3èmes rencontres Météorologie et Mathématiques Appliquées Modélisation des Évènements Extrêmes Filtres de Kalman d'Ensemble centre de conférences de Météo–France, Toulouse, 18 et 19 septembre 2008

Large Sample Asymptotics for the Ensemble Kalman Filter (EnKF)

François Le Gland INRIA Rennes Bretagne–Atlantique

http://www.irisa.fr/aspi/legland/

Valérie Monbet + Vu–Duc Tran université de Bretagne Sud, Vannes

outline

- motivation : Kalman filter in large dimension
- EnKF as particle system with mean-field interaction
- identification of the limit
- large sample asymptotics of EnKF
- connection with particle filters
- conclusion and perspective

linear Gaussian state-space model

$$X_k = F_k X_{k-1} + W_k$$
 with $W_k \sim \mathcal{N}(0, Q_k)$

 $Y_k = H_k X_k + V_k$ with $V_k \sim \mathcal{N}(0, R_k)$

and Gaussian initial condition $X_0 \sim \mathcal{N}(m_0, \Sigma_0)$

observation noise covariance matrix R_k assumed invertible

conditional probability distribution

of hidden state X_k given past observations $Y_{0:k} = (Y_0, \cdots, Y_k)$ is Gaussian, with mean vector \hat{X}_k and covariance matrix P_k

Kalman filter equation

▶ initialization

 $\widehat{X}_0^- = m_0$ and $P_0^- = \Sigma_0$

▶ prediction (forecast) step

$$\widehat{X}_{k}^{-} = F_{k} \ \widehat{X}_{k-1}$$
 and $P_{k}^{-} = F_{k} \ P_{k-1} \ F_{k}^{*} + Q_{k}$

► correction (analysis) step

$$\widehat{X}_k = \widehat{X}_k^- + K_k \left(Y_k - H_k \ \widehat{X}_k^- \right) \quad \text{and} \quad P_k = \left(I - K_k \ H_k \right) P_k^-$$

with Kalman gain matrix defined by

$$K_k = P_k^- H_k^* (H_k P_k^- H_k^* + R_k)^{-1}$$

if dimension m of hidden state is large, then computing and storing large $m \times m$ covariance matrices P_k^- and P_k is just impossible

matrix products in prediction equation

$$P_k^- = F_k P_{k-1} F_k^* + Q_k$$

are even more problematic to work out

usually, dimension d of observation is much less, and matrix products in expression of Kalman gain matrix

$$K_k = P_k^- H_k^* (H_k P_k^- H_k^* + R_k)^{-1}$$

or in correction equation

$$P_k = (I - K_k H_k) P_k^- = P_k^- - P_k^- H_k^* (H_k P_k^- H_k^* + R_k)^{-1} H_k P_k^-$$

are much less problematic to work out

idea behind ensemble Kalman filter (EnKF) : use Monte Carlo samples and use empirical covariance matrix in place of prediction covariance matrix

in practice

forecast ensemble $(X_k^{1,f},\cdots,X_k^{N,f})$ represents predictor estimate X_k^- and

analysis ensemble $(X_k^{1,a},\cdots,X_k^{N,a})$ represents filter estimate X_k

▶ initialization : initial ensemble $(X_0^{1,f}, \dots, X_0^{N,f})$ is *simulated* as i.i.d. Gaussian random vectors with mean m_0 and covariance matrix Σ_0 , i.e. with same statistics as initial condition X_0

▶ prediction (forecast) step : given analysis ensemble $(X_{k-1}^{1,a}, \cdots, X_{k-1}^{N,a})$ each ensemble element is propagated independently according to

 $X_k^{i,f} = F_k \; X_{k-1}^{i,a} + W_k^i \qquad \text{with} \qquad W_k^i \sim \mathcal{N}(0,Q_k)$

notice that i.i.d. random vectors (W_k^1, \dots, W_k^N) are *simulated* here, with same statistics as additive Gaussian noise W_k in original state equation : in particular (W_k^1, \dots, W_k^N) are independent of forecast elements $(X_{k-1}^{1,a}, \dots, X_{k-1}^{N,a})$

▶ correction (analysis) step : given forecast ensemble $(X_k^{1,f}, \cdots, X_k^{N,f})$ each ensemble element is updated independently according to

