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Purpose of assimilation : reconstruct as accurately as possible the state of 

the atmosphere (the ocean, or whatever the system of interest is), using all 

available appropriate information. The latter essentially consists of

� The observations.

� The physical laws governing the system, available in practice in the 

form of a discretized, and necessarily approximate, numerical model.

� ‘Asymptotic’ properties of the flow, such as, e. g., geostrophic balance of middle latitudes. 

Although they basically are necessary consequences of the physical laws which govern the 

flow, these properties can usefully be explicitly introduced in the assimilation process.



Both observations and ‘model’ are affected with some uncertainty ⇒

uncertainty on the estimate.

For some reason, uncertainty is conveniently described by probability 

distributions (Jaynes, E. T., 2007, Probability Theory: The Logic of Science, Cambridge 

University Press).

Assimilation is a problem in bayesian estimation.

Determine the conditional probability distribution for the state of the system, 

knowing everything we know (unambiguously defined if a prior probability distribution is 

defined; see Tarantola, 2005).



Bayesian estimation impossible in practice because

� It is impossible to explicitly describe a probability distribution in a 
space with dimension even as low as n 103, not to speak of the 
dimension  n 106-7 of present NWP models.

� Probability distribution of errors affecting data is very poorly 
known (errors in assimilating model).



How to define in practice a probability distribution in a very large dimensional space ?

Only possible way seems to be through a finite ensemble, meant to sample the 

distribution.

⇒ Ensemble methods (used also for prediction)

Typical size of ensembles in present meteorological applications : O(10-100)

Exist at present in two forms

- Ensemble Kalman Filter (EnKF).

- Particle filters.



� Observation vector at time k

yk = Hkxk + εk k = 0, …, K

E(εk) = 0   ; E(εkεj
T) ≡ Rk δkj

� Evolution equation

xk+1 = Mkxk + ηk k = 0, …, K-1

E(ηk) = 0   ;  E(ηkηj
T) ≡ Qk δkj 

E(ηkεj
T) = 0

� Background estimate at time 0
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Sequential assimilation assumes the form of Kalman filter

Background xb
k and associated error covariance matrix Pb

k known

� Analysis step
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� Forecast step
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a
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Kalman Filter produces at every step k the Best Linear Unbiased Estimate (BLUE) of 
real unknown state xkfrom all data prior to k. In addition, it achieves bayesian estimation 
when the errors (εk, ηk, ζb

0) are globally gaussian.



How to update predicted ensemble with new observations ?

Predicted ensemble at time t : { xb
n}, n = 1, …, N

Observation vector at same time : y = Hx + ε

• Gaussian approach

Produce sample of probability distribution for real observed quantity Hx 
yn = y - εn

where εn is distributed according to probability distribution for observation error ε. 

Then use Kalman formula to produce sample of ‘analysed’ states

xa
n = xb

n + Pb HT [HPbHT + R]-1 (yn - Hxb
n) , n = 1, …, N (2)

where Pb is ‘exact’ (not sample) covariance matrix of predicted ensemble { xb
n} .

In the linear case, and if errors are gaussian, (2)achieves Bayesian estimation, in the sense 
that { xa

n} is a sample of conditional probability  distribution for x, given all data up to time t.



Ensemble Kalman Filter(EnKF, Evensen, 1994, and many others)

- In the forecast phase, ensemble is evolved according to model equations (with possible 
inclusion of random noise to simulate effect of model errors).

- In the analysis phase, ensemble is updated according to procedure that has just been 
described (equation 2 on previous slide), the matrix Pb being now the sample covariance 
matrix of the background ensemble { xb

n} .



