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Motivations

Environmental and geophysical studies : forecast the natural evolution

 retrieve at best the current state (or initial condition) of the environment.

Geophysical fluids (atmosphere, oceans, . . .) : turbulent systems =⇒ high

sensitivity to the initial condition =⇒ need for a precise identification (much

more than observations)

Environmental problems (ground pollution, air pollution, hurricanes, . . .) :

problems of huge dimension, generally poorly modelized or observed

Data assimilation consists in combining in an optimal way the observations of

a system and the knowledge of the physical laws which govern it.

Main goal : identify the initial condition, or estimate some unknown parame-

ters, and obtain reliable forecasts of the system evolution.
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Data assimilation

t

Observations

Model

combination

model + observations

⇓

identification of the initial condition

in a geophysical system

Fundamental for a chaotic system (atmosphere, ocean, . . .)

Issue : These systems are generally irreversible.

Goal : Combine models and data.
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Models

The equations governing the geophysical flows are derived from the general

equations of fluid dynamics. The main variables used to describe the fluids

are :

– The components of the velocity

– Pressure

– Temperature

– Humidity in the atmosphere, salinity in the ocean

– Concentrations for chemical species

The constraints applied to these variables are :

– Equations of mass conservation.

– Momentum equation containing the Coriolis acceleration term, which is es-

sential in the dynamic of flows at extra tropical latitudes.

– Equation of energy conservation including law of thermodynamics.

– Law of behavior (e.g. Mariotte’s Law).

– Equations of chemical kinetics if a pollution type problem is considered.
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Models

Full model : primitive equations.

These equations are complex, therefore we cannot expect to obtain an

analytical solution. Before performing a numerical analysis of the system it

will be necessary to :

– Simplify the equations. This task will be carried out on physical basis.

For example, three dimensional fields could be vertically integrated using

hydrostatic assumptions in order to obtain a two dimensional horizontal field

which is more tractable for numerical purposes : shallow-water equations.

Other “toy” model : the quasi-geostrophic model obtained by a first-order

expansion of the Navier-Stokes equation with respect to the Rossby number.

– Discretize the equations. The usual discretization methods are conside-

red : finite differences, finite elements or spectral methods.
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Data

Satellite altimetry (from AVISO web site).
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Data assimilation methods

Data assimilation methods :

1. 4D-VAR : optimal control method, based on the minimization of a

functional estimating the discrepancy between the model solution and the

observations.

[Le Dimet-Talagrand (Tellus, vol. 38A, 1986)]

2. Sequential methods : Kalman filtering, extended Kalman and ensemble

Kalman filters.

[Evensen (Ocean Dynamics, vol. 53, 2003)]

3. A new method : the Back and Forth Nudging.

[Auroux-Blum (Nonlinear Processes in Geophysics, vol. 15, 2008)]
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4D-VAR

Observations

t

xb

x0











dx

dt
= F (x),

x(0) = x0,

xobs(t) : observations of the system, H : observation operator, xb : background,

B and R : covariance matrices of background and observation errors

respectively.

J(x0) =
1

2
(x0 − xb)

T B−1(x0 − xb)

+
1

2

∫ T

0

[xobs(t) − H(x(t))]
T

R−1 [xobs(t) − H(x(t))] dt

Météo France, 9 Mars 2010 10/43



Optimality system

Optimization under constraints :

L (x0, x, p) = J(x0) +

∫ T

0

〈

p,
dx

dt
− F (x)

〉

dt

Direct model :







dx

dt
= F (x)

x(0) = x0

Adjoint model :











−
dp

dt
=

[

∂F

∂x

]T

p + HT R−1 [xobs(t) − H(x(t))]

p(T ) = 0

Gradient of the cost-function :
∂J

∂x0
= B−1(x0 − xb) − p(0)

Optimal solution : x0 = xb + Bp(0) [Le Dimet-Talagrand (86)]

Météo France, 9 Mars 2010 11/43



Example : Quasi-Geostrophic ocean model

We consider altimetric measurement of the surface of the ocean given by satel-

lite observations (Topex-Poseidon, Jason). The observed data is the change in

the surface of the ocean. According to the quasi geostrophic approximation it

is proportional to the stream function in the surface layer :

hobs =
f0

g
Ψobs

1

Therefore we will assimilate surface data in order to retrieve the fluid circula-

tion especially in the deep ocean layers.