 $X_k^{i,a} = X_k^{i,f} + K_k^N (Y_k - H_k X_k^{i,f} - V_k^i) \quad \text{with} \quad V_k^i \sim \mathcal{N}(0, R_k)$

with empirical Kalman gain matrix defined by

$$K_k^N = P_k^N \ H_k^* \ (H_k \ P_k^N \ H_k^* + R_k)^{-1}$$

in terms of empirical covariance matrix of forecast elements

$$m_k^N = \frac{1}{N} \sum_{i=1}^N X_k^{i,f} \quad \text{and} \quad P_k^N = \frac{1}{N} \sum_{i=1}^N (X_k^{i,f} - m_k^N) (X_k^{i,f} - m_k^N)^*$$

notice that i.i.d. random vectors (V_k^1, \dots, V_k^N) are *simulated* here, with same statistics as additive Gaussian noise V_k in original observation equation : in particular (V_k^1, \dots, V_k^N) are independent of forecast elements $(X_k^{1,f}, \dots, X_k^{N,f})$

in practice

- only samples are used
- empirical covariance matrix is never computed

indeed, to evaluate matrix-vector product $P_k^N u$ where u is a (column) vector of dimension m, only N scalar products need to be evaluated, since

$$P_k^N \ u = \left[\frac{1}{N} \ \sum_{i=1}^N (X_k^{i,f} - m_k^N) \ (X_k^{i,f} - m_k^N)^*\right] u = \frac{1}{N} \ \sum_{i=1}^N u_i \ (X_k^{i,f} - m_k^N)$$
with $u_i = (X_k^{i,f} - m_k^N)^* \ u$ for any $i = 1, \cdots, N$

in particular, H_k can be seen as a collection of d (row) vectors of dimension m, and to evaluate matrix products $P_k^N H_k^*$ and $H_k P_k^N H_k^*$, only $N \times d$ scalar products need to be evaluated, since

$$P_k^N H_k^* = \left[\frac{1}{N} \sum_{i=1}^N (X_k^{i,f} - m_k^N) (X_k^{i,f} - m_k^N)^*\right] H_k^* = \frac{1}{N} \sum_{i=1}^N (X_k^{i,f} - m_k^N) h_i^*$$

and

$$H_k P_k^N H_k^* = H_k \left[\frac{1}{N} \sum_{i=1}^N (X_k^{i,f} - m_k^N) (X_k^{i,f} - m_k^N)^* \right] H_k^* = \frac{1}{N} \sum_{i=1}^N h_i h_i^*$$

with $h_i = H_k \left(X_k^{i,f} - m_k^N \right)$ for any $i = 1, \cdots, N$

question : does empirical mean of ensemble elements converge to Kalman filter, i.e. does

$$\frac{1}{N} \sum_{i=1}^{N} X_{k}^{i,f} \longrightarrow \widehat{X}_{k}^{-} \quad \text{and} \quad \frac{1}{N} \sum_{i=1}^{N} X_{k}^{i,a} \longrightarrow \widehat{X}_{k}$$

hold, as $N\uparrow\infty$?

answer is YES

outline

- motivation : Kalman filter in large dimension
- EnKF as particle system with mean-field interaction
- identification of the limit
- large sample asymptotics of EnKF
- connection with particle filters
- conclusion and perspective

ensemble Kalman filter idea has been extended to any system of the form

$$X_k = f_k(X_{k-1}) + W_k$$
 with $W_k \sim \mathcal{N}(0, Q_k)$

 $Y_k = H_k X_k + V_k$ with $V_k \sim \mathcal{N}(0, R_k)$

with non-necessarily Gaussian initial condition $X_0 \sim \eta_0$

▶ initialization : initial ensemble $(X_0^{1,f}, \dots, X_0^{N,f})$ is *simulated* as i.i.d. random vectors with probability distribution η_0 , i.e. with same statistics as initial condition X_0

▶ prediction (forecast) step : given analysis ensemble $(X_{k-1}^{1,a}, \dots, X_{k-1}^{N,a})$ each ensemble element is propagated independently according to (set of decoupled equations)

 $X_k^{i,f} = f_k(X_{k-1}^{i,a}) + W_k^i \qquad \text{with} \qquad W_k^i \sim \mathcal{N}(0,Q_k)$

notice that i.i.d. random vectors (W_k^1, \dots, W_k^N) are *simulated* here, with same statistics as additive Gaussian noise W_k in original state equation : in particular (W_k^1, \dots, W_k^N) are independent of forecast elements $(X_{k-1}^{1,a}, \dots, X_{k-1}^{N,a})$

▶ correction (analysis) step : given forecast ensemble $(X_k^{1,f}, \dots, X_k^{N,f})$ each ensemble element is updated independently according to (set of equations with mean-field interactions)

