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1 (motivation : Kalman filter in large dimension : 1)

linear Gaussian state–space model

Xk = Fk Xk−1 + Wk with Wk ∼ N(0, Qk)

Yk = Hk Xk + Vk with Vk ∼ N(0, Rk)

and Gaussian initial condition X0 ∼ N(m0, Σ0)

observation noise covariance matrix Rk assumed invertible

conditional probability distribution

of hidden state Xk given past observations Y0:k = (Y0, · · · , Yk)

is Gaussian, with mean vector X̂k and covariance matrix Pk



2 (motivation : Kalman filter in large dimension : 2)

Kalman filter equation

◮ initialization

X̂−
0 = m0 and P−

0 = Σ0

◮ prediction (forecast) step

X̂−
k = Fk X̂k−1 and P−

k = Fk Pk−1 F ∗
k + Qk

◮ correction (analysis) step

X̂k = X̂−
k + Kk (Yk − Hk X̂−

k ) and Pk = (I − Kk Hk) P−
k

with Kalman gain matrix defined by

Kk = P−
k H∗

k (Hk P−
k H∗

k + Rk)−1



3 (motivation : Kalman filter in large dimension : 3)

if dimension m of hidden state is large, then computing and storing large m × m

covariance matrices P−
k and Pk is just impossible

matrix products in prediction equation

P−
k = Fk Pk−1 F ∗

k + Qk

are even more problematic to work out

usually, dimension d of observation is much less, and matrix products in

expression of Kalman gain matrix

Kk = P−
k H∗

k (Hk P−
k H∗

k + Rk)−1

or in correction equation

Pk = (I − Kk Hk) P−
k = P−

k − P−
k H∗

k (Hk P−
k H∗

k + Rk)−1 Hk P−
k

are much less problematic to work out

idea behind ensemble Kalman filter (EnKF) : use Monte Carlo samples and use

empirical covariance matrix in place of prediction covariance matrix



4 (motivation : Kalman filter in large dimension : 4)

in practice

forecast ensemble (X1,f
k , · · · , X

N,f
k ) represents predictor estimate X−

k

and

analysis ensemble (X1,a
k , · · · , X

N,a
k ) represents filter estimate Xk

◮ initialization : initial ensemble (X1,f
0 , · · · , X

N,f
0 ) is simulated as i.i.d. Gaussian

random vectors with mean m0 and covariance matrix Σ0, i.e. with same statistics

as initial condition X0

◮ prediction (forecast) step : given analysis ensemble (X1,a
k−1

, · · · , X
N,a
k−1

) each

ensemble element is propagated independently according to

X
i,f
k = Fk X

i,a
k−1

+ W i
k with W i

k ∼ N(0, Qk)

notice that i.i.d. random vectors (W 1
k , · · · , WN

k ) are simulated here, with same

statistics as additive Gaussian noise Wk in original state equation : in particular

(W 1
k , · · · , WN

k ) are independent of forecast elements (X1,a
k−1

, · · · , X
N,a
k−1

)



5 (motivation : Kalman filter in large dimension : 5)

◮ correction (analysis) step : given forecast ensemble (X1,f
k , · · · , X

N,f
k ) each

ensemble element is updated independently according to

X
i,a
k = X

i,f
k + KN

k (Yk − Hk X
i,f
k − V i

k ) with V i
k ∼ N(0, Rk)

with empirical Kalman gain matrix defined by

KN
k = PN

k H∗
k (Hk PN

k H∗
k + Rk)−1

in terms of empirical covariance matrix of forecast elements

mN
k =

1

N

N∑

i=1

X
i,f
k and PN

k =
1

N

N∑

i=1

(Xi,f
k − mN

k ) (Xi,f
k − mN

k )∗

notice that i.i.d. random vectors (V 1
k , · · · , V N

k ) are simulated here, with same

statistics as additive Gaussian noise Vk in original observation equation : in

particular (V 1
k , · · · , V N

k ) are independent of forecast elements (X1,f
k , · · · , X

N,f
k )



