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February 24, 2012

1 Introduction

In many situations one uses several variables in a regression model as a precaution. Some
of the k variables are relevant and some not. Fitting the whole model with say k variables
seems to make sense but it often leads to disagreeable phenomenum : the over-fitting in
the sense that the estimated coefficients follow the data and thus the errors. They don’t
follow the model. A good example is given by Figure 1 where a smooth signal is observed
with some noise and is estimated by a piecewise constant model with 42 sub-intervals.

To avoid this kind of phenomenon, we must introduce the parsimony principle: to
estimate too many parameters leads to an inflation of variance and a poor performance
of the estimation of the response. Thus is is often better to set to zero the coefficients of
some explanatory variables that seem to have a small or non-significative influence.

More precisely, we consider a regression model with k regressors and n observations.

Yi =
∑
j=1,..k

βjZ
(j)
i + εi, i = 1, ..., n

We will assume in most of the parts of this paper that n > k and that the model is
regular.

The whole model, the true model, the over-models and the false
models

The model with all regressors will be called the ”whole model”. It will be denoted by
m̄. Among the coefficients β1, . . . , βk of the whole model, some may be zero and the
corresponding variables are not needed. They will be called the superfluous variables.
The goal of choice of model is to identify these variables and consequently the true model
that consists of all variables with non-zero beta. This model will be denoted m∗; to
identify m∗ instead of m̄ permits to avoid the over-fitting.

The identification can be false in two direction

• we can chose an ”over-model”: it is a model m that strictly contains m∗. As a
consequence in contains some superfluous variables.

• we can chose a ”false model” that does not contain some variables of m∗. For us a
false model may contain some superfluous variables, it does not matter.
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Figure 1: Over-fitting with a piecewise constant estimation over 42 sub-intervals.

As an example if (m̄) = {1, 2, 3, 4, 5} and m∗ = {1, 4, 5}

• {1, 3, 4, 5} is an over-model

• {1, 5} and {1, 3, 5}are two false-models. The first one is a sub-model (of the true
one) but it does not matter.

We will consider the ”all sub-set regression” in the sense that will search the true
model among the set M of the 2k sub-models of m̄. Some exception to that case are

• nested model, for example in polynomial regression : the jth regressor Z
(j)
i , i =

1, ..., n is a power of the second regressor Z
(2)
i (The first one is the constant) and we

want to chose the degree of the polynomial. There are k sub-models only of m̄ to
consider.

• model with an intercept. In almost all the cases, the first regressor is the ”all-one
vector” 1In and in many case one does not want to question the presence of this
vector in the model. In that case the set M of models to be considered is of size
2k−1. This case is very similar to all sub-set regression, so we will omit the details.

Elementary methods

Test or thresholding.
Tests: Let two models m1 and m2 of the set M of considered models. Let α a level

that may depend on n. When m1 and m2 are nested, one method is to perform a classical
α F test between them. This method leads to two problems; first the number of tests to
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perform is very large (3k − 2k) and second it may be non-consistent in the sense that m1

can be chosen preferable to m2 and m2 to m3 while m3 is chosen preferable to m1

Thresholding: One very crude method is to adjust the whole model and perform an
α T -test of each of the k variables and keep the significative ones. This certainly makes
sense if the model (or equivently the regressors) is orthogonal. In the other case it can lead
to strange decisions. For example if Z(1) and Z(2) are very collinear and very collinear to
Y , the thresholding method will discard both variables because, when Z(1) is present, Z(2)

is no longer needed and vice versa. Nevertheless we will be able to prove some properties
of this method.

Backward regression: to avoid the problem encountered in the example above, the
backward selection method starts with the whole model and then

- at each step, the least significant variable is removed from the model and calculations
are made anew.

-this is done while the variable to be removed is non-significant at a α level. If the
variable is significant, of course it is kept, the procedure stops and the model is chosen .

Stepwise regression is a variant of the preceding where at every step we may add
or remove a variable. We skip the details.

Forward regression is exactly the contrary of backward regression: we start with
the empty model or the model with the sole constant and we add at each step the most
significative variable. We end when the variable to be add is non significative at α level.
The forward regression which is also called ”L2 boosting ” ref?? can be applied in the
case k > n.