 $X_{k}^{i,a} = X_{k}^{i,f} + K_{k}(P_{k}^{N,f}) (Y_{k} - H_{k} X_{k}^{i,f} - V_{k}^{i})$ with $V_{k}^{i} \sim \mathcal{N}(0, R_{k})$

in terms of Kalman gain mapping defined by

 $P \longmapsto K_k(P) = P H_k^* (H_k P H_k^* + R_k)^{-1}$

for any $m \times m$ covariance matrix P, and in terms of empirical covariance matrix of forecast elements

$$m_k^N = \frac{1}{N} \sum_{i=1}^N X_k^{i,f} \quad \text{and} \quad P_k^N = \frac{1}{N} \sum_{i=1}^N (X_k^{i,f} - m_k^N) (X_k^{i,f} - m_k^N)^*$$

notice that i.i.d. random vectors (V_k^1, \dots, V_k^N) are *simulated* here, with same statistics as additive Gaussian noise V_k in original observation equation : in particular (V_k^1, \dots, V_k^N) are independent of forecast elements $(X_k^{1,f}, \dots, X_k^{N,f})$

mean-field interaction : in view of

$$X_{k}^{i,a} = X_{k}^{i,f} + K_{k}(P_{k}^{N,f}) (Y_{k} - H_{k} X_{k}^{i,f} - V_{k}^{i})$$

each analysis element depends on whole forecast ensemble $(X_k^{1,f},\cdots,X_k^{N,f})$...

... but only through empirical probability distribution

$$\mu_k^{N,f} = \frac{1}{N} \sum_{i=1}^N \delta_{X_k^{i,f}}$$

of forecast elements, actually only through empirical covariance matrix $P_k^{N,f}$ results in *dependent* analysis elements $(X_k^{1,a}, \dots, X_k^{N,a})$ question : does empirical probability distribution of ensemble elements converge to Bayesian filter, defined as

and

 $\mu_k^-(dx) = \mathbb{P}[X_k \in dx \mid Y_{0:k-1}] \quad \text{and} \quad \mu_k(dx) = \mathbb{P}[X_k \in dx \mid Y_{0:k}]$

i.e. does

$$\mu_k^{N,f} = \frac{1}{N} \sum_{i=1}^N \delta_{X_k^{i,f}} \longrightarrow \mu_k^-$$

$$\mu_k^{N,a} = \frac{1}{N} \sum_{i=1}^N \delta_{X_k^{i,a}} \longrightarrow \mu_k$$

hold in some sense, as $N \uparrow \infty$? answer in general is NO propagation of chaos approach : to study asymptotic behaviour of empirical probability distributions

$$\mu_k^{N,f} = \frac{1}{N} \sum_{i=1}^N \delta_{X_k^{i,f}} \quad \text{and} \quad \mu_k^{N,a} = \frac{1}{N} \sum_{i=1}^N \delta_{X_k^{i,a}}$$

of forecast elements and analysis elements, respectively, approximating i.i.d. random vectors are introduced

initially $\bar{X}_0^{i,f} = X_0^{i,f}$, i.e. initial set of i.i.d. random vectors coincides exactly with initial forecast ensemble

these vectors are propagated independently according to (set of fully decoupled equations)

$$\bar{X}_k^{i,f} = f_k(\bar{X}_{k-1}^{i,a}) + W_k^i \qquad \text{with} \qquad W_k^i \sim \mathcal{N}(0,Q_k)$$

and

$$\bar{X}_k^{i,a} = \bar{X}_k^{i,f} + K_k(\bar{P}_k^f) (Y_k - H_k \bar{X}_k^{i,f} - V_k^i)$$
 with $V_k^i \sim \mathcal{N}(0, R_k)$
where \bar{P}_k^f denotes covariance matrix of i.i.d. random vectors $\bar{X}_k^{i,f}$

(EnKF as particle system with mean-field interactions : 7)

by definition

$$\bar{m}_k^f = \mathbb{E}[\bar{X}_k^{i,f}] \quad \text{and} \quad \bar{P}_k^f = \mathbb{E}[(\bar{X}_k^{i,f} - \bar{m}_k^f) \ (\bar{X}_k^{i,f} - \bar{m}_k^f)^*]$$

respectively

empirical mean vector and empirical covariance matrix of i.i.d. random vectors $(\bar{X}_k^{1,f}, \cdots, \bar{X}_k^{N,f})$ are defined as

$$\bar{m}_k^{N,f} = \frac{1}{N} \sum_{i=1}^N \bar{X}_k^{i,f} \quad \text{and} \quad \bar{P}_k^{N,f} = \frac{1}{N} \sum_{i=1}^N (\bar{X}_k^{i,f} - \bar{m}_k^{N,f}) (\bar{X}_k^{i,f} - \bar{m}_k^{N,f})^*$$

respectively

heuristics : these i.i.d. random vectors are close (contiguous) to elements in ensemble Kalman filter, since they

