prediction error can grow exponentially fast !
- In such a case, the situation is complex because nearly impossible to forecast.

Interdependance

- Solving a conflict may induce other ones.
- Even in conflict-less situations, interactions between trajectories can rise the perceived level of complexity.
- Complexity is related to mixing behaviour.

- ∢ 🗇 እ

Sensitivity-interdependance

No Sensitivity No conflict Easy situation

Hight sensitivity

Potential conflicts without interaction between solutions **Hight sensitivity**

Potential conflicts with interactions between solutions

Hard situation

- Why complexity metrics are needed ?
- Dynamical system modeling of aircraft trajectories
- How a complexity map is built ?
- Results

The key idea is to model the set of aircraft trajectories by a linear dynamical system which is defined by the following equation :

$$\dot{ec{X}} = \mathbf{A} \cdot ec{X} + ec{B}$$

where \vec{X} is the state vector of the system :

$$\vec{X} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Matrix **A** and vector \vec{B} are the parameters of the model.

March 8, 2010 11 / 36

 Based on a set of observations (positions and speeds), one has to find a dynamical system which fits those observations. Suppose that N observations are given : Positions :

$$\vec{X}_i = \begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix}$$

and speeds :

$$\vec{V}_i = \left[\begin{array}{c} v x_i \\ v y_i \\ v z_i \end{array} \right]$$

 Based on a set of observations (positions and speeds), one has to find a dynamical system which fits those observations. Suppose that N observations are given : Positions :

$$\vec{X}_i = \begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix}$$

and speeds :

$$\vec{V}_i = \left[\begin{array}{c} v x_i \\ v y_i \\ v z_i \end{array} \right]$$

• A LMS precedure is applied in order to extract the matrix **A** and the vector \vec{B} .

- When real part of the eigenvalues of matrix **A** is positive, the system is in expansion mode and when they are negative, the system is in contraction mode.
- Furthermore, the imaginary part of such eigenvalues are related with curl intensity of the field.

Properties of the matrix A

Linear Dynamical System Modeling : An example

Linear Dynamical System Modeling : An example

- Give a global tendency of the traffic situation.
- Do not fit exactly with all traffic situations.
- \Rightarrow Non Linear Extension

Non Linear Extension in Space

$$\dot{\vec{X}} = \vec{f}(\vec{X})$$

Optimization problem

•
$$\vec{f}$$
 ? such that :

$$minE = \sum_{i=1}^{i=N} \|\vec{V}_i - \vec{f}(\vec{X}_i)\|^2$$
• and

$$min \int_{\mathbb{R}^3} \|\Delta \vec{f}(\vec{x})\|^2 d\vec{x} \text{ with } \Delta \vec{f} = \begin{bmatrix} \frac{\partial^2 f_x}{\partial x^2} + \frac{\partial^2 f_x}{\partial y^2} + \frac{\partial^2 f_x}{\partial z^2} \\ \frac{\partial^2 f_y}{\partial x^2} + \frac{\partial^2 f_y}{\partial y^2} + \frac{\partial^2 f_y}{\partial z^2} \\ \frac{\partial^2 f_z}{\partial x^2} + \frac{\partial^2 f_z}{\partial y^2} + \frac{\partial^2 f_z}{\partial z^2} \end{bmatrix}$$

Exact Solution (Amodei)

$$ec{f}(ec{X}) = \sum_{i=1}^{N} \mathbf{\Phi}(\|ec{X} - ec{X_i}\|).ec{a}_i + \mathbf{A}.ec{X} + ec{B}$$

with

$$\mathbf{\Phi}(\|\vec{X} - \vec{X_i}\|) = \mathbf{Q}(\|\vec{X} - \vec{X_i}\|^3)$$

and

$$Q = \begin{bmatrix} \partial_{xx}^2 + \partial_{yy}^2 + \partial_{zz}^2 & 0 & 0\\ 0 & \partial_{xx}^2 + \partial_{yy}^2 + \partial_{zz}^2 & 0\\ 0 & 0 & \partial_{xx}^2 + \partial_{yy}^2 + \partial_{zz}^2 \end{bmatrix}$$

Non Linear Extension in Space and time

$$\dot{\vec{X}} = \vec{f}(\vec{X},t)$$

Optimization problem

• We are looking for
$$\vec{f}$$
 such that :
•
$$minE = \sum_{i=1}^{i=N} \sum_{k=1}^{k=K} \|\vec{V}_i(t_k) - \vec{f}(\vec{X}_i, t_k)\|^2$$
• and
$$min \int_{\mathbb{R}^3} \int_t \|\Delta \vec{f}(\vec{x})\|^2 + \|\frac{\partial \vec{f}}{\partial t}\|^2 d\vec{x} dt$$

Exact Solution (Puechmorel and Delahaye)

$$ec{f}(ec{X},t) = \sum_{i=1}^{N} \sum_{k=1}^{K} \mathbf{\Phi}(\|ec{X}(t) - ec{X}_{i}(t_{k})\|, |t - t_{k}|).ec{a}_{i,k} + \mathbf{A}.ec{X} + ec{B}$$

with

$$\mathbf{\Phi}(r,t) = \operatorname{diag}\left(\frac{\sigma}{r.\sqrt{\pi}}.\operatorname{erf}\left[\frac{r}{\sigma}.\frac{1}{\sqrt{2+\theta.|t|}}\right]\right)$$

Non Linear Extension in Space and time

Gradient close form

$$\frac{\partial \Phi(r,t)}{\partial x} = (\alpha - \beta).x$$

with

$$\alpha = \frac{2.\sigma}{r^2.\pi} \cdot \frac{1}{\sqrt{2+\theta.|t|}} \cdot e^{-\frac{r^2}{\sigma^2.(2+\theta.|t|)}}$$
$$\beta = \frac{\Phi(r,t)}{r^2}$$
$$r = \sqrt{x^2 + y^2 + z^2}$$

- Why complexity metrics are needed ?
- Dynamical system modeling of aircraft trajectories
- How a complexity map is built ?
- Results

How fast two neighboring dynnamical system trajectories diverge ?