PRESS or cross-validation
Let m ⊂ m̄ and let us consider the associated regression model

Yi =
∑
j∈m

βjZ
(j)
i + εi,

We denote by Xm the design matrix (the matrix of the linear model) associated to model
m ∈M. We want to estimate the quadratic error of model m

E
(
‖Xm∗β −Xmβ̂m‖2

)
.

A way of estimating this is a ”leave-one-out cross-validation”.
For i = 1, . . . , n we, define Y −i the vector obtained be removing the ith observation.

For m ∈M we define µ−im as the scalar which is the prediction
based on Y −i and on Model m
and taken at the point i.
We define the PRESS as

PRESS m =
n∑
i=1

(Yi − µ−im )2. (1)

Note that one nice property of the PRESS is that the two random variables Yi and µ−im
are independent.

The chosen model is the one with the lowest PRESS.
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In general, selection with PRESS is computationally very expensive and has properties
equivalent to Cp or AIC (see above ) see LI (1987) . In particular, as we will see, it tends
to over-estimate the size of the model. For linear model the situation is nicer since we
can compute a simplified form: it can be proved that

PRESSm =
n∑
i=1

(Yi − Ŷ m
i )2

(1− hi)2
,

where hi = X ′i(X
′X)−1Xi, Xi being the ith row of X see, for example, McQuarrie and

Tsai( 2007) p. 252 for a proof.
To remedy to this drawback one can use ”leave-p-out cross-validation, but in this case

the computational cost is even larger. A less costly alternative in v-fold cross-validation
(Geisser 1975) , see Arlot (2009) for a detailled study .

2 Methods based on L0 penalties

As a general principle the likelihood method choses always the largest model and this is
true for our regression model. Note that, as we will see later maximizing the likelihood
is equivalent, for linear model to minimize the sum of square. Heuristic considerations
(based on Kullback information or on Bayesian models) have lead to use the following
penalized likelihood criterions

AIC = −2 log(maximized likelihood) + 2|m|
BIC = −2 log(maximized likelihood) + log(n)|m|

where

• the maximized likelihood is the maximum of the likelihood

• the likelihood is computed on n independent observations.

• The penalty 2|m| or log(n)|m| favors small models( |m| is the size of m).

• the criterions have to be minimized.

These criterion can be extended as

GIC = −2 log(maximized likelihood) + c(n)|m| (2)

where c(n) is a function to be fixed later.
We can define also

AICc = −2 log(maximized likelihood) + n
n+ |m|+ 1

n− |m| − 3

and

Cp(m) =
SS(m)

σ̂m
+ 2|m|
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Lemma 1 In the linear model
Y = Xβ + ε

we have

• the maximum likelihood estimator of σ2 is σ̂2 = 1/nSS where SS is the sum of
squares

SS = ‖Y −Xβ̂‖2.

•
−2 log( maximized likelihood) = n log(σ̂2) + SS/σ̂2

•
−2 log( maximized likelihood) = n log(σ̂2) + n

•
−2 log( maximized likelihood) = n log(SS/n) + n = n log(SS) + (const).

The proof is omitted, each result being an easy consequence of the preceding one.
Note that the constants (const) appearing in the formulas above play no role and can be
omitted.

All the criterions as PRESS AIC BIC GIC permit a rather easy comparison of models
but if we perform a ”all subset selection”, the number of sub-model to compare is 2k

which is soon very large. Some ”leaps and bounds algorithm” exist ??** that permit to
avoid to examine all the possibilities but practical limitations are about k = 30. In the
other cases only a partial exploration is performed by a stepwise algorithm. This works
rather well in practice but no theoretical results are known in that case. For these reasons
for large size, one often prefers L1 penalties as LASSO.

The criterion PRESS AIC BIC GIC permit to consider the ”large dimension case”
: k > n only if we limit us to models of size |m| < S with S much smaller than n .
Such models are called sparse models. But in this case again computational problems are
heavy.

3 Comparison of models with AIC, GIC

This section is devoted to the study of the relations of AIC ( BIC, GIC) with tests.

Assumption 1 Though we will use Gaussian likelihood to estimate and compute the
criterion, we will work under one of the two following hypotheses when n tend to infinity
and when k may depend on n but must satisfy kn = o(n)

• the Gaussian case : the εi, i = 1, . . . , n of the linear model errors are independent
with distribution N(0, σ2), the variance σ2 is of course unknown.