- start from same initial values exactly
- use same i.i.d. random vectors (W_k^1, \dots, W_k^N) and (V_k^1, \dots, V_k^N) exactly

already *simulated* and used in ensemble Kalman filter

pros / cons

- + large sample asymptotics is simple to analyse, because of independance
- unknown covariance matrix \bar{P}_k^f in general, hence unknown approximating i.i.d. random vectors

in contrast, elements in ensemble Kalman filter are dependent, because they all contribute to / use empirical covariance matrix $P_k^{N,f}$ which results in mean-field interaction

but in counterpart this empirical covariance matrix is readily computable, and so are elements in ensemble Kalman filter

outline

- motivation : Kalman filter in large dimension
- EnKF as particle system with mean-field interaction
- identification of the limit
- large sample asymptotics of EnKF
- connection with particle filters
- conclusion and perspective

intuition : limiting probability distributions $\bar{\mu}_k^f$ and $\bar{\mu}_k^a$ are probability distributions of i.i.d. random vectors $\bar{X}_k^{i,f}$ and $\bar{X}_k^{i,a}$ respectively, and are completely characterized by integrals of arbitrary test functions

▶ initialisation : recall that $\bar{X}_0^{i,f} = X_0^{i,f}$ and $X_0^{i,f} \sim \eta_0$, hence $\bar{\mu}_0^f = \eta_0$

▶ forecast (expression of $\bar{\mu}_k^f$ in terms of $\bar{\mu}_{k-1}^a$) : recall that

 $\bar{X}_k^{i,f} = f_k(\bar{X}_{k-1}^{i,a}) + W_k^i \qquad \text{with} \qquad W_k^i \sim \mathcal{N}(0,Q_k)$

hence if $\bar{X}_{k-1}^{i,a}$ has probability distribution $\bar{\mu}_{k-1}^{a}$ (induction assumption), then

$$\int_{\mathbb{R}^m} \phi(x') \ \bar{\mu}_k^f(dx') \ = \ \mathbb{E}[\phi(\bar{X}_k^{i,f})] = \mathbb{E}[\phi(f_k(\bar{X}_{k-1}^{i,a}) + W_k^i))]$$

$$= \int_{\mathbb{R}^m} \int_{\mathbb{R}^m} \phi(f_k(x) + w) \ \bar{\mu}^a_{k-1}(dx) \ p^W_k(dw)$$

where $p_k^W(dw)$ is Gaussian probability distribution with zero mean vector and covariance matrix Q_k , i.e. probability distribution of random vector W_k^i

▶ analysis (expression of $\bar{\mu}_k^a$ in terms of $\bar{\mu}_k^f$) : recall that

$$\bar{X}_k^{i,a} = \bar{X}_k^{i,f} + K_k(\bar{P}_k^f) \ (Y_k - H_k \ \bar{X}_k^{i,f} - V_k^i) \qquad \text{with} \qquad V_k^i \sim \mathcal{N}(0, R_k)$$

sufficient conditions on drift function f_k can be given, under which $\bar{\mu}_k^f$ has finite second order moments, in which case covariance matrix \bar{P}_k^f is finite hence if $\bar{X}_k^{i,f}$ has probability distribution $\bar{\mu}_k^f$ (induction assumption), then $\int_{\mathbb{R}^m} \phi(x') \ \bar{\mu}_k^a(dx') = \mathbb{E}[\phi(\bar{X}_k^{i,a})] = \mathbb{E}[\phi(\bar{X}_k^{i,f} + K_k(\bar{P}_k^f) (Y_k - H_k \ \bar{X}_k^{i,f} - V_k^i))]$

$$= \int_{\mathbb{R}^m} \int_{\mathbb{R}^d} \phi(x + K_k(\bar{P}_k^f) (Y_k - H_k x + v)) \,\bar{\mu}_k^f(dx) \, q_k^V(v) \, dv$$

where $q_k^V(v)$ is Gaussian density with zero mean vector and invertible covariance matrix R_k , i.e. probability density of random vector V_k^i

conversely : nonlinear transformation of $\bar{\mu}_k^f$ into $\bar{\mu}_k^a$, could be approximated using interacting particle systems (and ensemble Kalman filter would be recovered)

on the other hand, Bayesian filter, defined as

 $\mu_k^-(dx) = \mathbb{P}[X_k \in dx \mid Y_{0:k-1}] \quad \text{and} \quad \mu_k(dx) = \mathbb{P}[X_k \in dx \mid Y_{0:k}]$

satisfies recurrent relation

$$\int_{\mathbb{R}^m} \phi(x') \ \mu_k^-(dx') = \int_{\mathbb{R}^m} \int_{\mathbb{R}^m} \phi(f_k(x) + w) \ \mu_{k-1}(dx) \ p_k^W(dw)$$

and

$$\int_{\mathbb{R}^m} \phi(x') \ \mu_k(dx') = \frac{\int_{\mathbb{R}^m} \phi(x') \ q_k^V(Y_k - H_k x') \ \mu_k^-(dx')}{\int_{\mathbb{R}^m} q_k^V(Y_k - H_k x') \ \mu_k^-(dx')}$$

with initial condition $\mu_0^- = \eta_0$

initially $\bar{\mu}_0^f = \eta_0$ and $\mu_0^- = \eta_0$ transforming $\bar{\mu}_{k-1}^a$ into $\bar{\mu}_k^f$ follows same formal rule as transforming μ_{k-1} into $\mu_k^$ but in general transforming $\bar{\mu}_k^f$ into $\bar{\mu}_k^a$ and transforming μ_k^- into μ_k follow different rules