The control vector is the initial state on the N layers :

u =
(

Ψk(t = 0)
)

k=1,...,N
∈ Uad

The state vector is
(

Ψk(t)
)

k=1,...,N
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Example

We assume that the stream function is observed at each point of the surface

layer at discrete times tj . Then the cost function is defined by :

Jε(u) =
1

2

n
∑

j=1

∫

Ω

(

Ψ1(tj) − Ψobs
1 (tj)

)2

ds +
ε

2
‖ R(u) ‖2

T

The second term in the cost function is the regularization term in the sense

of Tikhonov. It renders the inverse problem well posed, by taking into account

the square of the potential vorticity of the initial state :

‖ R(u) ‖2
T =

N
∑

k=1

Hk

[

∫

Ω

(

(∆Ψk)(0) − [W ]k.(Ψ)(0)
)2

ds

]

The parameter ε in the cost function is the relative weight of the regulariza-

tion with respect to the quadratic distance between the observations and the

computed state.

[Luong-Blum-Verron (98), Auroux-Blum (04)]
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Example

True solution 4D-VAR identified solution

True initial condition (left) and identified initial condition by the 4D-VAR

(right), for the upper layer.
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Example

True solution 4D-VAR identified solution

True initial condition (left) and identified initial condition by the 4D-VAR

(right), for the bottom layer.
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Kalman filter

The Kalman filter is a recursive filter that estimates the state of a dynamic

system from a series of incomplete and noisy measurements.

We consider a discrete in time stochastic dynamic system for the true vector

xt :

xt
k = Mk−1x

t
k−1 + ηk−1

where k is the index of the observation time and Mk represents model dy-

namics while ηk is model error white in time with mean zero and covariance Qk.

Consider a linear observation process described by

y0
k = Hkxt

k + ek.

y0
k is the vector of observations while the vector ek is an additive noise

representing the error in observations due for instance to instrumental error.

Random noise ek is assumed white in time with mean 0 and covariance Rk.
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Kalman filter

– Advance in time :














x
f
k = Mk−1x

a
k−1

P
f
k = Mk−1P

a
k−1M

T
k−1 + Qk−1

where the forecast and analysis error covariance matrices at time k are given

by :















P
f
k = E{(xt

k − x
f
k)(xt

k − x
f
k)T }

P a
k = E{(xt

k − xa
k)(xt

k − xa
k)T }

Qk−1 is the model error covariance matrix at time t = tk−1, Mk−1 is the

model dynamics. xa
k−1 and x

f
k−1 are the analysis and the forecast at time

t = tk−1.
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Kalman filter

– Compute the Kalman gain :

Kk = P
f
k HT

k (HkP
f
k HT

k + Rk)−1

The matrix Kk is the optimal weighting matrix known as the Kalman gain

matrix.

– Update the state :

xa
k = x

f
k + Kk(y0

k − Hkx
f
k)

Where y0
k is the observation at time t = tk, and Hk is the observation matrix

at time t = tk.

– Update error covariance matrix :

P a
k = (I − KkHk)P f

k
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Kalman filter

Computational cost of Kalman filter :

The Kalman filter assuming the dynamical model has n unknowns in the state

vector then error covariance matrix has n2 unknowns.

The evolution of the error covariance is very time consuming.

Thus KF in usual form can only be used for rather low dimensional dynamical

models.

The basic Kalman filter is limited to a linear assumption. However, most

non-trivial systems are non-linear. The non-linearity can be associated either

with the process model or with the observation model or with both.
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Extended Kalman filter

In extended Kalman filter (EKF) the state transition and observation models

need not be linear functions of the state but may instead be non-linear

functions.

The Jacobian or Tangent Linear Model is computed. At each time step the

Jacobian is evaluated with current predicted states. These matrices can be

used in the Kalman filter equations. This process essentially linearizes the

non-linear function around the current estimate.

Shortcomings of the EKF :

Unlike its linear counterpart, the EKF is not an optimal estimator. In addi-

tion, if the initial estimate of the state is wrong, or if the process is modeled

incorrectly, the filter may quickly diverge, owing to its linearization.