I. Hoteit, Doctoral Dissertation, Université Joseph Fourier, Grenoble, 2001



Ensemble Kalman Filter(continuation)

Even if dynamical model is nonlinear, forecast phase is bayesian (provided errors are 
independent in time). Analysis phase will not in general because of

- Nonlinearity of observation operator

- Non-gaussianity of background and/or observation errors

- Sampling effects in Pb



Ensemble Kalman Filter is very commonly used in meteorological and oceanographical 
applications. Many variants exist, some of which do not require perturbations of the 
observations, but require previous analysis about which ensemble is evolved (Ensemble 
Transform Kalman Filter, ETKF, Bishop et al., 2001)

A general problem is collapse of ensemblein analysis phase. If dimension of ensemble is 
small (O(10-50)), spread of ensembles decreases in analysis. Since large ensembles are 
costly, ad hoc procedures are used to alleviate that effect :

- Covariance inflation. The spread of the ensemble about its mean is increased by an 
empirically determined numerical factor.

- ‘Localization’. Sampling effects in the background error covariance matrix create 
unrealistic correlations over large distances in physical space. These unrealistic 
correlations seem to contribute to the collapse of ensembles. They are eliminated by
element-wise multiplication of the sample covariance matrix by another positive-definite 
matrix with compact support in physical space.

- Double ensembles. Two ensembles are evolved in parallel, the background error 
covariance matrix for updating either ensemble being determined from the other ensemble.



Origin of ensemble collapse ?

Ensemble collapse generally attributed to the fact that ensemble size N is small in 
comparison with state dimensionn (10-100 against 106-7). In particular, corrections made 
by analysis on background are limited to a space with dimension N.

Descamps (2007) has observed that collapse occurs in small dimension (n=1) with N>n. 
Sampling effects in the background error covariance matrix play a role.



Exact bayesian estimation

Particle filters

Predicted ensemble at time t : { xb
n, n = 1, …, N }, each element with its own weight

(probability) P(xb
n)

Observation vector at same time : y = Hx + ε

Bayes’ formula

P(xb
n | y) ∼ P(y | xb

n) P(xb
n)

Defines updating of weights

Remarks
• Many variants exist, including possible ‘regeneration’ of ensemble elements

• If errors are correlated in time, explicit computation of P(y | xb
n) will require using past data that are 

correlated with y (same remark for evolution of ensemble between two observation times)



van Leeuwen, 2003, Mon. Wea. Rev., 131, 2071-2084



Exact bayesian estimation

Acceptation-rejection

Bayes’ formula

f(x) ≡ P(x | y) = P(y | x) P(x) / P(y)

defines probability density function for x.

Construct sample of that pdf as follows.

Draw randomly couple(ξ, ψ) ∈∈∈∈ S x [0,supf].

Keep ξ if ψ < f(ξ). ξ is then distributed according to f(x).





Miller, Carter and Blue, 1999, Tellus, 51A, 167-194



Acceptation-rejection

Seems costly.

Requires capability of permanently interpolating probability distribution defined by
finite sample to whole state space.



Time-correlated Errors

Sequential methods, whether of the Kalman or particle filter type cannot 
be Bayesian if errors are not independent in time. This extends to 
‘smoothers’, in which updating by new observation is performed, not 
only on estimate at observation time, but also on estimates at previous 
times.



Time-correlated Errors

Example of time-correlated observation errors

z1 = x + ζ1

z2 = x + ζ2

E(ζ1) = E(ζ2) = 0 ;  E(ζ1
2) = E(ζ2

2) = s ; E(ζ1ζ2) = 0

BLUE of x from z1 and z2 gives equal weights to z1 and z2.

Additional observation then becomes available

z3 = x + ζ3

E(ζ3) = 0  ;    E(ζ3
2) = s ;    E(ζ1ζ3) = cs ;    E(ζ2ζ3) = 0

BLUE of x from (z1, z2, z3) has weights in the proportion (1, 1+c, 1)



Time-correlated Errors (continuation 1)

Example of time-correlated model errors

Evolution equation

` xk+1 = xk + ηk E(ηk
2) = q

Observations

yk = xk + εk , k = 0, 1, 2 E(εk
2) = r, errors uncorrelated in time

Sequential assimilation. Weights given to y0 and y1 in analysis at time 1 are in the 
ratio r/(r+q). That ratio will be conserved in sequential assimilation. All right if model 
errors are uncorrelated in time.

