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Purpose of assimilation : reconstruct as accurately as possible the state of
the atmosphere (the ocean, or whatever the system of interest is), using all
available appropriate information. The latter essentially consists of

= The observations.

= The physical laws governing the system, available in practice in the
form of a discretized, and necessarily approximate, numerical model.

= ‘Asymptotic’ properties of the flow, such as, e. g., geostrophic balance of middle latitudes.
Although they basically are necessary consequences of the physical laws which govern the
flow, these properties can usefully be explicitly introduced in the assimilation process.



Both observations and ‘model’ are affected with some uncertainty =
uncertainty on the estimate.

For some reason, uncertainty is conveniently described by probability
distributions (Jaynes, E. T., 2007, Probability Theory: The Logic of Science, Cambridge

University Press).

Assimilation is a problem in bayesian estimation.

Determine the conditional probability distribution for the state of the system,

knowing everything we Know (unambiguously defined if a prior probability distribution is
defined; see Tarantola, 2005).



Bayesian estimation impossible in practice because

» [tis impossible to explicitly describe a probabilitgtdbution in a
space with dimension even as lowras 10°, not to speak of the
dimensionn ~ 10°’ of present NWP models.

= Probability distribution of errors affecting data igry poorly
known (errors in assimilating model).



How to define in practice a probability distribution in a very large dimensional space ?

Only possible way seems to be through a finite ensemble, meant to sample the
distribution.

= Ensemble methods (used also for prediction)

Typical size of ensembles in present meteorological applications : O(10-100)

Exist at present in two forms

- Ensemble Kalman Filter (EnKF).

- Particle filters.



Observation vector at time k

Y = HiX + &

E(8)=0 ; E(58") =R,

Evolution equation

Xer1 = MiXie+ 17 k
E(7)=0 ; E(mn’) = Q4
E(ng") =0

Background estimate at time 0

X=X+ {%
E({P) =0 E({P{PT) =P
E({"&") =0 E({Poi') =0

I
o



Seguential assimilation assumes the forrKamman filter
Backgroundk®, and associated error covariance ma@fixknown
Analysis step

X = X0+ PO HT [HPOHT + RI™ (Vi - Hx)

P2 = PO - PO HT [HPOHT + RJH P

Forecast step

Xour = M

PP1 = M PR M T+ Q

Kalman Filter produces at every stkephe Best Linear Unbiased Estima(BLUE) of
real unknown state from all data prior tk. In addition, it achieves bayesian estimation
when the errorés, 7,, {*,) are globally gaussian.



How to update predicted ensemble with new obsemat?

Predicted ensemble at tihe{x°_}, n=1,...,N
Observation vector at same timg = Hx + &

Gaussian approach

Produce sample of probability distribution for rekerved quantitiix

Yn=Y- &

whereg, is distributed according to probability distributiéor observation erro.
Then use Kalman formula to produce sample of ‘aselystates

x@ =xb +PPHT[HPPHT + R (y, - HX?) , n=1,...,N (2)

wherePPis ‘exact’ (not sample) covariance matrix of predicensembléx®. } .

In the linear case, and if errors are gaussiana¢Bleves Bayesian estimation, in the sense
that{x@ } is a sample of conditional probability distributiforx, given all data up to time



Ensemble Kalman Filt§EnKF, Evensen, 1994, and many others)

- In the forecast phase, ensemble is evolved acugriti model equations (with possible
inclusion of random noise to simulate effect of mloerrors).

- In the analysis phase, ensemble is updated acgptdi procedure that has just been
described (equation 2 on previous slide), the ma&?ibeing now the sample covariance
matrix of the background ensem¥be }.
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Ensemble Kalman Filtgcontinuation)

Even if dynamical model is nonlinear, forecast gh&s bayesian (provided errors are
independent in time). Analysis phase will not imgeal because of

- Nonlinearity of observation operator
- Non-gaussianity of background and/or observatioors

- Sampling effects ifP?