6 (motivation : Kalman filter in large dimension : 6)

in practice

• only samples are used

• empirical covariance matrix is never computed

indeed, to evaluate matrix–vector product PN
k u where u is a (column) vector of

dimension m, only N scalar products need to be evaluated, since

PN
k u = [

1

N

N∑

i=1

(Xi,f
k − mN

k ) (Xi,f
k − mN

k )∗] u =
1

N

N∑

i=1

ui (Xi,f
k − mN

k )

with ui = (Xi,f
k − mN

k )∗ u for any i = 1, · · · , N



7 (motivation : Kalman filter in large dimension : 7)

in particular, Hk can be seen as a collection of d (row) vectors of dimension m,

and to evaluate matrix products PN
k H∗

k and Hk PN
k H∗

k , only N × d scalar

products need to be evaluated, since

PN
k H∗

k = [
1

N

N∑

i=1

(Xi,f
k − mN

k ) (Xi,f
k − mN

k )∗] H∗
k =

1

N

N∑

i=1

(Xi,f
k − mN

k ) h∗
i

and

Hk PN
k H∗

k = Hk [
1

N

N∑

i=1

(Xi,f
k − mN

k ) (Xi,f
k − mN

k )∗] H∗
k =

1

N

N∑

i=1

hi h∗
i

with hi = Hk (Xi,f
k − mN

k ) for any i = 1, · · · , N



8 (motivation : Kalman filter in large dimension : 8)

question : does empirical mean of ensemble elements converge to Kalman filter,

i.e. does

1

N

N∑

i=1

X
i,f
k −→ X̂−

k and
1

N

N∑

i=1

X
i,a
k −→ X̂k

hold, as N ↑ ∞ ?

answer is YES
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9 (EnKF as particle system with mean–field interactions : 1)

ensemble Kalman filter idea has been extended to any system of the form

Xk = fk(Xk−1) + Wk with Wk ∼ N(0, Qk)

Yk = Hk Xk + Vk with Vk ∼ N(0, Rk)

with non–necessarily Gaussian initial condition X0 ∼ η0



10 (EnKF as particle system with mean–field interactions : 2)

◮ initialization : initial ensemble (X1,f
0 , · · · , X

N,f
0 ) is simulated as i.i.d. random

vectors with probability distribution η0, i.e. with same statistics as initial condition

X0

◮ prediction (forecast) step : given analysis ensemble (X1,a
k−1

, · · · , X
N,a
k−1

) each

ensemble element is propagated independently according to (set of decoupled

equations)

X
i,f
k = fk(Xi,a

k−1
) + W i

k with W i
k ∼ N(0, Qk)

notice that i.i.d. random vectors (W 1
k , · · · , WN

k ) are simulated here, with same

statistics as additive Gaussian noise Wk in original state equation : in particular

(W 1
k , · · · , WN

k ) are independent of forecast elements (X1,a
k−1

, · · · , X
N,a
k−1

)



11 (EnKF as particle system with mean–field interactions : 3)

◮ correction (analysis) step : given forecast ensemble (X1,f
k , · · · , X

N,f
k ) each

ensemble element is updated independently according to (set of equations with

mean–field interactions)

X
i,a
k = X

i,f
k + Kk(PN,f

k ) (Yk − Hk X
i,f
k − V i

k ) with V i
k ∼ N(0, Rk)

in terms of Kalman gain mapping defined by

P 7−→ Kk(P ) = P H∗
k (Hk P H∗

k + Rk)−1

for any m × m covariance matrix P , and in terms of empirical covariance matrix

of forecast elements

mN
k =

1

N

N∑

i=1

X
i,f
k and PN

k =
1

N

N∑

i=1

(Xi,f
k − mN

k ) (Xi,f
k − mN

k )∗

notice that i.i.d. random vectors (V 1
k , · · · , V N

k ) are simulated here, with same

statistics as additive Gaussian noise Vk in original observation equation : in

particular (V 1
k , · · · , V N

k ) are independent of forecast elements (X1,f
k , · · · , X

N,f
k )



12 (EnKF as particle system with mean–field interactions : 4)

mean–field interaction : in view of

X
i,a
k = X

i,f
k + Kk(PN,f

k ) (Yk − Hk X
i,f
k − V i

k )

each analysis element depends on whole forecast ensemble (X1,f
k , · · · , X

N,f
k ) . . .