• the errors are centered independent with the same symmetric distribution and finite
variance σ2 and finite order four moment. We assume in addition the Huber con-
dition : Hn the maximal diagonal element of the ”hat matrix” X(X ′X)−1X ′ tends
to zero (X is the matrix associated to the whole model).
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3.1 AIC

Lemma 2 Suppose that m1 and m2 are two nested models m1 ⊂ m2, the model m1 is
preferable to m2 for AIC iff

F̂m2/m1 =
(SS(m1)− SS(m2))/(|m2| − |m1|)

SS(m2)/(n− |m2|
>

n− |m2|
|m2| − |m1|

(
exp

(
2

(|m2| − |m1|)
n

)
− 1

)
(3)

Again the proof can be omitted. The reader familiar with linear model has recognized
in the left-hand-size of (3 ) the statistics of the Fisher test. In other words, AIC performs
a Fisher test, but with a different critical value. We have obviously the same kind of
result for GIC replacing the 2 by c(n).

Suppose now that the number n tends to infinity that m1 is the true or an over-model
and that Assumption 1 is satisfied, then using law or large number and Central limit
theorem under Lindeberg condition (see for example Th 8.3 of Azäıs and Bardet) (since

we are under the null hypothesis) the limit distribution of F̂m2/m1 is

F̂m2/m1 ⇒ χ2(p)/p

where⇒ is the convergence in distribution. Obviously the right-hand side of (3 ) converges
to 2.

As a consequence AIC performs asymptotically a F test with critical value
2p where p is the difference of degrees of freedom between the two hypotheses.
This corresponds to the following levels.

difference level
1 0.104
2 0.068
3 0.049
4 0.037
5 0.028

As a consequence, considering the case where m1 is the true model, the result above shows
that AIC has a probability that tends to a positive limit to prefer every over-model m2

to the true model. So the probability of choosing m∗ cannot tend to 1.

3.2 BIC, GIC

If we consider the GIC as defined by (2). The calculation above shows that the criterion
will prefer model m1 to m2 iff

F̂m2/m1 =
(SS(m1)− SS(m2))/(|m2| − |m1|)

SS(m2)/(n− |m2|)
>

n− |m2|
|m2| − |m1|

(
exp(c(n)

(|m2| − |m1|)
n

)−1

)
Now we assume that c(n)→ +∞ , c(n) = o(n) to get that the right hand side is equivalent
to c(n).
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As a consequence the probability of preferring a given over-model is, for n suffiently
large, smaller that the probability of a ξ2(d) distribution to be smaller that K for every
K so it tends to zero.

I Sine k is assumed to be fixed, the number of over -models is bounded and we obtain
immediately that the probability of ”preferring an over-model to m∗” tends to zero.

3.3 Case of a false model

Suppose that m is ”false”. It is not in general a sub-model of the true model. But it
can be compared to the model m2 = m ∪ m∗. Since m ⊂ m2 we can appy Lemma 2
that shows that asymptotically m2 is prefered to m if F̂m2/m ≥ c̃(n) where c̃(n) ' c(n).
Using the same arguments of chapter 8 of Azäıs and Bardet (2005), we see that under
our hypotheses the denominator D = σ̂2 of F̂m2,m tends in probability to σ2 while the
numerator can be written as

N =
(
‖PV (Xβ) + PVXβ̂‖2

)
/d

where V is the orthogonal of [Xm] in [Xm2 ]. Using the normality of β̂ (Th 8.2 of the same
book) we see that what ever the non-centrality parameter ‖PV (Xβ) is, the numerator can
be written as

D = 1/d‖‖PV (Xβ) + Z‖2

where Z has for variance-covariance matrix

PVX(X ′X)−1X ′PV = PV .

Using a rotation argument, this matrix can be transformed, for example, into Id where
Id is the indentity of size d and N can be written as the norm a vector in a space of
dimension d as

N =
σ2

d
‖ξ +Wn‖2

where ξ converges to the N(0, Id) distribution and

‖Wn‖2 =
1

σ2
‖PVXβ‖2 =

1

σ2
‖Pm⊥Xβ‖2.