it follows that $\bar{\mu}_0^f = \mu_0^-$, and if $\bar{\mu}_{k-1}^a = \mu_{k-1}$ then necessarily $\bar{\mu}_k^f = \mu_k^$ but in general $\bar{\mu}_k^f = \mu_k^-$ does not necessarily imply $\bar{\mu}_k^a = \mu_k$, which means that in general limiting probability distributions $\bar{\mu}_k^f$ and $\bar{\mu}_k^a$ do not coincide with probability distributions μ_k^- and μ_k defining Bayesian filter however, in linear Gaussian case, (probability distributions defining) Bayesian filter coincide with (Gaussian distributions associated with) Kalman filter, i.e. probability distribution μ_k^- is Gaussian, with mean vector \hat{X}_k^- and covariance matrix P_k^- , and probability distribution μ_k is Gaussian, with mean vector and covariance matrix

$$\widehat{X}_{k} = \widehat{X}_{k}^{-} + K_{k} (Y_{k} - H_{k} \widehat{X}_{k}^{-})$$
 and $P_{k} = (I - K_{k} H_{k}) P_{k}^{-}$

respectively

if $\bar{\mu}_{k-1}^a = \mu_{k-1}$, then it follows from general case that $\bar{\mu}_k^f = \mu_k^-$, and by definition $\bar{X}_k^{i,f}$ is Gaussian with mean vector $\bar{m}_k^f = \hat{X}_k^-$ and covariance matrix $\bar{P}_k^f = P_k^-$

since V_k^i is another independent Gaussian random vector with zero mean vector and covariance matrix R_k , then

$$\bar{X}_{k}^{i,a} = \bar{X}_{k}^{i,f} + K_{k}(\bar{P}_{k}^{f}) \left(Y_{k} - H_{k} \,\bar{X}_{k}^{i,f} - V_{k}^{i}\right)$$

is Gaussian with mean vector

$$\bar{m}_k^a = \hat{X}_k^- + K_k \left(Y_k - H_k \, \hat{X}_k^- \right) = \hat{X}_k$$

and covariance matrix

 $\bar{P}_k^a = (I - K_k H_k) P_k^- (I - K_k H_k)^* + K_k R_k K_k^* = (I - K_k H_k) P_k^- = P_k$ which means that probability distribution of $\bar{X}_k^{i,a}$ is μ_k , or in other words $\bar{\mu}_k^a = \mu_k$ Assumption A globally Lipschitz continuous drift function, i.e.

 $|f_k(x) - f_k(x')| \le L |x - x'|$

for any $x, x' \in \mathbb{R}^m$

Assumption B locally Lipschitz continuous drift function, with at most polynomial growth at infinity, i.e.

```
|f_k(x) - f_k(x')| \le L |x - x'| (1 + |x|^s + |x'|^s)
```

for any $x,x'\in \mathbb{R}^m$ and for some $s\geq 0$

under Assumption A, drift function has at most linear growth at infinity, i.e.

 $|f_k(x)| \le M (1 + |x|)$

under Assumption B, drift function has at most polynomial growth at infinity, i.e.

 $|f_k(x)| \le M \ (1+|x|^{s+1})$

for any $x \in \mathbb{R}^m$

a priori estimates (existence of moments)

Proposition if Assumption A holds, and if random vector X_0 has finite moment of order p, for some $p \ge 2$, then random vectors $\bar{X}_k^{i,f}$ and $\bar{X}_k^{i,a}$ have finite moments of same order p, and in particular covariance matrix \bar{P}_k^f is finite

if Assumption B holds, and if random vector X_0 has finite moments of any order, then random vectors $\bar{X}_k^{i,f}$ and $\bar{X}_k^{i,a}$ have finite moments of any order, and in particular covariance matrix \bar{P}_k^f is finite

outline

- motivation : Kalman filter in large dimension
- EnKF as particle system with mean-field interaction
- identification of the limit
- large sample asymptotics of EnKF
- connection with particle filters
- conclusion and perspective

objective : show that empirical probability distributions

$$\mu_k^{N,f} = \frac{1}{N} \sum_{i=1}^N \delta_{X_k^{i,f}} \quad \text{and} \quad \mu_k^{N,a} = \frac{1}{N} \sum_{i=1}^N \delta_{X_k^{i,a}}$$

of forecast and analysis elements, converge to probability distributions $\bar{\mu}_k^f$ and $\bar{\mu}_k^a$ of i.i.d. random vectors $\bar{X}_k^{i,f}$ and $\bar{X}_k^{i,a}$, respectively