Usefulness of EKF will depend on properties of the model dynamics.
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Ensemble Kalman filter

Ensemble Kalman filter (EnKF) :

The EnKF is a Monte Carlo approximation of the Kalman filter avoiding evol-

ving the covariance matrix of the pdf of the state vector x. Instead the proba-

bility distribution is represented by a sample

X = [x1, x2, · · · , xN ] = [xi]

X is an n × N matrix whose columns are the ensemble members, and it is

called the prior ensemble.

Ideally, ensemble members would form a sample from the prior distribution.

However, the ensemble members are not in general independent except in the

initial ensemble, since every EnKF step ties them together. They are deemed to

be approximately independent, and all calculations proceed as if they actually

were independent.
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Ensemble Kalman filter

The initial ensemble should ideally be chosen to properly represent the error

statistics of the initial condition.

The ensemble of model states is integrated forward in time according to the

non-linear model equations, with a stochastic model error term.

The EnKF is now obtained simply by replacing the state covariance P in Kal-

man gain matrix :

K = PHT (HPHT + R)−1

by the sample covariance C computed from the ensemble members (called the

ensemble covariance).

[Evensen (03)]
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Forward nudging

Let us consider a model governed by a system of ODE :

dX

dt
= F (X), 0 < t < T,

with an initial condition X(0) = x0.

Xobs(t) : observations of the system

H : observation operator.










dX

dt
= F (X)+K(Xobs − H(X)), 0 < t < T,

X(0) = x0,

where K is the nudging (or gain) matrix.

In the linear case (where F is a matrix), the forward nudging is called Luen-

berger or asymptotic observer.

Météo France, 9 Mars 2010 25/43



Forward nudging

– Meteorology : Hoke-Anthes (1976)

– Oceanography ( QG model) : Verron-Holland (1989)

– Atmosphere (meso-scale) : Stauffer-Seaman (1990)

– Optimal determination of the nudging coeffcients :

Zou-Navon-Le Dimet (1992), Stauffer-Bao (1993),

Vidard-Le Dimet-Piacentini (2003)
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Forward nudging : linear case

Luenberger observer, or asymptotic observer

(Luenberger, 1966)















dX

dt
= FX+K(Xobs − HX),

dX̂

dt
= FX̂, Xobs = HX̂.

d

dt
(X − X̂) = (F−KH)(X − X̂)

If F − KH is a Hurwitz matrix, i.e. its spectrum is strictly included in the

half-plane {λ ∈ C; Re(λ) < 0}, then X → X̂ when t → +∞.

Météo France, 9 Mars 2010 27/43



BFN : Back and Forth Nudging algorithm

Iterative algorithm (forward and backward resolutions) :

X̃0(0) = x̃0 (first guess)











dXk

dt
= F (Xk)+K(Xobs − H(Xk))

Xk(0) = X̃k−1(0)











dX̃k

dt
= F (X̃k)−K ′(Xobs − H(X̃k))

X̃k(T ) = Xk(T )

If Xk and X̃k converge towards the same vector X, and if K = K ′, then X

satisfies the state equation and fits to the observations.
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Choice of the direct nudging matrix K

Implicit discretization of the direct model equation with nudging :

Xn+1 − Xn

∆t
= FXn+1 + K(Xobs − HXn+1).

Variational interpretation : direct nudging is a compromise between the mini-

mization of the energy of the system and the quadratic distance to the obser-

vations :

min
X

[

1

2
〈X − Xn, X − Xn〉 −

∆t

2
〈FX, X〉 +

∆t

2
〈R−1(Xobs − HX), Xobs − HX〉

]

,

by choosing

K = HT R−1

where R is the covariance matrix of the errors of observation.

[Auroux-Blum (08)]
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Choice of the backward nudging matrix K
′

The feedback term has a double role :

• stabilization of the backward resolution of the model (irreversible system)

• feedback to the observations

If the system is observable, i.e. rank[H, HF, . . . , HFN−1] = N , then there

exists a matrix K ′ such that −F −K ′H is a Hurwitz matrix (pole assignment

method).

