Suivi de champs denses de vitesses d'écoulements fluides par filtrage stochastique

Anne Cuzol

IRISA/INRIA, équipe Vista

Journée Méthodes Particulaires en Mécanique des Fluides Vendredi 16 mars 2007

Introduction

Introduction
 Problématique
 Rappels
 Particules de vortex

2 Suivi de champs denses

Estimateurs de mouvement fluide Filtrage stochastique

3 Construction du modèle de filtrage Loi d'évolution des écoulements fluides Modèle d'état Modèle d'observation

4 Schéma de filtrage

5 Exemples

Séquences d'écoulements fluides

- Structures hautement déformables : forts mouvements de rotation et de divergence
- Phénomène 2D ou projection d'un phénomène 3D dans le plan image

Turbulence 2D (CEMAGREF Rennes)

Vortex générés au bout d'une aile d'avion (ONERA)

Cyclone sur l'océan indien (06/03/99, Météosat, LMD)

Applications

- Sciences environnementales : observation, prévision, surveillance
 - météorologie : suivi de structures caractéristiques (vortex, cellules convectives)
 - océanographie : suivi d'agents polluants
- Mécanique des fluides expérimentale
 - meilleure compréhension des écoulements
 - contrôle des écoulements, mise en place d'actions spécifiques
- Imagerie médicale

Analyse d'écoulements fluides à partir de séquences d'images

Séquences d'images

- Fournissent des mesures de vitesses denses
- Obtenues par des capteurs non intrusifs
- Fréquence temporelle élevée
- Conditions au bord

Analyse d'écoulements fluides à partir de séquences d'images

Séquences d'images

- Fournissent des mesures de vitesses denses
- Obtenues par des capteurs non intrusifs
- Fréquence temporelle élevée
- Conditions au bord

Mais : extraction et analyse de l'information de mouvement difficiles

- Projection en 2D = perte d'une dimension
- Distorsions spatiale et temporelle de la luminance
- Forts mouvements de rotation et de divergence

Champs de vecteurs 2D

Décomposition de Helmholtz :

 $\mathbf{w} = \mathbf{w}_{irr} + \mathbf{w}_{sol} + \mathbf{w}_{tra}$

Hypothèses :

- la composante de transport global est connue
- on ne suit pas la composante irrotationnelle

$$\mathbf{w}_{sol} = \mathbf{\nabla} \psi^{\perp}$$
 ψ fonction de potentiel

 $\psi = G \ast \mathsf{curl} \ \mathbf{w}$

noyau de Green : $G(\mathbf{x}) = \frac{1}{2\pi} \ln(||\mathbf{x}||)$

 $\mathbf{w}_{sol} = \mathbf{\nabla} \psi^{\perp}$ ψ fonction de potentiel $\Delta \psi = \operatorname{curl} \mathbf{w}$ équation de Poisson noyau de Green : $G(\mathbf{x}) = \frac{1}{2\pi} \ln(||\mathbf{x}||)$ $\psi = G * \operatorname{curl} \mathbf{w}$ $\mathbf{w}_{sol} = K^{\perp} * \operatorname{curl} \mathbf{w}$ $K(\mathbf{x}) = \nabla G(\mathbf{x}) = \frac{\mathbf{x}}{2\pi ||\mathbf{x}||^2}$

intégrale de Biot-Savart

Particules de vortex

Calcul de l'intégrale de Biot-Savart $\mathbf{w}_{sol} = K^{\perp} * \operatorname{curl} \mathbf{w}$

Approximation de la vorticité par des particules de vortex [Chorin 73, Cottet et al. 00]

curl
$$\mathbf{w}(\mathbf{x}) \approx \sum_{j=1}^p \gamma_j f_{\epsilon_j}(\mathbf{x} - \mathbf{x}_j)$$

avec :

- x_j centre de la particule de vortex
- γ_j paramètre de force
- ϵ_j paramètre d'influence

Particules de vortex

Calcul de l'intégrale de Biot-Savart $\mathbf{w}_{sol} = K^{\perp} * \operatorname{curl} \mathbf{w}$