idea #1: let • stand either for f (forecast) or a (analysis), and notice that

$$\begin{aligned} &|\frac{1}{N} \sum_{i=1}^{N} \phi(X_{k}^{i,\bullet}) - \int_{\mathbb{R}^{m}} \phi(x) \ \bar{\mu}_{k}^{\bullet}(dx)| \\ &\leq |\frac{1}{N} \sum_{i=1}^{N} \phi(X_{k}^{i,\bullet}) - \frac{1}{N} \sum_{i=1}^{N} \phi(\bar{X}_{k}^{i,\bullet})| + |\frac{1}{N} \sum_{i=1}^{N} \phi(\bar{X}_{k}^{i,\bullet}) - \int_{\mathbb{R}^{m}} \phi(x) \ \bar{\mu}_{k}^{\bullet}(dx)| \end{aligned}$$

second term goes to zero by law of large numbers and by independence, and first term bounded by

$$\frac{1}{N} \sum_{i=1}^{N} |\phi(X_k^{i,\bullet}) - \phi(\bar{X}_k^{i,\bullet})|$$

idea #2 : to study $|\phi(X_k^{i,\bullet}) - \phi(\bar{X}_k^{i,\bullet})|$, recall that $X_k^{i,f} = f_k(X_{k-1}^{i,a}) + W_k^i$

 $\bar{X}_{k}^{i,f} = f_{k}(\bar{X}_{k-1}^{i,a}) + W_{k}^{i}$

with same $W_k^i \sim \mathcal{N}(0, Q_k)$

which explains why Lipschitz property of $x\mapsto f_k(x)$ is needed, and

$$\begin{aligned} X_{k}^{i,a} &= X_{k}^{i,f} + K_{k}(P_{k}^{N,f}) \left(Y_{k} - H_{k} X_{k}^{i,f} - V_{k}^{i}\right) \\ & \text{with} \quad V_{k}^{i} \sim \mathcal{N}(0, R_{k}) \\ \bar{X}_{k}^{i,a} &= \bar{X}_{k}^{i,f} + K_{k}(\bar{P}_{k}^{f}) \left(Y_{k} - H_{k} \bar{X}_{k}^{i,f} - V_{k}^{i}\right) \end{aligned}$$

hence Lipschitz property of $P\mapsto K_k(P)$ should be used, and convergence of empirical covariance matrix $P_k^{N,f}$ to limiting covariance matrix \bar{P}_k^f shoud be proved

empirical covariance matrix $P_k^{N,f}$ of EnKF forecast elements vs. covariance matrix \bar{P}_k^f of limiting i.i.d. sequence

contiguity of empirical covariance matrices

$$\|P_k^{N,f} - \bar{P}_k^{N,f}\| \le 2 \,|\Delta_k^{N,2,f}|^2 + C \,\Delta_k^{N,2,f}$$

where C > 0 depends on (existing) finite moments of limiting sequence, and

$$\Delta_k^{N,2,f} = \left(\frac{1}{N} \sum_{i=1}^N |X_k^{i,f} - \bar{X}_k^{i,f}|^2\right)^{1/2}$$

by definition

consistency of empirical covariance matrice for limiting sequence since $(\bar{X}_k^{1,f},\ldots,\bar{X}_k^{N,f})$ are independent random variables, then $\|\bar{P}_k^{N,f}-\bar{P}_k^f\|\longrightarrow 0$

almost surely, as $N \uparrow \infty$ by law of large numbers

from now on, notation \bullet stands either for f (forecast) or a (analysis)

almost sure contiguity of ensemble elements

introduce

$$\Delta_k^{N,p,\bullet} = \left(\frac{1}{N} \sum_{i=1}^N |X_k^{i,\bullet} - \bar{X}_k^{i,\bullet}|^p\right)^{1/p}$$

Proposition if Assumption A holds, and if random vector X_0 has finite moment of order p for some $p \ge 2$, then

$$\Delta_k^{N,p,\bullet} \longrightarrow 0$$

for same order p, almost surely as $N \uparrow \infty$

if Assumption B holds, and if random vector X_0 has finite moments of any order, then

$$\Delta_k^{N,p,\bullet} \longrightarrow 0$$

for any order p, almost surely as $N\uparrow\infty$

$\mathbb{L}^p\text{-}\mathrm{contiguity}$ of ensemble elements

recall

$$\Delta_k^{N,p,\bullet} = \left(\frac{1}{N} \sum_{i=1}^N |X_k^{i,\bullet} - \bar{X}_k^{i,\bullet}|^p\right)^{1/p}$$

and introduce

$$D_k^{N,p,\bullet} = (\mathbb{E}|X_k^{i,\bullet} - \bar{X}_k^{i,\bullet}|^p)^{1/p}$$

Lemma

$$D_k^{N,p \wedge q, \bullet} \leq (\mathbb{E} |\Delta_k^{N,p, \bullet}|^q)^{1/q} \leq D_k^{N,p \vee q, \bullet}$$