. . . but only through empirical probability distribution

µ
N,f
k =

1

N

N∑

i=1

δ
X

i,f
k

of forecast elements, actually only through empirical covariance matrix P
N,f
k

results in dependent analysis elements (X1,a
k , · · · , X

N,a
k )



13 (EnKF as particle system with mean–field interactions : 5)

question : does empirical probability distribution of ensemble elements converge

to Bayesian filter, defined as

µ−
k (dx) = P[Xk ∈ dx | Y0:k−1] and µk(dx) = P[Xk ∈ dx | Y0:k]

i.e. does

µ
N,f
k =

1

N

N∑

i=1

δ
X

i,f
k

−→ µ−
k and µ

N,a
k =

1

N

N∑

i=1

δ
X

i,a
k

−→ µk

hold in some sense, as N ↑ ∞ ?

answer in general is NO



14 (EnKF as particle system with mean–field interactions : 6)

propagation of chaos approach : to study asymptotic behaviour of empirical

probability distributions

µ
N,f
k =

1

N

N∑

i=1

δ
X

i,f
k

and µ
N,a
k =

1

N

N∑

i=1

δ
X

i,a
k

of forecast elements and analysis elements, respectively, approximating i.i.d.

random vectors are introduced

initially X̄
i,f
0 = X

i,f
0 , i.e. initial set of i.i.d. random vectors coincides exactly with

initial forecast ensemble

these vectors are propagated independently according to (set of fully decoupled

equations)

X̄
i,f
k = fk(X̄i,a

k−1
) + W i

k with W i
k ∼ N(0, Qk)

and

X̄
i,a
k = X̄

i,f
k + Kk(P̄ f

k ) (Yk − Hk X̄
i,f
k − V i

k ) with V i
k ∼ N(0, Rk)

where P̄
f
k denotes covariance matrix of i.i.d. random vectors X̄

i,f
k



15 (EnKF as particle system with mean–field interactions : 7)

by definition

m̄
f
k = E[X̄i,f

k ] and P̄
f
k = E[(X̄i,f

k − m̄
f
k) (X̄i,f

k − m̄
f
k)∗]

respectively

empirical mean vector and empirical covariance matrix of i.i.d. random vectors

(X̄1,f
k , · · · , X̄

N,f
k ) are defined as

m̄
N,f
k =

1

N

N∑

i=1

X̄
i,f
k and P̄

N,f
k =

1

N

N∑

i=1

(X̄i,f
k − m̄

N,f
k ) (X̄i,f

k − m̄
N,f
k )∗

respectively



16 (EnKF as particle system with mean–field interactions : 8)

heuristics : these i.i.d. random vectors are close (contiguous) to elements in

ensemble Kalman filter, since they

• start from same initial values exactly

• use same i.i.d. random vectors (W 1
k , · · · , WN

k ) and (V 1
k , · · · , V N

k ) exactly

already simulated and used in ensemble Kalman filter

pros / cons

+ large sample asymptotics is simple to analyse, because of independance

− unknown covariance matrix P̄
f
k in general, hence unknown approximating

i.i.d. random vectors

in contrast, elements in ensemble Kalman filter are dependent, because they all

contribute to / use empirical covariance matrix P
N,f
k which results in mean–field

interaction

but in counterpart this empirical covariance matrix is readily computable, and so

are elements in ensemble Kalman filter
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17 (identification of the limit : 1)

intuition : limiting probability distributions µ̄
f
k and µ̄a

k are probability distributions

of i.i.d. random vectors X̄
i,f
k and X̄

i,a
k respectively, and are completely

characterized by integrals of arbitrary test functions

◮ initialisation : recall that X̄
i,f
0 = X

i,f
0 and X

i,f
0 ∼ η0, hence µ̄

f
0 = η0

◮ forecast (expression of µ̄
f
k in terms of µ̄a

k−1
) : recall that

X̄
i,f
k = fk(X̄i,a

k−1
) + W i

k with W i
k ∼ N(0, Qk)

hence if X̄
i,a
k−1

has probability distribution µ̄a
k−1

(induction assumption), then

∫

Rm

φ(x′) µ̄
f
k(dx′) = E[φ(X̄i,f

k )] = E[φ(fk(X̄i,a
k−1

) + W i
k))]

=

∫

Rm

∫

Rm

φ(fk(x) + w) µ̄a
k−1(dx) pW

k (dw)

where pW
k (dw) is Gaussian probability distribution with zero mean vector and

covariance matrix Qk, i.e. probability distribution of random vector W i
k



18 (identification of the limit : 2)