Approximation de la vorticité par des particules de vortex [Chorin 73, Cottet et al. 00]

curl
$$\mathbf{w}(\mathbf{x}) \approx \sum_{j=1}^{p} \gamma_j f_{\epsilon_j}(\mathbf{x} - \mathbf{x}_j)$$

avec :

- x_j centre de la particule de vortex
- γ_j paramètre de force
- ϵ_j paramètre d'influence

 $\rightarrow \qquad \text{Discrétisation / régularisation de l'intégrale de Biot-Savart} \\ \rightarrow \qquad \text{Représentation paramétrique } \mathbf{w}_{sol}(\mathbf{x}) \approx \sum_{j=1}^{p} \gamma_j K_{\epsilon_j}^{\perp}(\mathbf{x} - \mathbf{x}_j) \\ \rightarrow \qquad \text{Représentation similaire (orthogonale) pour } \mathbf{w}_{irr} \text{ (particules de source)}$

Exemple

Un exemple de représentation paramétrique du mouvement :

- 15 particules de vortex
- 5 particules de source

 \Rightarrow écoulement décrit par 80 paramètres

Suivi de champs denses

1 Introduction

Problématique Rappels Particules de vortex

2 Suivi de champs denses Estimateurs de mouvement fluide Filtrage stochastique

3 Construction du modèle de filtrage Loi d'évolution des écoulements fluides Modèle d'état Modèle d'observation

4 Schéma de filtrage

5 Exemples

Objectif

Estimation des champs de vecteurs 2D $\mathbf{w} = (u,v)^T: \Omega \to \mathbb{R}^2$ avec $u, v \in \mathcal{C}^2(\Omega, \mathbb{R})$

11/37

Méthodes basées sur la corrélation :

- méthodes PIV en mécanique des fluides expérimentale
- estimateurs de champs de vent en météorologie

Estimateurs denses dédiés :

- équation de continuité et régularisation div-curl du 2^{eme} ordre
- estimation des fonctions de potentiel

Jusqu'à récemment :

- estimations instantanées (à partir des paires d'images consécutives de la séquence)
- pas de modèle dynamique sous-jacent

pas de garantie d'une cohérence temporelle entre les estimations

Jusqu'à récemment :

- estimations instantanées (à partir des paires d'images consécutives de la séquence)
- pas de modèle dynamique sous-jacent

 \rightarrow

pas de garantie d'une cohérence temporelle entre les estimations

Introduction d'une loi d'évolution physique dans le processus d'estimation :

- méthodes denses [Heas et al. 06, Ruhnau et al. 06]
- approches variationnelles [Papadakis et al. 06]

Jusqu'à récemment :

- estimations instantanées (à partir des paires d'images consécutives de la séquence)
- pas de modèle dynamique sous-jacent

pas de garantie d'une cohérence temporelle entre les estimations

Introduction d'une loi d'évolution physique dans le processus d'estimation :

- méthodes denses [Heas et al. 06, Ruhnau et al. 06]
- approches variationnelles [Papadakis et al. 06]

lci :

Formulation du problème d'estimation dans un cadre de filtrage stochastique

Filtrage stochastique

Modèle de filtrage :

$$\begin{cases} d\mathbf{X}_t &= f(\mathbf{X}_t)dt + \sigma(t)d\mathbf{B}_t \\ \mathbf{Z}_k &= g(\mathbf{X}_{t_k}) + \mathbf{V}_k \end{cases}$$

Objectif : estimation des distributions de filtrage $p(\mathbf{X}_{t_k}|\mathbf{Z}_{1:k})$

Filtrage stochastique

Modèle de filtrage :

$$\begin{cases} d\mathbf{X}_t &= f(\mathbf{X}_t)dt + \sigma(t)d\mathbf{B}_t \\ \mathbf{Z}_k &= g(\mathbf{X}_{t_k}) + \mathbf{V}_k \end{cases}$$

Objectif : estimation des distributions de filtrage $p(\mathbf{X}_{t_k} | \mathbf{Z}_{1:k})$

Equations bayesiennes du filtrage :