Proposition if Assumption B holds, and if random vector X_0 has finite moments of any order, then

$$\sup_{N \ge 1} \sqrt{N} D_k^{N,p,\bullet} < \infty$$

for any order p

almost sure convergence

Theorem let ϕ be a locally Lipschitz continuous function, with at most polynomial growth at infinity, i.e.

$$|\phi(x) - \phi(x')| \le L |x - x'| (1 + |x|^{\sigma} + |x'|^{\sigma})$$

for any $x,x'\in \mathbb{R}^m$ and for some $\sigma\geq 0$

if Assumption A holds, and if random vector X_0 has finite moment of order p for some $p \ge 2$, then

$$\frac{1}{N} \sum_{i=1}^{N} \phi(X_k^{i,\bullet}) \longrightarrow \int_{\mathbb{R}^m} \phi(x) \ \bar{\mu}_k^{\bullet}(dx)$$

for same order p, almost surely as $N \uparrow \infty$

if Assumption B holds, and if random vector X_0 has finite moments of any order, then

$$\frac{1}{N} \sum_{i=1}^{N} \phi(X_k^{i,\bullet}) \longrightarrow \int_{\mathbb{R}^m} \phi(x) \ \bar{\mu}_k^{\bullet}(dx)$$

for any order p, almost surely as $N \uparrow \infty$

$\mathbb{L}^p\text{-}\mathsf{convergence}$ and rate of convergence

Theorem let ϕ be a locally Lipschitz continuous function, with at most polynomial growth at infinity, i.e.

$$|\phi(x) - \phi(x')| \le L |x - x'| (1 + |x|^{\sigma} + |x'|^{\sigma})$$

for any $x, x' \in \mathbb{R}^m$ and for some $\sigma \geq 0$

if Assumption B holds, and if random vector X_0 has finite moments of any order, then

$$\sup_{N \ge 1} \sqrt{N} \left(\mathbb{E} | \frac{1}{N} \sum_{i=1}^{N} \phi(X_k^{i,\bullet}) - \int_{\mathbb{R}^m} \phi(x) \, \bar{\mu}_k^{\bullet}(dx) \, |^p \, \right)^{1/p} < \infty$$

for any order p

outline

- motivation : Kalman filter in large dimension
- EnKF as particle system with mean-field interaction
- identification of the limit
- large sample asymptotics of EnKF
- connection with particle filters
- conclusion and perspective

return to any system of the form

$$X_k = f_k(X_{k-1}) + W_k$$
 with $W_k \sim \mathcal{N}(0, Q_k)$

 $Y_k = H_k X_k + V_k$ with $V_k \sim \mathcal{N}(0, R_k)$

with non–necessarily Gaussian initial condition $X_0 \sim \eta_0$ approximation of Bayesian filter

$$\mu_k(dx) = \mathbb{P}[X_k \in dx \mid Y_{0:k}]$$

in the form of a weighted empirical probability distribution

$$\mu_k pprox \mu_k^N = \sum_{i=1}^N w_k^i \ \delta_{\xi_k^i} \qquad ext{with} \qquad \sum_{i=1}^N w_k^i = 1$$

associateds with a system of N particles, characterized by their

- positions $(\xi_k^1, \cdots, \xi_k^N)$
- and positive weights (w_k^1,\cdots,w_k^N)

usual scheme (bootstrap particle filter) :

- particle positions are propagated by simulation under transition probability of X_k given $X_{k-1} = \xi_{k-1}^i$, a Gaussian probability distribution with mean vector $f_k(\xi_{k-1}^i)$ and covariance matrix Q_k
- particle weights are updated by evaluation of likelihood function (conditional density of current observation Y_k given $X_k = \xi_k^i$), a Gaussian density with mean vector $H_k \xi_k^i$ and covariance matrix R_k
- weights can be used to discard / multiply particles

▶ mutation step : independently for any i = 1, ..., N,

 $\xi_k^i = f_k(\xi_{k-1}^i) + W_k^i \quad \text{with} \quad W_k^i \sim \mathcal{N}(0, Q_k)$

• weighting step : independently for any $i = 1, \ldots, N$

$$w_k^i \propto w_{k-1}^i q(Y_k - H_k \xi_k^i, R_k)$$

where $q(x, \Sigma)$ is Gaussian density with zero mean vector and invertible covariance matrix Σ

selection step : discard / multiply particles according to their (relative) weights (many variants) a particle approximation with optimal importance distribution : use next observation to select and propagate particles

- particle weights are updated using evaluation of another likelihood function (conditional density of next observation Y_k given $X_{k-1} = \xi_{k-1}^i$), a Gaussian density with mean vector $H_k f_k(\xi_{k-1}^i)$ and covariance matrix $H_k Q_k H_k^* + R_k$
- weights can be used to discard / multiply particles
- particle positions are updated using simulation under transition probability of X_k given $X_{k-1} = \xi_{k-1}^i$ and given Y_k , a Gaussian probability distribution given by a Kalman filter