In practice, K ′ = k′HT and k′ can be chosen as being the smallest value making

the backward numerical resolution stable.
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Lorenz’ equations



































dx

dt
= 10 (y − x),

dy

dt
= 28 x − y − xz,

dz

dt
= −

8

3
z + xy.
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– Assimilation period : [0; 3], forecast : [3; 6].

– Time step : 0.001.

– 31 observations (every 100 time steps).
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Lorenz - BFN convergence
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Fig. 1 – Difference between the kth iterate Xk(0) and the exact initial condition xtrue for the

3 variables versus the number of BFN iterations.

Météo France, 9 Mars 2010 32/43



Lorenz - BFN convergence
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Fig. 2 – Difference between two consecutive BFN iterates for the 3 variables versus the number

of BFN iterations.
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Lorenz - BFN convergence
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Fig. 3 – RMS difference between the observations and the BFN identified trajectory versus the

BFN iterations.
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Lorenz - Comparison BFN/4D-VAR
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Fig. 4 – Evolution in time of the reference trajectory (plain line), and of the trajectories identified

by the 4D-VAR (dashed line) and the BFN (dash-dotted line) algorithms, in the case of perfect

observations and for the first Lorenz variable x.
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Lorenz - Comparison BFN/4D-VAR
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Fig. 5 – Evolution in time of the reference trajectories (plain line), and of the trajectories

identified by the 4D-VAR (dashed line) and the BFN (dash-dotted line) algorithms, in the case of

noised observations (with a 10% gaussian blank noise) and for the first Lorenz variable x.
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Full primitive ocean model

Primitive equations : Navier-Stokes equations (velocity-pressure), coupled

with two active tracers (temperature and salinity).

Momentum balance :

∂Uh

∂t
= −

[

(∇∧ U) ∧ U +
1

2
∇(|U |2)

]

h

− f.z ∧ Uh −
1

ρ0
∇hp + DU + FU

Incompressibility equation : ∇.U = 0

Hydrostatic equilibrium :
∂p

∂z
= −ρg

Heat and salt conservation equations :
∂T

∂t
= −∇.(TU) + DT + FT (+ same for S)

Equation of state : ρ = ρ(T, S, p)
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Full primitive ocean model
Free surface formulation : the height of the sea surface η is given by

∂η

∂t
= −divh((H + η)Ūh) + [P − E]

The surface pressure is given by : ps = ρgη.

This boundary condition is then used for integrating the hydrostatic equili-

brium and calculating the pressure.

Numerical experiments : double gyre circulation confined between closed

boundaries (similar to the shallow water model). The circulation is forced by a

sinusoidal (with latitude) zonal wind.

Twin experiments : observations are extracted from a reference run, accor-

ding to networks of realistic density : SSH is observed similarly to TO-

PEX/POSEIDON, and temperature is observed on a regular grid that mimics

the ARGO network density.
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Full primitive ocean model

Example of observation network used in the assimilation : along-track altimetric

observations (Topex-Poseidon) of the SSH every 10 days ; vertical profiles of

temperature (ARGO float network) every 18 days.

Météo France, 9 Mars 2010 39/43



Numerical results
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iterations of BFN (nudging terms in the temperature and SSH equations only), with

full and unnoisy SSH observations every day.
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Numerical results
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Relative RMS error of the longitudinal and transversal velocities, 3 iterations of

BFN (nudging terms in the temperature and SSH equations only), with “realistic”

SSH observations (T/P track + 15% noise).
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Conclusions

4D-VAR :

• Requires linearization of the model, computation of the adjoint state and

an optimization algorithm

• Requires covariance error matrices on observations and background.

• Model is a strong constraint

• Advantage : robustness and global optimization (reanalysis)

Kalman filtering :

• No adjoint state

• Drawback : huge error covariance matrices

• Ensemble Kalman filter becomes more realistic for the implementation

• Requires simulation of model errors
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Conclusions

BFN :

• Easy implementation (no linearization, no adjoint state, no minimization

process)

• Very efficient in the first iterations

• Converges more rapidly than 4D-VAR

• Lower computational and memory costs than 4D-VAR

• Model is a weak constraint

• Could be an excellent preconditioner for 4D-VAR
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