• prédiction

$$p(\mathbf{X}_{t_k}|\mathbf{Z}_{1:k-1}) = \int p(\mathbf{X}_{t_k}|\mathbf{X}_{t_{k-1}}) p(\mathbf{X}_{t_{k-1}}|\mathbf{Z}_{1:k-1}) d\mathbf{X}_{t_{k-1}}$$

• correction (formule de Bayes)

$$p(\mathbf{X}_{t_k}|\mathbf{Z}_{1:k}) = \frac{p(\mathbf{Z}_k|\mathbf{X}_{t_k})p(\mathbf{X}_{t_k}|\mathbf{Z}_{1:k-1})}{\int p(\mathbf{Z}_k|\mathbf{X}_{t_k})p(\mathbf{X}_{t_k}|\mathbf{Z}_{1:k-1})d\mathbf{X}_{t_k}}$$

Filtrage stochastique

Equations bayesiennes du filtrage :

prédiction

$$p(\mathbf{X}_{t_k}|\mathbf{Z}_{1:k-1}) = \int p(\mathbf{X}_{t_k}|\mathbf{X}_{t_{k-1}}) p(\mathbf{X}_{t_{k-1}}|\mathbf{Z}_{1:k-1}) d\mathbf{X}_{t_{k-1}}$$

• correction (formule de Bayes)

$$p(\mathbf{X}_{t_k} | \mathbf{Z}_{1:k}) = \frac{p(\mathbf{Z}_k | \mathbf{X}_{t_k}) p(\mathbf{X}_{t_k} | \mathbf{Z}_{1:k-1})}{\int p(\mathbf{Z}_k | \mathbf{X}_{t_k}) p(\mathbf{X}_{t_k} | \mathbf{Z}_{1:k-1}) d\mathbf{X}_{t_k}}$$

Solution analytique pour les modèles linéaires et gaussiens (filtre de Kalman)

- Cas non linéaire :
 - Approximation gaussienne (EKF, UKF)
 - Approximation de Monte-Carlo : filtrage particulaire

Filtrage particulaire

 $\mathbf{X}_{t_k}^{(i)}$ état possible, avec poids $w_k^{(i)}$ Approximation de la distribution de filtrage :

$$p(\mathbf{X}_{t_k} | \mathbf{Z}_{1:k}) \approx \sum_{i=1}^N w_k^{(i)} \delta_{\mathbf{X}_{t_k}^{(i)}}(\mathbf{X}_{t_k})$$

- Modification récursive de $\{\mathbf{X}_{t_k}^{(i)}, w_k^{(i)}\}_{i=1:N}$:
- prédiction (échantillonnage d'importance)

$$\mathbf{X}_{t_k}^{(i)} \sim \pi(\mathbf{X}_{t_k} | \mathbf{X}_{0:t_{k-1}}^{(i)}, \mathbf{Z}_{1:k})$$

• correction (formule de Bayes)

$$w_k^{(i)} \propto w_{k-1}^{(i)} \frac{p(\mathbf{Z}_k | \mathbf{X}_{t_k}^{(i)}) p(\mathbf{X}_{t_k}^{(i)} | \mathbf{X}_{t_{k-1}}^{(i)})}{\pi(\mathbf{X}_{t_k}^{(i)} | \mathbf{X}_{0:t_{k-1}}^{(i)}, \mathbf{Z}_{1:k})}$$

• procédure de rééchantillonnage

Filtrage particulaire

 $\mathbf{X}_{t_k}^{(i)}$ état possible, avec poids $w_k^{(i)}$ Approximation de la distribution de filtrage :

$$p(\mathbf{X}_{t_k} | \mathbf{Z}_{1:k}) \approx \sum_{i=1}^N w_k^{(i)} \delta_{\mathbf{X}_{t_k}^{(i)}}(\mathbf{X}_{t_k})$$

- Modification récursive de $\{\mathbf{X}_{t_k}^{(i)}, w_k^{(i)}\}_{i=1:N}$:
- prédiction (échantillonnage d'importance)

$$\mathbf{X}_{t_k}^{(i)} \sim \pi(\mathbf{X}_{t_k} | \mathbf{X}_{0:t_{k-1}}^{(i)}, \mathbf{Z}_{1:k})$$