◮ analysis (expression of µ̄a
k in terms of µ̄

f
k) : recall that

X̄
i,a
k = X̄

i,f
k + Kk(P̄ f

k ) (Yk − Hk X̄
i,f
k − V i

k ) with V i
k ∼ N(0, Rk)

sufficient conditions on drift function fk can be given, under which µ̄
f
k has finite

second order moments, in which case covariance matrix P̄
f
k is finite

hence if X̄
i,f
k has probability distribution µ̄

f
k (induction assumption), then

∫

Rm

φ(x′) µ̄a
k(dx′) = E[φ(X̄i,a

k )] = E[φ(X̄i,f
k + Kk(P̄ f

k ) (Yk − Hk X̄
i,f
k − V i

k ))]

=

∫

Rm

∫

Rd

φ(x + Kk(P̄ f
k ) (Yk − Hk x + v)) µ̄

f
k(dx) qV

k (v) dv

where qV
k (v) is Gaussian density with zero mean vector and invertible covariance

matrix Rk, i.e. probability density of random vector V i
k

conversely : nonlinear transformation of µ̄
f
k into µ̄a

k, could be approximated using

interacting particle systems (and ensemble Kalman filter would be recovered)



19 (identification of the limit : 3)

on the other hand, Bayesian filter, defined as

µ−
k (dx) = P[Xk ∈ dx | Y0:k−1] and µk(dx) = P[Xk ∈ dx | Y0:k]

satisfies recurrent relation
∫

Rm

φ(x′) µ−
k (dx′) =

∫

Rm

∫

Rm

φ(fk(x) + w) µk−1(dx) pW
k (dw)

and

∫

Rm

φ(x′) µk(dx′) =

∫

Rm

φ(x′) qV
k (Yk − Hk x′) µ−

k (dx′)
∫

Rm

qV
k (Yk − Hk x′) µ−

k (dx′)

with initial condition µ−
0 = η0



20 (identification of the limit : 4)

initially µ̄
f
0 = η0 and µ−

0 = η0

transforming µ̄a
k−1

into µ̄
f
k follows same formal rule as transforming µk−1 into µ−

k

but in general transforming µ̄
f
k into µ̄a

k and transforming µ−
k into µk follow

different rules

it follows that µ̄
f
0 = µ−

0 , and if µ̄a
k−1

= µk−1 then necessarily µ̄
f
k = µ−

k

but in general µ̄
f
k = µ−

k does not necessarily imply µ̄a
k = µk, which means that in

general limiting probability distributions µ̄
f
k and µ̄a

k do not coincide with

probability distributions µ−
k and µk defining Bayesian filter



21 (identification of the limit : 5)

however, in linear Gaussian case, (probability distributions defining) Bayesian filter

coincide with (Gaussian distributions associated with) Kalman filter, i.e.

probability distribution µ−
k is Gaussian, with mean vector X̂−

k and covariance

matrix P−
k , and probability distribution µk is Gaussian, with mean vector and

covariance matrix

X̂k = X̂−
k + Kk (Yk − Hk X̂−

k ) and Pk = (I − Kk Hk) P−
k

respectively



22 (identification of the limit : 6)

if µ̄a
k−1

= µk−1, then it follows from general case that µ̄
f
k = µ−

k ,

and by definition X̄
i,f
k is Gaussian with mean vector m̄

f
k = X̂−

k and covariance

matrix P̄
f
k = P−

k

since V i
k is another independent Gaussian random vector with zero mean vector

and covariance matrix Rk, then

X̄
i,a
k = X̄

i,f
k + Kk(P̄ f

k ) (Yk − Hk X̄
i,f
k − V i

k )

is Gaussian with mean vector

m̄a
k = X̂−

k + Kk (Yk − Hk X̂−
k ) = X̂k

and covariance matrix

P̄ a
k = (I − Kk Hk) P−

k (I − Kk Hk)∗ + Kk Rk K∗
k = (I − Kk Hk) P−

k = Pk

which means that probability distribution of X̄
i,a
k is µk, or in other words µ̄a

k = µk



23 (identification of the limit : 7)

Assumption A globally Lipschitz continuous drift function, i.e.

