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Abstract: Horseshoe and Guttman effects are investigated in the analysis
of contingency tables by Correspondence Analysis and Row×Column association
model. Attention is focused on tables obtained by discretization of continuous
bivariate distributions. The emergence of these effects is explored by choosing
some specific densities. In this context, neither Correspondence Analysis nor the
Row×Column association model offers a general advantage in terms of parsimony.
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1 Introduction

We investigate horseshoe type effects in the analysis of contingency tables by Cor-
respondence Analysis (CA) and the Row×Column association model (RC). CA and
RC produce scores which are currently used to draw plots. In some instances, a plot
reveals a horseshoe or other elaborate patterns. The existence of such patterns is a
frequent source of surprise to data-analysts who expect that all dimensions should be
independent. Indeed, when this is present in the output of CA, it is often advocated
to resort to RC since it has been frequently observed that RC successfully removes
such a pattern and provides a more parsimonious description of the data. However,
a variety of situations shows that the problem is more intricate. There are cases
for which the converse is true, but also many cases where both analyses produce
confusing patterns. Here we have chosen to focus our attention on tables obtained
by discretization of continuous bivariate distributions. For some specific densities,
we discuss the results of CA and RC from the point of view of the emergence of
these patterns.

In section 2, following Schriever (1986) and Van Rijkevorsel (1987), we recall
what is a standard horseshoe effect in CA and more generally what are Guttman
effects. In section 3, we consider the case of an underlying bivariate normal distri-
bution: in this particular case, RC is fully adapted whereas CA produces a whole
series of polynomial effects (Goodman, 1991). In section 4, we investigate the case
of bivariate distributions whose margins are obtained by convolution of univariate
distributions in one of the Meixner classes (Eagleson, 1964; Lancaster, 1975, 1983).
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Given that these bivariate distributions have also a Mehler type expansion, CA pro-
duces a series of polynomial effects as in the normal case. However, RC may lead
to similar effects. In section 5, we consider a distribution for which Guttman effects
appear for RC association model but not for CA, namely a ‘dual’ case to the normal
one. Note that this distribution is studied in Lancaster (1958). In the last sec-
tion, we consider some extensions of this simple distribution which are also briefly
discussed in Lancaster (1958) and which lead to truly diabolic Guttman effects.

While this paper gives the mathematical framework for these diabolic patterns,
the presentation will mainly illustrate them by graphical displays.

2 Horseshoes and Guttman effects

Horseshoe effects in CA have been investigated in deep by Schriever (1986) and Van
Rijckevorsel (1987). Examples are observed when a seriation can be defined on rows
and on columns of a contingency table (Hill, 1974). Striking examples can be found
in archaeology (see e.g. Nielsen, 1991). Firstly we recall the structure of CA and
RC models. Secondly we define some specific patterns which may appear in the
corresponding plots.

2.1 CA and RC models

CA (formula 1) and RC (formula 2) models describe non independance between
rows and columns of an I × J contingency table by specifying a bilinear model for
the frequencies:

pij = pi+ p+j

(

1 +
M
∑

h=1

λhµihνjh

)

, (1)

pij = γ αi βj exp

(

M
∑

h=1

φhξihηjh

)

. (2)

In the formulae above, M is the dimension of the model (M ≤ min(I, J) − 1), the
coefficients λh and φh are ordered so that λ1 ≥ . . . ≥ λM > 0 and φ1 ≥ . . . ≥ φM > 0,
and the scores (µih or ξih for the rows, and νjh or ηjh for the columns), are subject
to standard identification constraints (see e.g. Goodman, 1991).

2.2 Specific patterns

These scores are mainly used to draw plots for the levels of the two variables cross-
classifying the contingency table. It may happen that these plots exhibit specific
patterns. At its simplest, a horseshoe occurs if there exists a convex (or concave)
function which relates the scores on dimension k to those on dimension h. Note that
this may also arise in somewhat different context, for example multidimensional
scaling (Mardia et al., 1979). More generally, Guttman effects occur when a series
of functions relate the scores associated with different dimensions to the scores of
a given order (usually 1). In many cases the functions are standardized orthogonal
polynomials (Tchebycheff-Hermite, Legendre . . . ).
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3 Underlying bivariate normal

It is well known that CA of a contingency table obtained by discretization of a
bivariate normal distribution gives rise to Guttman effects (Goodman, 1991). In
this section, we recall how this phenomenon originates.