• weighting step : independently for any $i = 1, \ldots, N$

 $w_k^i \propto w_{k-1}^i q(Y_k - H_k f_k(\xi_{k-1}^i), H_k Q_k H_k^* + R_k)$

where $q(x, \Sigma)$ is Gaussian density with zero mean vector and invertible covariance matrix Σ

selection step : discard / multiply particles according to their (relative) weights (many variants)

▶ mutation step : independently for any i = 1, ..., N,

 $\xi_k^{i,-} = f_k(\xi_{k-1}^i) + W_k^i \qquad \text{with} \qquad W_k^i \sim \mathcal{N}(0,Q_k)$

and

$$\xi_k^i = \xi_k^{i,-} + K_k(Q_k) \ (Y_k - H_k \, \xi_k^{i,-} - V_k^i) \qquad \text{with} \qquad V_k^i \sim \mathcal{N}(0, R_k)$$

with gain matrix

$$K_k(Q_k) = Q_k H_k^* (H_k Q_k H_k^* + R_k)^{-1}$$

rewritting

$$\xi_k^i = (I - K_k(Q_k) H_k) (f_k(\xi_{k-1}^i) + W_k^i) + K_k(Q_k) (Y_k - V_k^i)$$

shows that, conditionnally w.r.t. ξ_{k-1}^i , the random vector ξ_k^i is Gaussian with mean vector

$$f_k(\xi_{k-1}^i) + K_k(Q_k) (Y_k - H_k f_k(\xi_{k-1}^i))$$

and covariance matrix

 $(I - K_k(Q_k) H_k) Q_k (I - K_k(Q_k) H_k)^* + K_k(Q_k) R_k K_k(Q_k)^*$

 $= (I - K_k(Q_k) H_k) Q_k$

i.e. its distribution is that of X_k given $X_{k-1} = \xi_{k-1}^i$ and given Y_k

 R_k)

main differences with ensemble Kalman filter

• prediction (forecast) step in ensemble Kalman filter and (first part of) mutation step in particle filter follow same formal rule

 $\begin{aligned} X_k^{i,f} &= f_k(X_{k-1}^{i,a}) + W_k^i \\ & \text{with} \quad W_k^i \sim \mathcal{N}(0,Q_k) \\ \xi_k^{i,-} &= f_k(\xi_{k-1}^i) + W_k^i \end{aligned}$

 correction (analysis) step in ensemble Kalman filter and (second part of) mutation step in particle filter

$$\begin{aligned} X_k^{i,a} &= X_k^{i,f} + K_k(P_k^{N,f}) \left(Y_k - H_k X_k^{i,f} - V_k^i\right) \\ & \text{with} \quad V_k^i \sim \mathcal{N}(0, \\ \xi_k^i &= \xi_k^{i,-} + K_k(Q_k) \left(Y_k - H_k \xi_k^{i,-} - V_k^i\right) \end{aligned}$$

differ in using empirical covariance matrix $P_k^{N,f}$ of forecast ensemble elements vs. covariance matrix of noise W_k in state equation

• particle filters uses weights (and a possible selection / resampling procedure)

many convergence results hold as population size N goes to infinity, with Bayesian filter μ_k as limit, for this particular and for many other particle filters

Theorem convergence in \mathbb{L}^p -mean

$$\left(\mathbb{E} \right| \sum_{i=1}^{N} w_k^i \phi(\xi_k^i) - \int_{\mathbb{R}^m} \phi(x) \ \mu_k(dx) \left|^p\right. \right)^{1/p} \longrightarrow 0$$

for any order p, as $N\uparrow\infty$

Theorem central limit theorem

$$\sqrt{N} \left(\sum_{i=1}^{N} w_k^i \phi(\xi_k^i) - \int_{\mathbb{R}^m} \phi(x) \ \mu_k(dx) \right) \Longrightarrow \mathcal{N}(0, v(\phi))$$

in distribution as $N \uparrow \infty$, with (more or less explicit) expression for asymptotic variance $v(\phi)$

outline

- motivation : Kalman filter in large dimension
- EnKF as particle system with mean-field interaction
- identification of the limit
- large sample asymptotics of EnKF
- connection with particle filters
- conclusion and perspective

in his PhD thesis, Nicolas Papadakis has proposed a weighted version of ensemble Kalman filter, where evolution of ensemble elements is seen as a special case of a mutation step, and appropriate weights are introduced

issues

- convergence and CLT for WEnKF, as ensemble size goes to infinity
- comparison with particle filters, on the basis of asymptotic variances

workprogramme of PREVASSEMBLE project, supported by ANR and coordinated by Olivier Talagrand