|fk(x) − fk(x′)| ≤ L |x − x′|

for any x, x′ ∈ R
m

Assumption B locally Lipschitz continuous drift function, with at most

polynomial growth at infinity, i.e.

|fk(x) − fk(x′)| ≤ L |x − x′| (1 + |x|s + |x′|s )

for any x, x′ ∈ R
m and for some s ≥ 0

under Assumption A, drift function has at most linear growth at infinity, i.e.

|fk(x)| ≤ M (1 + |x| )

under Assumption B, drift function has at most polynomial growth at infinity, i.e.

|fk(x)| ≤ M (1 + |x|s+1 )

for any x ∈ R
m



24 (identification of the limit : 8)

a priori estimates (existence of moments)

Proposition if Assumption A holds, and if random vector X0 has finite moment

of order p, for some p ≥ 2, then random vectors X̄
i,f
k and X̄

i,a
k have finite

moments of same order p, and in particular covariance matrix P̄
f
k is finite

if Assumption B holds, and if random vector X0 has finite moments of any order,

then random vectors X̄
i,f
k and X̄

i,a
k have finite moments of any order, and in

particular covariance matrix P̄
f
k is finite
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25 (large sample asymptotics of EnKF : 1)

objective : show that empirical probability distributions

µ
N,f
k =

1

N

N∑

i=1

δ
X

i,f
k

and µ
N,a
k =

1

N

N∑

i=1

δ
X

i,a
k

of forecast and analysis elements, converge to probability distributions µ̄
f
k and µ̄a

k

of i.i.d. random vectors X̄
i,f
k and X̄

i,a
k , respectively

idea #1 : let • stand either for f (forecast) or a (analysis), and notice that

| 1

N

N∑

i=1

φ(Xi,•
k ) −

∫

Rm

φ(x) µ̄•
k(dx)|

≤ | 1

N

N∑

i=1

φ(Xi,•
k ) − 1

N

N∑

i=1

φ(X̄i,•
k )| + | 1

N

N∑

i=1

φ(X̄i,•
k ) −

∫

Rm

φ(x) µ̄•
k(dx)|

second term goes to zero by law of large numbers and by independence, and first

term bounded by

1

N

N∑

i=1

|φ(Xi,•
k ) − φ(X̄i,•

k )|



26 (large sample asymptotics of EnKF : 2)

idea #2 : to study |φ(Xi,•
k ) − φ(X̄i,•

k )|, recall that

X
i,f
k = fk(Xi,a

k−1
) + W i

k

X̄
i,f
k = fk(X̄i,a

k−1
) + W i

k

with same W i
k ∼ N(0, Qk)

which explains why Lipschitz property of x 7→ fk(x) is needed, and

X
i,a
k = X

i,f
k + Kk(PN,f

k ) (Yk − Hk X
i,f
k − V i

k )

X̄
i,a
k = X̄

i,f
k + Kk(P̄ f

k ) (Yk − Hk X̄
i,f
k − V i

k )

with V i
k ∼ N(0, Rk)

hence Lipschitz property of P 7→ Kk(P ) should be used, and convergence of

empirical covariance matrix P
N,f
k to limiting covariance matrix P̄

f
k shoud be

proved



27 (large sample asymptotics of EnKF : 3)

empirical covariance matrix P
N,f
k of EnKF forecast elements

vs. covariance matrix P̄
f
k of limiting i.i.d. sequence

contiguity of empirical covariance matrices

‖PN,f
k − P̄

N,f
k ‖ ≤ 2 |∆N,2,f

k |2 + C ∆N,2,f
k

where C > 0 depends on (existing) finite moments of limiting sequence, and

∆N,2,f
k = (

1

N

N∑

i=1

|Xi,f
k − X̄

i,f
k |2)1/2

by definition

consistency of empirical covariance matrice for limiting sequence

since (X̄1,f
k , . . . , X̄

N,f
k ) are independent random variables, then

‖P̄N,f
k − P̄

f
k ‖ −→ 0

almost surely, as N ↑ ∞ by law of large numbers



28 (large sample asymptotics of EnKF : 4)

from now on, notation • stands either for f (forecast) or a (analysis)

almost sure contiguity of ensemble elements

introduce

∆N,p,•
k = (

1

N

N∑

i=1

|Xi,•
k − X̄

i,•
k |p)1/p

Proposition if Assumption A holds, and if random vector X0 has finite moment

of order p for some p ≥ 2, then

∆N,p,•
k −→ 0

for same order p, almost surely as N ↑ ∞
if Assumption B holds, and if random vector X0 has finite moments of any order,

then

∆N,p,•
k −→ 0

for any order p, almost surely as N ↑ ∞



29 (large sample asymptotics of EnKF : 5)