Assume E(η0η1) = cq
Weights given to y0 and y1 in estimation of x2 are in the ratio



Time-correlated Errors (continuation 2)

Moral. If data errors are correlated in time, it is not possible to discard observations as they 
are used while preserving optimality of the estimation process. In particular, if model error 
is correlated in time, all observations are liable to be reweighted  as assimilation proceeds.

Variational assimilation can take time-correlated errors into account.

Example of time-correlated observation errors. Global covariance matrix

R = (Rkk’ = E(εkεk’
T))

Objective function

ξ0 ∈ S   → 
J(ξ0) =  (1/2) (x0

b - ξ0)
T [P0

b]-1 (x0
b - ξ0) + (1/2)Σkk’[yk - Hkξk]

T [R -1]kk’ [yk’ - Hk’ξk’]

where [R -1]kk’ is the kk’-subblock of global inverse matrix R -1.

Similar approach for time-correlated model error.



Time-correlated Errors (continuation 3)

Time correlation of observational error has been introduced by ECMWF (Järvinen et al., 
1999) in variational assimilation of high-frequency surface pressure observations 
(correlation originates in that case in representativeness error).

Identification and quantification of temporal correlation of errors, especially model errors ?



Q. Is it possible to have at the same time the advantages of both ensemble 

estimation and variational assimilation (propagation of information both forward and 

backward in time, and, more importantly, possibility to take temporal dependence 

into account) ?

Same approach that underlies EnKF. Perturb all data (model and observations) 

according to the corresponding error probability distribution and, for each set of 

perturbed data, perform a variational assimilation. In the linear and gaussian case, 

this will produce a sample of conditional probability distribution for the orbit of the 

system, subject to the data.

Still to be done.



Evaluation of assimilation ensembles

Ensembles must be evaluated as descriptors of probability distributions (and not for instance on the basis 

of properties of individual elements). This implies, among others

- Validation of the expectation of the ensembles

- Validation of the spread (spread-skill relationship)

Reduced Centred Random Variable (RCRV, Candille et al., 2006)

For some scalar variable x, ensemble has mean µ and standard deviation σ. Ratio

where ξ is verifying observation. Over a large number of realizations 

E(s) = 0         , E(s2) = 1



van Leeuwen, 2003, Mon. Wea. Rev., 131, 2071-2084



Descamps and Talagrand, Mon. Wea. Rev., 2007



Rank Histograms

For some scalar variable x, N ensemble values, assumed to be N independent realizations of 

the same probability distribution, ranked in increasing order

x1 < x2 < …< xN

Define N+1 intervals.

If verifying observation ξ is an N+1st independent realization of the same probability 

distribution, it must be statistically undistinguishable from the xi‘s. In particular, must be 

uniformly distributed among the N+1 intervals defined by the xi‘s.



Rank histograms, T850, Northern Atlantic, winter 1998-99

Top panels: ECMWF, bottom panels: NCEP (from Candille, Doctoral Dissertation, 2003)



Two properties make the value of an ensemble estimation system (either for assimilation or for prediction)

Reliability is statistical consistency between estimated probability distributions and verifying observations. 

Is objectively and quantitatively measured by a number of standard diagnostics (among which Reduced 

Centred Random Variable and Rank Histograms, reliability component of Brier and Brier-like scores).

Resolution (aka skewness) is the property that reliably predicted probability distributions are useful 

(essentially have small spread). Also measured by a number of standard diagnostics (resolution component 

of Brier and Brier-like scores).

.

To-day’s message. Evaluate assimilation ensembles in terms of reliability and resolution.



Size of Ensembles ?

o Observed fact : in ensemble prediction, present scores saturate for value of ensemble 
size N in the range 30-50, independently of quality of score.



Impact of ensemble size on Brier Skill Score
ECMWF, event T850 > Tc Northern Hemisphere

(Talagrand et al., ECMWF, 1999)

Theoretical estimate (raw Brier score)



Size of Ensembles (continued) ?

o Relatively large ensembles seem to be necessary for numerical implementation of 
EnKF, but not for simply evolving probability distributions in a prediction process.

o Q. What about particle filters ?