3.1 Discretization

Consider a continuous random vector (X,Y ) having standardized bivariate normal
distribution with correlation coefficient ρ. Then the probability density function for
(X,Y ) can be expressed as:

f(x, y) =
1

2π
√

1 − ρ2
exp

(

−x2 − 2ρxy + y2

2(1 − ρ2)

)

= z(x) z(y)

(

1 +
+∞
∑

h=1

ρhHh(x)Hh(y)

)

(3)

=
1

√

1 − ρ2
z

(

x
√

1 − ρ2

)

z

(

y
√

1 − ρ2

)

exp

(

ρ

1 − ρ2
xy

)

(4)

where z is the standardized univariate normal density function and Hh are the
Tchebycheff-Hermite polynomials. Formula (3) is the well known Mehler expansion.

Any discretization of (X,Y ) provides a contingency table with joint probability

pij =

∫ xi

xi−1

∫ yj

yj−1

f(x, y)dxdy.

For sufficiently refined discretization, it appears from (3) and (4) that:

pij ' pi+ p+j

(

1 +
M
∑

h=1

ρhHh(µi1)Hh(νj1)

)

, (5)

pij ' γ αi βj exp

(

ρ

1 − ρ2
ξi1 ηj1

)

. (6)

3.2 CA and RC analyses

It is clear from formulae (5) and (6) that CA produces artefacts (a whole series of
polynomial effects including the horseshoe) whereas RC captures the true dimension
of the table (M = 1). Theoretical aspects of this phenomenon have been treated
by Lancaster (1958), Kendall & Stuart (1967), and Benzcri (1973). A numerical
illustration can be found in Goodman (1991). Additionally, it appears that the fit
is quite robust against the pattern of the cut-points defining the discretization: the
estimated scores µi1 and ξi1 belong to [xi−1, xi] and, correspondingly, νj1 and ηj1

belong to [yj−1, yj ]. For a related discussion see Becker (1989). A generalization in
which X and Y are p-dimensional is outlined in Benzécri (1973) and worked out
in Dauxois & Pousse (1976). Practical implications are considered in Baccini et al.

(1993). They show how the identification of patterns produced in the multidimen-
sional case is quite intricate.
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4 Some other underlying bivariate distributions

It was known beforehand that CA was not appropriate because of the Mehler ex-
pansion of the bivariate normal (see formula (3) above). Now it happens that
other bivariate distributions present analogous expansions: the so-called polyno-
mial biorthogonal property (see subsection 4.1 below). Many examples are provided
by bivariate distributions whose margins are obtained by convolution of two univari-
ate distributions in Meixner classes (subsection 4.2). Some features of their analysis
by CA and RC are reported.

4.1 Polynomial biorthogonal property

Let F (x, y) be a bivariate distribution function with marginals G(x) and H(x). It is
said that F possesses the polynomial biorthogonal (PB) property (Lancaster, 1975)
if and only if:

dF (x, y) =

(

1 +
+∞
∑

h=1

ρhPh(x)Qh(y)

)

dG(x) dH(y) (7)

where {Ph(x)}h∈IN and {Qh(y)}h∈IN are complete orthogonal systems of standard-
ized polynomials on the respective marginal distributions (Ph(x) and Qh(y) are
polynomials of degree h in x and in y respectively). Note that ρh = E[Ph(x)Qh(y)]
and that E[Ph(x)Qk(y)] = 0 if h 6= k. Formula (7) is nothing but a generalization
of the Mehler expansion. Clearly, discretization of such bivariate distributions will
give contingency tables for which

pij ' pi+ p+j

(

1 +
M
∑

h=1

ρhPh(µi1)Qh(νj1)

)

. (8)

Once again, CA is not appropriate. As already seen, CA generates a whole series of
polynomial scores. Moreover, it might be difficult to identify these Guttman effects
since the ρh in formulae (7) and (8) may not be ordered. For example, the scores
on dimensions 1 and 2 may be related to scores on a given higher dimension.