• correction (formule de Bayes)

$$w_k^{(i)} \propto w_{k-1}^{(i)} \frac{p(\mathbf{Z}_k | \mathbf{X}_{t_k}^{(i)}) p(\mathbf{X}_{t_k}^{(i)} | \mathbf{X}_{t_{k-1}}^{(i)})}{\pi(\mathbf{X}_{t_k}^{(i)} | \mathbf{X}_{0:t_{k-1}}^{(i)}, \mathbf{Z}_{1:k})}$$

- procédure de rééchantillonnage
 - pas d'hypothèse gaussienne ou de linéarité
 - pas adapté aux espaces d'état de grande dimension

Construction du modèle de filtrage

1 Introduction

Problématique Rappels Particules de vorte

2 Suivi de champs denses

Estimateurs de mouvement fluide Filtrage stochastique

Construction du modèle de filtrage Loi d'évolution des écoulements fluides Modèle d'état

Modèle d'observation

4 Schéma de filtrage

5 Exemples

Loi d'évolution

Equation de Navier-Stokes 2D incompressible :

$$\frac{\partial \mathbf{w}}{\partial t} + (\mathbf{w} \cdot \boldsymbol{\nabla})\mathbf{w} = -\frac{1}{\rho}\boldsymbol{\nabla}p + \nu\Delta\mathbf{w}$$

Forme vorticité-vitesse :

$$\frac{\partial \xi}{\partial t} + \mathbf{w} \cdot \boldsymbol{\nabla} \xi = \nu \Delta \xi$$

pas de terme de pression

deux parties dans l'équation :

- transport de la vorticité
- diffusion de la vorticité

Evolution des particules de vortex

Forme vorticité-vitesse de l'équation de Navier-Stokes :

- partie convection : $\frac{\partial \xi}{\partial t} + (\mathbf{w}.\nabla)\xi = 0$
- partie diffusion : $\frac{\partial \xi}{\partial t} = \nu \triangle \xi$

Evolution des particules de vortex

Forme vorticité-vitesse de l'équation de Navier-Stokes :

- partie convection : $\frac{\partial \xi}{\partial t} + (\mathbf{w}.\nabla)\xi = 0$
- partie diffusion : $\frac{\partial \xi}{\partial t} = \nu \triangle \xi$

Pour les particules de vortex :

- convection : $\frac{d\mathbf{x}_i}{dt} = \mathbf{w}(\mathbf{x}_i)$
- diffusion : méthode de marche aléatoire [Chorin 73]

perturbation gaussienne appliquée à \mathbf{x}_i

$$\overset{\mathbf{x}_i}{\bullet} \xrightarrow{\mathbf{w}(\mathbf{x}_i)} \bullet \checkmark^{\bullet}$$

Modèle d'état

Evolution des particules de vortex = système de particules en interaction :

$$\begin{split} d\mathbf{x}_{i,t} &= \sum_{j=1}^{p} \gamma_j K_{\epsilon_j}^{\perp} (\mathbf{x}_{i,t} - \mathbf{x}_{j,t}) dt + \sqrt{2\nu} d\mathbf{B}_{i,t}, \quad 1 \leq i \leq p \\ \mathsf{Avec} \ \mathbf{X} &= (\mathbf{x}_1, ..., \mathbf{x}_p)^T \ \mathsf{et} \ \mathbf{w}(\mathbf{X}) = (\mathbf{w}(\mathbf{x}_1), ..., \mathbf{w}(\mathbf{x}_p))^T : \\ d\mathbf{X}_t &= \mathbf{w}(\mathbf{X}_t) dt + \sqrt{2\nu} d\mathbf{B}_t \end{split}$$