L
p–contiguity of ensemble elements

recall

∆N,p,•
k = (

1

N

N∑

i=1

|Xi,•
k − X̄

i,•
k |p )1/p

and introduce

D
N,p,•
k = ( E|Xi,•

k − X̄
i,•
k |p )1/p

Lemma

D
N,p∧q,•
k ≤ ( E|∆N,p,•

k |q )1/q ≤ D
N,p∨q,•
k

Proposition if Assumption B holds, and if random vector X0 has finite moments

of any order, then

sup
N≥1

√
N D

N,p,•
k < ∞

for any order p



30 (large sample asymptotics of EnKF : 6)

almost sure convergence

Theorem let φ be a locally Lipschitz continuous function, with at most

polynomial growth at infinity, i.e.

|φ(x) − φ(x′)| ≤ L |x − x′| (1 + |x|σ + |x′|σ)

for any x, x′ ∈ R
m and for some σ ≥ 0

if Assumption A holds, and if random vector X0 has finite moment of order p for

some p ≥ 2, then

1

N

N∑

i=1

φ(Xi,•
k ) −→

∫

Rm

φ(x) µ̄•
k(dx)

for same order p, almost surely as N ↑ ∞
if Assumption B holds, and if random vector X0 has finite moments of any order,

then

1

N

N∑

i=1

φ(Xi,•
k ) −→

∫

Rm

φ(x) µ̄•
k(dx)

for any order p, almost surely as N ↑ ∞



31 (large sample asymptotics of EnKF : 7)

L
p–convergence and rate of convergence

Theorem let φ be a locally Lipschitz continuous function, with at most

polynomial growth at infinity, i.e.

|φ(x) − φ(x′)| ≤ L |x − x′| (1 + |x|σ + |x′|σ)

for any x, x′ ∈ R
m and for some σ ≥ 0

if Assumption B holds, and if random vector X0 has finite moments of any order,

then

sup
N≥1

√
N ( E| 1

N

N∑

i=1

φ(Xi,•
k ) −

∫

Rm

φ(x) µ̄•
k(dx) |p )1/p < ∞

for any order p
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32 (connection with particle filter : 1)

return to any system of the form

Xk = fk(Xk−1) + Wk with Wk ∼ N(0, Qk)

Yk = Hk Xk + Vk with Vk ∼ N(0, Rk)

with non–necessarily Gaussian initial condition X0 ∼ η0

approximation of Bayesian filter

µk(dx) = P[Xk ∈ dx | Y0:k]

in the form of a weighted empirical probability distribution

µk ≈ µN
k =

N∑

i=1

wi
k δ

ξi
k

with

N∑

i=1

wi
k = 1

associateds with a system of N particles, characterized by their

• positions (ξ1
k, · · · , ξN

k )

• and positive weights (w1
k, · · · , wN

k )



33 (connection with particle filter : 2)

usual scheme (bootstrap particle filter) :

• particle positions are propagated by simulation under transition probability of

Xk given Xk−1 = ξi
k−1

, a Gaussian probability distribution with mean vector

fk(ξi
k−1

) and covariance matrix Qk

• particle weights are updated by evaluation of likelihood function (conditional

density of current observation Yk given Xk = ξi
k), a Gaussian density with

mean vector Hk ξi
k and covariance matrix Rk

• weights can be used to discard / multiply particles



34 (connection with particle filter : 3)

◮ mutation step : independently for any i = 1, . . . , N ,

ξi
k = fk(ξi

k−1) + W i
k with W i

k ∼ N(0, Qk)

◮ weighting step : independently for any i = 1, . . . , N

wi
k ∝ wi

k−1 q(Yk − Hk ξi
k, Rk)

where q(x,Σ) is Gaussian density with zero mean vector and invertible covariance

matrix Σ

◮ selection step : discard / multiply particles according to their (relative) weights