4.2 Examples with Meixner classes margins

Meixner classes include many univariate statistical distributions among which the
normal. As for the normal case, bivariate extensions can be defined. We con-
sider those obtained by additive trivariate reduction also called variables in com-
mon method, or common components (Lancaster, 1975, 1983; Mardia et al., 1979;
Hutchinson & Lai, 1990). We investigate the case of contingency tables obtained by
their discretization.

Meixner classes of distribution functions

They have been introduced by Meixner (1934) and can be defined from two equiv-
alent manners: the first one from specific generating functions (Eagleson, 1964;
Lancaster, 1975, 1983; Lai, 1982) and the second one from the exponential family
with a quadratic variance function (Morris, 1982). There exist six classes of such
distribution functions: normal, Poisson, gamma, binomial, negative binomial and
generalized hyperbolic secant.
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Bivariate extensions

They are obtained as follows. Let W1, W2 and W3 be three independent random
variables with additively compatible univariate distribution functions in the same
Meixner class. Consider the so called additive trivariate reduction of W1, W2 and
W3: X = W1 + W2 and Y = W2 + W3. The distribution of (X,Y ) is a bivariate
generalization of the univariate distribution in the corresponding Meixner class.

Proposition

A bivariate distribution (X,Y ) defined as above has the PB property and the cor-
responding correlation coefficients ρh are decreasing (Eagleson, 1964; Lancaster,
1975).

CA and RC analyses

Given (8) it is clear that, for these bivariate distributions (X,Y ), CA produces
Guttman effects as in the normal case. However, as opposed to the normal case, RC
is not necessarily in dimension one. Even more, in some instances, RC gives rise to
Guttman effects.

5 An underlying bivariate distribution associated with

CA

In a dual vein to the normal case, we study the discretization of a bivariate distribu-
tion for which CA is fully adapted. This distribution, which is studied in Lancaster
(1958), is also known as the Eyraud-Farlie-Gumbel-Morgenstern copula (Scarsini &
Venetoulias, 1993). Discretizations of this joint distribution are of interest: CA fits
exactly in dimension one whereas RC exhibits Guttman effects.

5.1 Definition

Let us consider the continuous bivariate distribution (X,Y ) whose density function
is defined by:

f(x, y) =
1

4
(1 + α x y) 1I[−1,+1](x) 1I[−1,+1](y) with α ∈ [−1,+1]. (9)

Note that this expression is a slightly altered version of the Eyraud-Farlie-Gumbel-
Morgenstern copula (Hutchinson & Lai, 1990; Scarsini & Venetoulias, 1993), in-
troduced to have uniform marginals on [−1,+1]. Then it is easy to verify that
E[X2] = E[Y 2] = 1

3 , that E[XY ] = α
9 and that the correlation coefficient, α

3 ,
belongs to [− 1

3 ,+1
3 ]. Whitout loss of generality, α can be chosen to be positive.

5.2 Discretization

Any discretization of (X,Y ) provides a contingency table such that

pij = pi+ p+j

(

1 + α
xi−1 + xi

2

yj−1 + yj

2

)
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where pi+ = xi−xi−1

2 and p+j =
yj−yj−1

2 . Note that
∑I

i=1 pi+
xi−1+xi

2 = 0 but that
∑I

i=1 pi+

(

xi−1+xi

2

)2
depends on the discretization scheme.

5.3 CA and RC analyses

It is clear that CA in dimension 1 fits exactly tables built under any discretiza-
tion scheme. The scores are proportional to the midpoints xi−1+xi

2 and
yj−1+yj

2 ,
with a proportionality constant which depends on the discretization scheme. As
opposed, RC gives rise to Guttman effects. However, the theoretical reasons of this
phenomenon are not quite clear and remain to be investigated.