Modèle d'état

Evolution des particules de vortex = système de particules en interaction :

$$\begin{split} d\mathbf{x}_{i,t} &= \sum_{j=1}^{p} \gamma_j K_{\epsilon_j}^{\perp} (\mathbf{x}_{i,t} - \mathbf{x}_{j,t}) dt + \sqrt{2\nu} d\mathbf{B}_{i,t}, \quad 1 \leq i \leq p \\ \mathsf{Avec} \ \mathbf{X} &= (\mathbf{x}_1, ..., \mathbf{x}_p)^T \ \mathsf{et} \ \mathbf{w}(\mathbf{X}) = (\mathbf{w}(\mathbf{x}_1), ..., \mathbf{w}(\mathbf{x}_p))^T : \\ d\mathbf{X}_t &= \mathbf{w}(\mathbf{X}_t) dt + \sqrt{2\nu} d\mathbf{B}_t \end{split}$$

Ajout d'un terme d'erreur

$$d\mathbf{X}_t = \mathbf{w}(\mathbf{X}_t)dt + (\sqrt{2\nu} + \eta)d\mathbf{B}_t$$

Modèle d'observations

Au temps t_k , hypothèse de conservation de la luminance :

$$I_k(\mathbf{x}) = I_{k+1}(\mathbf{x} + \mathbf{w}_{t_k}(\mathbf{x})) + u_k \quad u_k \sim \mathcal{N}(0, \sigma^2)$$

Vecteur d'observations :

 $\mathbf{Z}_k = \{I_k(\mathbf{x})\}_{\mathbf{x} \in R = \cup_{j=1}^p R_j} (R_j \text{ définie autour de la particule } \mathbf{x}_j)$

$$\mathsf{Vraisemblance}: p(\mathbf{Z}_k | \mathbf{X}_{t_k}) \propto \exp(-\int_R \frac{(I_k(\mathbf{x}) - I_{k+1}(\mathbf{x} + \mathbf{w}_{t_k}(\mathbf{x})))^2}{2\sigma^2} d\mathbf{x})$$

Modèle de filtrage :

$$\begin{cases} d\mathbf{X}_t = \mathbf{w}(\mathbf{X}_t)dt + \sigma d\mathbf{B}_t \\ p(\mathbf{Z}_k|\mathbf{X}_{t_k}) \end{cases}$$

Fortes non linéarités

Technique du filtrage particulaire (temps continu [Del Moral et al.
 01])

$$\mathbf{t_k} = \mathbf{0}$$
 : Initialisation de $\mathbf{X}_0 = (\mathbf{x}_{1,0},...,\mathbf{x}_{p,0})^T$ et $eta = \{\gamma_j,\epsilon_j\}_{j=1:p}$

 $\mathbf{t_k} = \mathbf{1}, \mathbf{2}, \ldots$:

• prédiction

$$\mathbf{X}_{t_k}^{(i)} \sim p(\mathbf{X}_{t_k} | \mathbf{X}_{t_{k-1}}^{(i)})$$

 \rightarrow

simulation de N trajectoires { $\mathbf{X}_{t}^{(i)} : t_{k-1} < t \leq t_{k}$ }_{i=1:N} selon $d\mathbf{X}_{t} = \mathbf{w}(\mathbf{X}_{t})dt + \sigma d\mathbf{B}_{t}$

$$\mathbf{t_k} = \mathbf{0}$$
 : Initialisation de $\mathbf{X}_0 = (\mathbf{x}_{1,0},...,\mathbf{x}_{p,0})^T$ et $eta = \{\gamma_j,\epsilon_j\}_{j=1:p}$

 $\mathbf{t_k} = \mathbf{1}, \mathbf{2}, \ldots$:

• prédiction

$$\mathbf{X}_{t_k}^{(i)} \sim p(\mathbf{X}_{t_k} | \mathbf{X}_{t_{k-1}}^{(i)})$$

 \rightarrow

simulation de N trajectoires { $\mathbf{X}_{t}^{(i)} : t_{k-1} < t \leq t_{k}$ }_{i=1:N} selon $d\mathbf{X}_{t} = \mathbf{w}(\mathbf{X}_{t})dt + \sigma d\mathbf{B}_{t}$

• correction

$$w_k^{(i)} \propto w_{k-1}^{(i)} p(\mathbf{Z}_k | \mathbf{X}_{t_k}^{(i)})$$

 $\mathbf{t_k} = \mathbf{1}, \mathbf{2}, \dots$:

