AMERICAMN MATHEMATICAL SOCIETY

- Citations
M a th SCI N et Mathemaltical Reviews on the Web

From References: 1
From Reviews: 0

MR2478201 (Review) 60-02 (60E15 60G05 60G15 60G60 60G70)
Azais, Jean-Marc(F-TOUL3-SPM) Wschebor, Mario (UR-UREPS-CM)

* Level sets and extrema of random processes and fields.
John Wiley & Sondnc., HobokenNJ, 2009.xii+393pp. $110.00I1SBN978-0-470-40933-6

This book presents modern developments on the following two subjects: understanding the prc
erties of level sets of a given random fieXd= (X;, ¢t € T') and analysis and computation of the
distribution function of the random variabl; = sup,.r X (¢), provided thatX is real-valued.

Chapter 1 of the book contains a number of fundamental classical results on stochastic proces:
for example, Kolmogorov’s consistency theorem and the 0-1 law for Gaussian processes,
a particular emphasis is placed on sufficient conditions for continuitydét continuity and
differentiability of trajectories of stochastic processes. Most of the results on path regularity ar
not restricted to the Gaussian case, and many apply to the multiparameter (i.e. random fie
setting. The last section of this chapter contains Bulinskaya’s sufficient condition for a one
parameter process not to have almost surely critical points in a given level set, plus an extensi
of Ylvisaker’s theorem in the Gaussian case. Specifically, it is shown here that when the me:
of the Gaussian process is bounded from below and its variance is bounded away from zero, 1
supremum of the process over a given fixed parameter set has probability distribution equal
the sum of an atom at infinity and a (possibly degenerate) probability measure on the reals witt
locally bounded density. The end-of-chapter exercises include derivation of regularity propertie
of the paths of fractional Brownian motion and Brownian local time.

Chapter 2 opens with the proof of the latest (2002) refinement of the Slepian inequalitie:
due to W. V. Li and Q. M. Shao [Probab. Theory Related Fidld2 (2002), no. 4, 494-508;
MR1902188 (2003b:6003) where the difference between the cumulative distribution functions
of two centered Gaussiarrdimensional vectors (with variances normalized to one and arbitrary
n > 2) both evaluated at a given poiatc R” is bounded above by the following sum:
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whererfjf andr}; are covariances betwee¥y and X; and betweerY; andY, respectively, and

pij = max(\ri)ﬂ, \r}; ). Two more related comparison lemmas are stated. One of these is th
well-known Sudakov-Fernique inequality showing that if variances of arbitrary increments of ¢
Gaussian process are less than or equal to variances of similar increments of a Gaussian proce:
Y then the mean of the supremum &fis less than or equal to the mean of the supremum of
Y, provided that the two Gaussian processes are separable centered with almost surely boun
paths. Next the authors present the proof due to C. Borell of Ehrhard’s inequality [C. R. Matt
Acad. Sci. Pari837(2003), no. 10, 663-666/R2030108 (2004k:6010pYalid for general Borel
subsets oR" (with no restrictions on the convexity of those sets). Namelyy,|die the standard
Gaussian probability measure &4. Then for any pairdA and B of Borel sets inR™ and all\ €
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(0, 1), the following inequality holds:
O (1 (AA+ (1= N)B)) = A0 (3,(A4)) + (1 = N) @} (1,(B)).

The authors then derive a version of a Gaussian isoperimetric inequality and use it to prove t
Borell-Sudakov-Tsirelson inequality, which gives an exponential boun®{a¥/r — u(Mr)| >

x), where My is the supremum of a Gaussian process guef’| and u(Mr) is the median

of distribution of M. The next inequality for the tails of the distribution of the supremum is
similar but involves the mean df/; rather than the median and is due to Ibragimov, who proved
the inequality using stochastic analysis tools. Chapter 2 concludes with the proof of Dudley
inequality, which establishes an upper bound on the mean of the supremum (of a possibly nc
Gaussian process) in terms of an integral of a square-root of the logarithm of covering numbers

Chapter 3 is entirely devoted to the treatment of Rice formulas for one-parameter process
and centers on integral representations of moments of the number of (up- and down-) crossir
for both Gaussian and non-Gaussian processes having continuously differentiable sample pa
Formal proofs of these results are preceded by nice intuitive discussions, whereas at the end of
chapter the authors suggest a number of useful exercises.

Chapter 4 starts with the application of Rice formulas to derive bounds for the tails of the dis
tribution of the maximum of one-parameter Gaussian processes with continuously differentiab
sample paths and, in the stationary case, to subsequently characterize the asymptotic behavic
P(Myp > x) asz — oco. This chapter also contains two detailed examples of statistical applica-
tions of the distribution of the maximum to genetics and to the study of mixtures of Gaussial
distributions. In the first case the problem is that of testing that a given putative gene has no i
fluence on a given gquantitative trait within the classical framework of a linear model with i.i.d.
errors. In the second case the problem is that of testing

Hy: Y ~ N(u,0?)

versus
Hy: Y ~pN(p1,0%) + (1 —p)N(ug, 02,

first under the assumption that= ;; = 0 and i € R while o2 = 1 (which corresponds to a
simple Gaussian mixture model), next under no additional assumptions on the meatis=but

1 (i.e. test of one population versus two when variance is known), and finally with no additiona
assumptions on either means or variance (i.e. test of one population versus two when variance
unknown). Since the distribution of the likelihood ratio test (LRT) statistic is related to that of the
maximum of a rather regular Gaussian process, the authors use the Rice formulas to address
guestion of whether the power of the LRT is influenced significantly by the size of the interval(s
in which the parameters live and whether the LRT is more powerful than the hypothesis tests bas
on moments (the answer to the latter question turns out to be negative).