Ensemble Kalman Filter is very commonly used in metkgical and oceanographical
applications. Many variants exist, some of which mmt require perturbations of the
observations, but require previous analysis abduthvensemble is evolvedEiisemble
Transform Kalman FiltelETKF, Bishopet al, 2001)

A general problem isollapse of ensembia analysis phase. If dimension of ensemble is
small (O(10-50), spread of ensembles decreases in analysis. Simge émsembles are
costly,ad hocprocedures are used to alleviate that effect :

- Covariance inflation The spread of the ensemble about its mean igased by an
empirically determined numerical factor.

- ‘Localization. Sampling effects in the background error covace matrix create
unrealistic correlations over large distances inysplal space. These unrealistic
correlations seem to contribute to the collapseemdembles. They are eliminated by
element-wise multiplication of the sample covaremaatrix by another positive-definite
matrix with compact support in physical space.

- Double ensemblesTwo ensembles are evolved in parallel, the bamkgl error
covariance matrix for updating either ensemble dpeietermined from the other ensemble.



Origin of ensemble collapse ?

Ensemble collapse generally attributed to the fhett ensemble siz&l is small in
comparison with state dimension(10-100against10°7). In particular, corrections made
by analysis on background are limited to a spatie dfimension\.

Descamps (2007) has observed that collapse ocecwsmall dimensionn=1) with N>n.
Sampling effects in the background error covarianegrix play a role.



Exact bayesian estimation

Particle filters

Predicted ensemble at time{x* ,n=1, ...,N}, each element with its own weight
(probability) P(x° )
Observation vector at same timg= Hx + &

Bayes’ formula

POE, 1Y) O P(y | x0) P(¢,)
Defines updating of weights

Remarks
* Many variants exist, including possible ‘regenienaitof ensemble elements

» If errors are correlated in time, explicit comgidga of P(y | x° ) will require using past data that are
correlated withy (same remark for evolution of ensemble betweendlservation times)
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Fic. 12. Comparison of rms error (m? 5 ') between ensemble mean
and independent observations (dotted line) and the std deyv in the
ensemble {solid line). The excellent agreement shows that the SIRF

is working correctly.

van Leeuwen, 2003, Mon. Wea. Rev., 131, 2071-2084



Exact bayesian estimation

Acceptation-rejection

Bayes’ formula

f(x) =P |y) = P(y | x) P(x) / P(y)
defines probability density function far

Construct sample of that pdf as follows.

Draw randomly coupléé, ¢) 0 S x [0,sugd].
Keepéif ¢<1(&). &is then distributed according t(x).
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Acceptation-rejection

Seems costly.

Requires capability of permanently interpolatinghability distribution defined by
finite sample to whole state space.



Time-correlated Errors

Sequential methods, whether of the Kalman or parfiter type cannot
be Bayesian if errors are not independent in times Extends to
‘smoothers’, in which updating by new observation e&f@grmed, not
only on estimate at observation time, but also on astisnat previous

times.



Time-correlated Errors

Example of time-correlated observation errors

=X+
Z,=X+{,

E({)=E({) =0 ; E((?)=E(GA) =s ; E({(1{) =0

BLUE of x from z; andz, gives equal weights tg andz,.

Additional observation then becomes available

Z3=X+ {3

E({3=0 ; E(&G)=s ; E({{d=cs ; E({LLG)=0

BLUE of x from (z,, z,, z;) has weights in the proportidf, 1+c, 1)



Time-correlated Errors (continuation 1)

Example of time-correlated model errors

Evolution equation

Xier1 = X F 7 E(nd) =4
Observations
Vi = X + &, k=0,1,2 E(52) =r, errors uncorrelated in time

]

Sequential assimilation. Weights giveny#pandy;, in analysis at timé are in the
ratio r/(r+q). That ratio will be conserved in sequential adsition. All right if model

errors are uncorrelated in time.

Assume E(77,/7,) = Cq
Weights given tg/, andy; in estimation ofk, are in the ratio

xl




Time-correlated Errors (continuation 2)

Moral. If data errors are correlated in time, it is possible to discard observations as they

are used while preserving optimality of the estioraprocess. In particular, if model error
is correlated in time, all observations are liatbl®e reweighted as assimilation proceeds.