• estimation

$$p(\mathbf{X}_{t_k}|\mathbf{Z}_{1:k}) \approx \sum_{i=1}^N w_k^{(i)} \delta_{\mathbf{X}_{t_k}^{(i)}}(\mathbf{X}_{t_k})$$

 $\mathbf{t_k} = \mathbf{1}, \mathbf{2}, \ldots$:

• estimation

$$p(\mathbf{X}_{t_k} | \mathbf{Z}_{1:k}) \approx \sum_{i=1}^N w_k^{(i)} \delta_{\mathbf{X}_{t_k}^{(i)}}(\mathbf{X}_{t_k})$$
$$\hat{\mathbf{X}}_{t_k} = (\hat{\mathbf{x}}_{1,t_k}, ..., \hat{\mathbf{x}}_{p,t_k})^T = \mathbb{E}(\mathbf{X}_{t_k} | \mathbf{Z}_{1:k}) \simeq \sum_{i=1}^N \widetilde{w}_k^{(i)} \mathbf{X}_{t_k}^{(i)}$$

 $\mathbf{t_k} = \mathbf{1}, \mathbf{2}, \ldots$:

• estimation

$$p(\mathbf{X}_{t_k} | \mathbf{Z}_{1:k}) \approx \sum_{i=1}^N w_k^{(i)} \delta_{\mathbf{X}_{t_k}^{(i)}}(\mathbf{X}_{t_k})$$
$$\hat{\mathbf{X}}_{t_k} = (\hat{\mathbf{x}}_{1,t_k}, \dots, \hat{\mathbf{x}}_{p,t_k})^T = \mathbb{E}(\mathbf{X}_{t_k} | \mathbf{Z}_{1:k}) \simeq \sum_{i=1}^N \widetilde{w}_k^{(i)} \mathbf{X}_{t_k}^{(i)}$$
$$\hat{\mathbf{w}}_{t_k}(\mathbf{x}) = \sum_{j=1}^p \gamma_j K_{\epsilon_j}^{\perp}(\mathbf{x} - \hat{\mathbf{x}}_{j,t_k}) \quad \forall \mathbf{x} \in \Omega$$

Exemples

Séquence synthétique de 5 particules de vortex

Résultat du suivi (modélisation continue) $d\mathbf{X}_t = \mathbf{w}(\mathbf{X}_t)dt + \sigma d\mathbf{B}_t$

Trajectoires des 10 coordonnées

Séquence synthétique de turbulence 2D

Navier-Stokes 2D simulée par DNS (Simulation Numérique Directe)

Séquence synthétique de turbulence 2D

Résultat du suivi (100 particules de vortex, 1000 trajectoires de filtrage)

Séquence synthétique de turbulence 2D

Erreur d'estimation de la vorticité

Application en mécanique des fluides : vortex générés en bout d'aile d'avion

Propagation des particules de vortex selon le modèle d'évolution

Application en mécanique des fluides : vortex générés en bout d'aile d'avion

Résultat du suivi (15 particules de vortex,1000 trajectoires de filtrage)

Application en météorologie : cyclone sur l'océan indien (LMD)

Application en météorologie : cyclone sur l'océan indien (LMD) Résultat du suivi (15 particules de vortex,1000 trajectoires de filtrage)

33 / 37

Application en météorologie : cyclone Vince (LMD)

Résultat du suivi (7 particules de vortex,1000 trajectoires de filtrage)

Conclusion

- représentation réduite de l'écoulement (particules de vortex)
- connaissance a priori sur l'évolution du fluide
- modèle continu / observations discrètes
- cohérence temporelle
- champs de vecteur disponibles à chaque instant

- bons résultats pour espaces d'état de dimension réduite
- écoulements complexes : suivi des grandes échelles

Perspectives

- extension en 3D
- problème de la dimension
 - parallélisation de l'algorithme
 - réduction de la dimension du problème de filtrage
 - simuler le processus vers les observations
- autres modèles réduits de l'écoulement
- autres méthodes de filtrage

http://www.irisa.fr/vista

http://fluid.irisa.fr