5.4 Multivariate extension

Baccini et al. (1993) have proposed a (2 × M)-dimensional normal distribution
(with adapted correlation structure) as an underlying model for RC in dimension
M (M > 1). In a similar fashion, the density defined by formula (9) can be easily
extended as

1

4M

(

1 +
M
∑

h=1

αh xh yh

)

M
∏

h=1

1I[−1,+1](xh) 1I[−1,+1](yh) with
M
∑

h=1

| αh | ∈ [0,+1],

to underly CA in any dimension M .

6 Two examples from H.O. Lancaster

We revisit two interesting examples considered in Lancaster (1958). They question
the problem of dimensionality: at least two dimensions are needed for a good fit, but
only one set of scores is relevant. They may also lead to diabolic patterns: rotated
horseshoe and permuted Guttman effects.

6.1 Example 1

We consider the natural orthonormal sets of functions on [−1,+1] provided by the

Legendre polynomials. In particular, L1(x) =
√

3 x and L2(x) =
√

5
2 (3x2 − 1). We

can now assign coefficients α1 and α2 subject to the condition that the following
density becomes nowhere negative:

f(x, y) =
1

4
(1 + α1L1(x)L1(y) + α2L2(x)L2(y)) 1I[−1,+1](x) 1I[−1,+1](y).

An interesting case is when α2 > α1: the scores on dimension 1 are function of
the relevant scores on dimension 2. As expected, empirical investigations show a
rotated horseshoe both in CA and RC. An exact fit is obtained for CA in dimension
2, but RC shows, in further dimensions, Guttman effects associated with the scores
on dimension 2.
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6.2 Example 2

The cosine series are taken as the orthonormal sets on [− 1
2 ,+1

2 ]. In particular,

C1(x) =
√

2 cos(2πx) and C2(x) =
√

2 cos(4πx). We consider the bivariate distri-
bution defined by

f(x, y) = (1 + α1C1(x)C1(y) + α2C2(x)C2(y)) 1I[− 1

2
,+ 1

2
](x) 1I[− 1

2
,+ 1

2
](y)

with α1 and α2 subject to the condition that the density becomes nowhere negative.
Empirical investigations show that CA is well adapted in dimension 2 whereas RC
gives rise to Guttman effects with trigonometric patterns. According to the relative
values of α1 and α2, permuted Guttman effects turn out.

7 Concluding remarks

We have compared CA and RC applied to contingency tables obtained by dicretiza-
tion of underlying continuous bivariate distributions. It is clear that no model offers
a general advantage so that both analyses should be run in parallel and compared.
Moreover, the nature of the functions involved in the Guttman effects in RC remains
to be properly studied.

Noting that RC and CA differ by their link function (Baccini et al., 1993; Good-
man, 1993; Falguerolles & Francis, 1994), the theoretical examples above illustrate
the need to identify, in practical situations, the link function which leads to the most
parsimonious model. To this aim, the plot of fitted values versus observed values
may offer some guidance.

When tables result from the discretization of more general (2×M)-distribution,
the problem becomes a lot more intricate. Preliminary investigations reveal that the
discretization scheme is quite influential in the ordering of truly significant dimen-
sions and Guttman type artefacts.

References

Baccini, A., Caussinus, H., & Falguerolles, A. de (1993), Analysing dependence
in large contingency tables: Dimensionality and patterns in scatter-plots, in
Multivariate Analysis: Future Directions 2, (C.M. Cuadras and C.R. Rao Eds.),
245-263, North-Holland, Amsterdam.

Becker, M.P. (1989), On the bivariate normal distribution and association models
for ordinal categorical data, Statistics and Probability Letters, 8, 435-440.

Benzécri, J.P. (1973), L’Analyse des Données, vol. 2 : l’Analyse des Correspon-

dances, Dunod, Paris.

Dauxois, J., & Pousse, A. (1976), Les Analyses Factorielles en Calcul des Probabilités
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