Variational assimilation can take time-correlateaes into account.

Example of time-correlated observation errors. Glawovariance matrix
R = (Ry = E(§&T)) i
Objective function

&SOS -
J(&) = (1/2) & - &) TP (X - &) + (1/2) Zkk’[yk - H &R e [Yie - Hiediel

where[R 1], is thekk’-subblock of global inverse matrix .

Similar approach for time-correlated model error.



Time-correlated Errors (continuation 3)

Time correlation of observational error has bedroduced by ECMWF (Jarvineet al,
1999) in variational assimilation of high-frequensurface pressure observations
(correlation originates in that case in represergaess error).

|dentification and quantification of temporal cdatgon of errors, especially model errors ?



Q. Is it possible to have at the same time the advantages of both ensemble
estimation and variational assimilation (propagation of information both forward and
backward in time, and, more importantly, possibility to take temporal dependence
into account) ?

Same approach that underlies EnKF. Perturb all data (model and observations)
according to the corresponding error probability distribution and, for each set of
perturbed data, perform a variational assimilation. In the linear and gaussian case,
this will produce a sample of conditional probability distribution for the orbit of the
system, subject to the data.

Still to be done.



Evaluation of assimilation ensembles

Ensembles must be evaluated as descriptors of lptdpalistributions (and not for instance on thasks
of properties of individual elements). This impliasnong others

- Validation of the expectation of the ensembles
- Validation of the spreafspread-skill relationship)

Reduced Centred Random Variaf®CRYV, Candilleet al, 2006)

For some scalar variabke ensemble has meamand standard deviatiom Ratio

_E—q
o )

S

wherefis verifying observation. Over a large number @fliEations

E(s)=0 , E)=1
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Fic. 12. Comparison of rms error (m? 5 ') between ensemble mean
and independent observations (dotted line) and the std deyv in the
ensemble {solid line). The excellent agreement shows that the SIRF

is working correctly.

van Leeuwen, 2003, Mon. Wea. Rev., 131, 2071-2084
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F1G. 4. Evolution of the std dev of the RCRYV, as a function of
lead time, for the four different methods: EnKF (solid line),
ETKF (dotted line), BM (dashed line), and SV computed over a
24-h optimization period (heavy dashed-dotted line) and SV com-
puted over a 48-h optimization period (thin dashed—dotted line).

Descamps and Talagrardon. Wea. Rey2007



Rank Histograms

For some scalar variable N ensemble values, assumed toNomdependent realizations of
the same probability distribution, ranked in in&ieg order

X; < Xp < .S Xy

Define N+1 intervals.

If verifying observationéis an N+1st independent realization of the same probability
distribution, it must be statistically undistinguigble from thex's. In particular, must be
uniformly distributed among thié+1 intervals defined by the's.
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Rank histogramslgs, Northern Atlantic, winter 1998-99
Top panels: ECMWEF, bottom panels: NCEP (from Cadadidoctoral Dissertation, 2003)



Two properties make the value of an ensemble eStimaystem (either for assimilation or for predino)

Reliability is statistical consistency between estimated pribtyathistributions and verifying observations.
Is objectively and quantitatively measured by a bemof standard diagnostics (among which Reduced
Centred Random Variable and Rank Histograms, réigloomponent of Brier and Brier-like scores).

Resolution(aka skewnessis the property that reliably predicted probabpildistributions are useful
(essentially have small spread). Also measuredrynaber of standard diagnostics (resolution compbnen
of Brier and Brier-like scores).

To-day’s message. Evaluate assimilation ensemblesms of reliability and resolution.



Size of Ensembles ?

0 Observed fact : in ensemble prediction, presentesceaturate for value of ensemble
sizeN in the range 30-50, independently of quality of scor
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Size of Ensembles (continued) ?

0 Relatively large ensembles seem to be necessamyuimerical implementation of
EnKF, but not for simply evolving probability digiutions in a prediction process.

0 Q. What about particle filters ?