This last parameter will be called the no- centrality parameter and denoted by NCm:

NCm =
‖Pm⊥Xβ‖2

σ2

Note that this parameter depends additionally on n but we omit that in the notation.
We set now our uniform born on χ2 distributions

Lemma 3 - For all integer d ≥ 1 and for all real c(n) greater than 2

P{χ2(d) ≥ c(n)d} ≤ exp(−c(n)/2)

- If NC > 4c(n)d then

P{χ′2(d,NC) ≤ c(n)d} ≤ exp−(
NC

8d
)
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Proof: The first part is easy to obtain by an exponential inequality or by exact computa-
tion using integration by parts. Let χ′2 be a variable with distribution χ′2(d,NC). This
variable has the representation

χ′2 = ‖
√
NCe1 + Z‖2,

where e1 is the first vector of the basis and Z is standard normal in Rd. Let χ2 = ‖Z‖2 .
Denoting c(n) by c for short, we have

P{χ′2 < cd} = P{χ′ <
√
cd} ≤ P{χ >

√
NC−

√
cd} ≤ P{χ > 1/2

√
NC} = P{χ2 > 1/4NC}.

It suffices to use the first relation.

We turn now to the main results. Suppose that the parameter c(n) satisfies 1 <<
c(n) << n and that every false model m has a non-centrality parameter that satifies
c(n) << NCm, then

(i) Suppose now that m is a false model then using the convergence in probability to
σ2 of the denominator of F̂m2,m we obtain that

P{m prefered to m2} = P{‖ξ +Wn‖2 ≤ dC(n)(1 + op(1))}

≤ P{‖ξ‖ ≥ d
(√

NCm −
√
c(n)(1 + op(1)

)
}

= P{‖ξ‖ ≥ d
(√

NCm(1 + op(1))
)
},

where W and ξ are defined as above. The convergence in distribution of ξ implies that
this probability tends to zero.

As a consequence mixing this case with the case of over-models, we have proven that
GIC chooses the true model with a probability that converges to 1.

(ii) Suppose now in addition that the model is Gaussian,then it is possible to give an
exponential bounds to the probability of a false model m to be preferred to m2 = m∪m∗
. The false model m is prefered to m2 = m ∪m∗ if F̂m2,m ≤ C̃n. Firstly We can choose n

sufficiently large so that C̃n ≤ 2C(n), secondly we have

F̂m2,m
D
=

χ′2(d,NCm)/d

χ2(n− |m2|)/(n− |m2|)

Using large deviation inequality (in fact just the easier part) , except with an exponentially
small (as a function of n ) probability,

χ2(n− |m2|) ≤ (2(n− |m2|))

so that it suffiices to give bound to

P{χ′2(d,NCm)/d ≤ 4C(n)}

and this by lemma 3 is smaller than exp
(
− NCm

8d

)
so we have proved that

P{m prefered to m2} ≤ exp(−(constn) + exp
(
− NCm

8d

)
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A first example of application is the very simple case where k is fixed and the matrix
X associated to the whole model satisfies

1/n X ′X →M (4)

where M is some definite positive matrix. In that case the computation below proves that
for every false model m

NCm ' γmn

with γm > 0.

Computation of NC

Indeed by the Pythagore Theorem

NCm = ‖Pm⊥Xβ‖2 = ‖Xβ‖2 − ‖PmXβ‖2

We study the two terms separately. Because of our hypothesis

‖Xβ‖2 ' nβ′Mβ.

For the seond term

‖PmXβ‖2 = β′X ′Xm(X ′mXm)−1X ′mXβ ' nβ′Mm,mM
−1
m,mMm,mβ

where Mm1,m2 is the extraction of the matrix M choosing m1 for the lines and m2 for the
columns. So that

‖Pm⊥Xβ‖2 ' nβ′(M −Mm,mM
−1
m,mMm,m)β

M can bee seen as the Gram matrix (the matrix of norms and scalar products ) of
some set of k vectors in Rk, say V1, . . . , Vk (the choice is up to a rotation). Since M is non
singular these vectors are not collinear. A classical linear algebra calculation shows that

M −Mm,mM
−1
m,mMm,m

is the matrix of the quadratic form that associate to the vector b ∈ Rk the quantity

‖Πm⊥

k∑
i=1

biVi‖2,

where Πm⊥ is the projector on the orthogonal of the space Sm generated by the vector
that are in m. Since m is a false model β has some coordinates that does not belong to
m and because of the linear independence of the vectors,

∑
βiVi does not belong to Sm.

and we obtain the result.