(many variants)



35 (connection with particle filter : 4)

a particle approximation with optimal importance distribution : use next

observation to select and propagate particles

• particle weights are updated using evaluation of another likelihood function

(conditional density of next observation Yk given Xk−1 = ξi
k−1

), a Gaussian

density with mean vector Hk fk(ξi
k−1

) and covariance matrix Hk Qk H∗
k + Rk

• weights can be used to discard / multiply particles

• particle positions are updated using simulation under transition probability of

Xk given Xk−1 = ξi
k−1

and given Yk, a Gaussian probability distribution

given by a Kalman filter



36 (connection with particle filter : 5)

◮ weighting step : independently for any i = 1, . . . , N

wi
k ∝ wi

k−1 q(Yk − Hk fk(ξi
k−1), Hk Qk H∗

k + Rk)

where q(x,Σ) is Gaussian density with zero mean vector and invertible covariance

matrix Σ

◮ selection step : discard / multiply particles according to their (relative) weights

(many variants)

◮ mutation step : independently for any i = 1, . . . , N ,

ξ
i,−
k = fk(ξi

k−1) + W i
k with W i

k ∼ N(0, Qk)

and

ξi
k = ξ

i,−
k + Kk(Qk) (Yk − Hk ξ

i,−
k − V i

k ) with V i
k ∼ N(0, Rk)

with gain matrix

Kk(Qk) = Qk H∗
k (Hk Qk H∗

k + Rk)−1



37 (connection with particle filter : 6)

rewritting

ξi
k = (I − Kk(Qk) Hk) (fk(ξi

k−1) + W i
k) + Kk(Qk) (Yk − V i

k )

shows that, conditionnally w.r.t. ξi
k−1

, the random vector ξi
k is Gaussian with

mean vector

fk(ξi
k−1) + Kk(Qk) (Yk − Hk fk(ξi

k−1))

and covariance matrix

(I − Kk(Qk) Hk) Qk (I − Kk(Qk) Hk)∗ + Kk(Qk) Rk Kk(Qk)∗

= (I − Kk(Qk) Hk) Qk

i.e. its distribution is that of Xk given Xk−1 = ξi
k−1

and given Yk



38 (connection with particle filter : 7)

main differences with ensemble Kalman filter

• prediction (forecast) step in ensemble Kalman filter and (first part of)

mutation step in particle filter follow same formal rule

X
i,f
k = fk(Xi,a

k−1
) + W i

k

ξ
i,−
k = fk(ξi

k−1
) + W i

k

with W i
k ∼ N(0, Qk)

• correction (analysis) step in ensemble Kalman filter and (second part of)

mutation step in particle filter

X
i,a
k = X

i,f
k + Kk(PN,f

k ) (Yk − Hk X
i,f
k − V i

k )

ξi
k = ξ

i,−
k + Kk(Qk) (Yk − Hk ξ

i,−
k − V i

k )

with V i
k ∼ N(0, Rk)

differ in using empirical covariance matrix P
N,f
k of forecast ensemble

elements vs. covariance matrix of noise Wk in state equation

• particle filters uses weights (and a possible selection / resampling procedure)



39 (connection with particle filter : 8)

many convergence results hold as population size N goes to infinity, with

Bayesian filter µk as limit, for this particular and for many other particle filters

Theorem convergence in L
p–mean

( E|
N∑

i=1

wi
k φ(ξi

k) −
∫

Rm

φ(x) µk(dx) |p )1/p −→ 0

for any order p, as N ↑ ∞

Theorem central limit theorem

√
N (

N∑

i=1

wi
k φ(ξi

k) −
∫

Rm

φ(x) µk(dx) ) =⇒ N(0, v(φ))

in distribution as N ↑ ∞, with (more or less explicit) expression for asymptotic

variance v(φ)
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40 (conclusion and perspective : 1)

in his PhD thesis, Nicolas Papadakis has proposed a weighted version of ensemble

Kalman filter, where evolution of ensemble elements is seen as a special case of a

mutation step, and appropriate weights are introduced

issues

• convergence and CLT for WEnKF, as ensemble size goes to infinity

• comparison with particle filters, on the basis of asymptotic variances

workprogramme of PREVASSEMBLE project, supported by ANR and coordinated

by Olivier Talagrand