- Let $\gamma(t, s), t: [a, b], s \in V$ be a family of trajectories of the dynamical system in the neighborood V of a given point s_0 .
- We assume that the nominal trajectory is $t\mapsto\gamma(t,s_0).$
- A perturbed trajectory is $t\mapsto \gamma(t,s)$ with $s\in V$.
- Divergence to nominal trajectory with respect to time is thus $\|\gamma(t, s_0) \gamma(t, s)\| = D(t, s).$

How fast two neighboring dynnamical system trajectories diverge ?

- Let $\gamma(t, s), t: [a, b], s \in V$ be a family of trajectories of the dynamical system in the neighborood V of a given point s_0 .
- We assume that the nominal trajectory is $t\mapsto\gamma(t,s_0).$
- A perturbed trajectory is $t \mapsto \gamma(t,s)$ with $s \in V$.
- Divergence to nominal trajectory with respect to time is thus $\|\gamma(t, s_0) \gamma(t, s)\| = D(t, s).$

Computing D(t,s)

Main idea : when $t \mapsto \gamma(t, s)$ is the solution of a differential equation with initial condition $\gamma(0, s) = s$, it is possible to show that D itself satisfies a differential equation.

local behaviour of trajectories

Local behaviour of trajectories

The variational equation I

- The value of D(t, s) is the result of a cumulative process.
- Assume that $\gamma(t,s)$ is defined to be a flow :

$$rac{\partial \gamma(t,s)}{\partial t} = F(t,\gamma(t,s)) \quad \gamma(0,s) = s$$

with F a smooth vector field.

• Given a nonimal trajectory $\gamma(t, s_0)$, then divergence of nearby trajectories can be found up to order one in $||s - s_0||$ by solving :

$$\frac{\partial D(t,s)}{\partial t} = DF(t,\gamma(t,s_0)).D(t,s) \quad D(0,s) = \|s-s_0\|$$

with DF the jacobian matrix of F (with respect to s).

The variational equation II

• Since the previous equation is linear, it can be described by a matrix M(t) that obeys :

$$rac{dM(t)}{dt} = DF(t, \gamma(t, s_0)).M(t) \quad M(0) = Id$$

This equation is called the variational equation of the flow.

• The variational equation describes in some sense a linear dynamical system "tangent" to the original one.

Lyapunov exponents

- Let $U^{t}(t)\Sigma(t)V(t) = M(t)$ be the SVD decomposition of M(t).
- The Lyapunov exponents are mean values of the logarithms of the diagonal elements of Σ(t):

$$\kappa(s) = -rac{1}{\mathcal{T}}\int_0^{\mathcal{T}} \log(\Sigma_{ii}(t)) dt ~~orall \Sigma_{ii}(t) \leq 1$$

- Based on trajectories observations, a 4D non linear dynamical system model is buit.
- The associated 4D vector field is then computed on a cube of airspace.
- Lyapunov exponents are computed on each point of the cube in order to built a complexity map.

- Given an initial point, the Lyapunov exponents and the associated SVD decomposition provide us with a decomposition of space in principal directions and corresponding convergence/divergence rate.
- It is a localized version of the complexity based on linear systems.

- Why complexity metrics are needed ?
- Dynamical system modeling of aircraft trajectories
- How a complexity map is built ?
- Results

Image: A math and A

March 8, 2010 35 / 36

2

イロト イヨト イヨト イヨト

- An intrinsic trajectories complexity metric has been developped.
- This metric can be computed as a map.
- Give the areas of airspace where the traffic is organized and the ones where there is desorder

• Parallel computation by the mean of Local linear Model

$$\begin{split} \vec{V}_i(\vec{X}_i, t_i) &= \vec{f}(\vec{X}, t) + \frac{\partial \vec{f}(\vec{X}, t)}{\partial t}(t_i - t) + \vec{f}(\vec{X}, t) + \frac{\partial \vec{f}(\vec{X}, t)}{\partial \vec{X}}(\vec{X}_i - \vec{X}) + \\ &\quad O(|t_i - t| + \|\vec{X}_i - \vec{X}\|) \\ &= \vec{a} + \vec{b}(t_i - t) + C.(\vec{X}_i - \vec{X}) + O(|t_i - t| + \|\vec{X}_i - \vec{X}\|) \\ &\quad \min_{\vec{a}, \vec{b}, C} \sum_{i=1}^N \|\vec{V}_i(\vec{X}_i, t_i) - \vec{a} + \vec{b}(t_i - t) + C.(\vec{X}_i - \vec{X})\|^2 .\psi(t_i - t, \vec{X}_i - \vec{X}) \end{split}$$

• Robustness improvement by taking into account uncertainties on time position of aircraft on their trajectories