Note that

• the condition ( 4) is met for example if the regressors are draw from i.i.d. replicates of
some random distribution with a second order moment and non-degenerate variance
matrix. This is a direct consequence of the law of large numbers.
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• under this condition, it is an exercise, to check that the thresholding method and
the backward method find the true model with a probability that tends to 1, as
soon as the tests are conducted at a level αn that tends to zero sufficiently slowly.

• The result can be generalized to the case where some normalization d(n) of the
information matrix exists such that

1/d(n) X ′X →M

In such a case c(n) must be negligible with respect to d(n).

• When k = kn tends to infinity, we cannot hope to have a property like (4) but
our result still prove that if k(n) = o(c(n)) , GIC will chose and over-model with a
probability that tends to zero.

4 Asymptotic oracle inequality

In this section we assume normality. Consider the quadratic risk of estimation and we
still assume a) condition (4) with M regular b) that k fixed and c) that 1 << c(n) << n.
Let m̂ the model chosen by GIC (with probability 1 it is unique). We define the risk of
estimation

Rn = E
(
‖Ŷm̂ −Xβ‖2

)
.

This risk can be partitionned into the risks relative to the choice of a particular model

Rn =
∑
m∈M

Rn(m) :=
∑
m∈M

E
(
‖Ŷm −Xβ‖2 1Im̂=m

)
Using the decomposition bias, variance, a short computation shows that
if Z is some random variable that can be written

Z = E(Z) + ε = µ+ ε

with ε symmetric and E an event that may depend on ε but whose distribution is invariant
by change of sign of ε, then

E(Z 1IE)2 = µ2P(E) + Var(ε 1IE) + 2µE(ε 1IE) = µ2P(E) + Var(ε 1IE).

Remarking that a change of sign of the errors does not modify the choice of model
and using the assumed symmetry of the errors we get

E
(
‖Ŷm −Xβ‖2 1Im̂=m

)
= ‖Pm⊥(Xβ)‖2P(m̂ = m) + E

(
‖Pmε‖2 1Im̂=m

)
= J1,m + J2,m

Then every false model m satisfies

‖Pm⊥(Xβ)‖2 ' γmn with γm > 0.
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Thus by Lemma 3 , for n sufficiently largeNCm ' γmn
σ2 > 4c(n):

P(m̂ = m) ≤ exp−(
γmn

8dm
),

Where dm is the number of missing variables in m: dm = |m∪m∗|− |m|. For over-models
the quantity ‖Pm⊥(Xβ)‖2 vanishes. This implies that∑

m∈M

J1,m → 0.

For the other terms we use the Schwarz inequality

E
(
‖Pmε‖2 1Im̂=m

)
≤
(
E‖Pmε‖4P(m 6= m∗)

)1/2
.

Let us compute the quantity E‖Pmε‖4. Let Pij denote the entry i, j of Pm

E‖Pmε‖4 =
∑
iji′j′

E(εiPijεjεi′Pi′j′εj′)

=
∑
iji′j′

PijPi′j′E(εiεjεi′εj′).

Because of independance, the last expectation vanishes except if the four indices are
pairwise equals. It remains three cases to consider

• i = i′ = j = j′ which contribution is m4

∑
i P

2
ii where m4 is the order 4 moment of

the errors.

• i = j 6= i′ = j′ which contribution is σ4
∑

i 6=i′ PiiPPi′i′

• i = i′ 6= j = j′ or i = j′ 6= j = i′ which contribution is bounded by 2σ4
∑

i 6=j P
2
ij.

Since ∑
i

P 2
ii +

∑
i 6=j

P 2
ij = tr(P 2

m) = tr(Pm) = |m|

∑
i 6=i′

PiiPPi′i′ +
∑
i

P 2
ii = (tr(Pm))2 = |m|2,

it is easy to see that E‖Pmε‖4 is bounded. Note that in the Gaussian case it
is the expectation of square of a χ2(|m|) variable which can be easily computed to be

σ4(|m|2 + 2|m|) . Finally ∑
m∈M,m6=m∗

J2,m → 0‘

Finally we have proven that

Rn = E
(
‖Ŷm̂ −Xβ‖2

)
→ |m∗|

The risk we have if we know the true model. The risk with a choice of model by GIC is
asymptotically the same than the risk when the oracle tell us which is the true model.
Such an inequality is called an Oracle inequality
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