The next chapter focuses on both theoretical and numerical analysis of the Rice series, which:
representations of the distribution function of the maximum of a given stochastic process in tern
of series of factorial moments of the number of up-crossings of the underlying process. The authc
prove two key results. The firstis applicable to both non-Gaussian and Gaussian cases but assu
that the underlying process hasC'* sample paths and establishes a general sufficient condition
on the distribution ofX and its derivatives such that the following Rice series representation of



the cumulative distribution functioR);, of the maximum ofX in terms of factorial moments,,
of the number of up-crossings af of a given levelk, starting below at time 0, holds:

(%) 1—Fy,=P(X(0)>u —|—Z mHVm

Moreover, when the infinite series is truncated, the error bound for the resulting approximation
also given. The second key result shows that for a Gaussian centered and stationary pricess c
with covariancd” such that’(0) = 1 andI" has a Taylor expansion at zero which is absolutely
convergent at = 27", the conditions of the above general Rice series theorem are satisfied and thi
representations) is valid. Much of the remainder of the chapter is devoted to efficient numerical
computation of the factorial moments of up-crossings, which is important for applications of the
Rice series. In particular it is shown that the Rice series approach is a priori better than the Mor
Carlo method (in terms of comparison of the complexities of the computation of the distributior
of the maximum) and, for standard error bounds, allows one to compute the desired distributic
with just a few terms of the Rice series. Chapter 5 concludes with a modification of the gener:
Rice series theorem discussed earlier to include continuous processes that do not have sufficie
differentiable paths, which is achieved by employing in the series the factorial moments of uf
crossings of am-mollified version (withe > 0) of the underlying process and then takingp

0.

Chapter 6 revisits the subject of Rice formulas but in a much richer multiparameter setting
The authors start by proving the area formula, then establish Rice formulas for the momen
of multiparameter Gaussian random fields (from a domaiiRirnto R%) having continuously
differentiable trajectories, and also prove a closely related result on the expected number
weighted roots corresponding to a given level set. Next, Rice formulas for the expected number
local maxima and the expected number of critical points of a Gaussian random field with doma
D are established, whet® is a C?-manifold (at first, the manifold has no additional structure,
then the results are further specialized to the cases Whieas a Riemannian metric and when
is embedded in a Euclidean space). Analogous results are subsequently also proved for the cas
Gaussian random fields froRf to R? but nowd > d'.

Chapter 7 is devoted to the analysis of regularity of the distribution of the maximum of Gaussia
random fields. The key result here is the representation formula for the density of the maximu
of a Gaussian real-valued field witi?-paths defined on an open set containthgvheres is a
compact subset d&? which can be written as the disjoint union of a finite number of orientable
C? manifoldssS; of dimensionj without boundary (wherg =0, ... ., d). Moreover, under certain
nondegeneracy conditions, this density of the maximum is shown to be continuous. On the oth
hand, restricting attention to the one-parameter case allows the authors to derive subtler results
the degree of smoothness of the distribution of the maximum. Namely, if a Gaussian process
[0, 1] has paths i©'?* then the cumulative distribution function of the maximum is shown to be of
classC*.

Chapter 8 generally studies tails of the distribution of the maximum of a random field and i
divided into two parts. In the first part the authors focus solely on the case of one-paramet
Gaussian processes and analyze the asymptotic behavior of the successive derivatives of



distribution of the maximum as well as the tails of the distribution of the maximum of certain
unbounded Gaussian processes. In the latter case the probaltiét/the supremum is finite is
strictly less than one, and the aim is to understand the speed at Whidh < ) converges tg

asu grows to+oo. In the second part the authors establish bounds for the density of the maximur
of a multiparameter Gaussian random field and subsequently analyze the asymptotic behaviot
the maximum given by

P(M > u) = A(u) exp(—u”/(20%)) + B(u),

where A(u) is a known function with polynomially bounded growth as— +oo, 0% =
sup, Var(X (¢)), and B(u) is an error bounded by a centered Gaussian density with variance
smaller tharv?.

Chapter 9 develops an efficient method, based on record times, for the numerical computation
the distribution of the maximum of one- and two-parameter Gaussian random fields. The authc
first consider the parameter spd6el]| and prove that ifX is a Gaussian process wigit-paths,
then the maximund/ = max{X(¢), t € [0, 1]} has a distribution with tails of the form

(#%) P(M>u) =

P(X(0) > u) + /0 EI(X (1)) ey | X (£) = ulpic o ()t

wherepx () is the probability density oX (¢) andR is the set of record times, i.& = {t €
[0,1]: X(s) < X(¢),Vs € [0,t)}. The latter result is derived from Rychlik’s formula, which in
turn is based on the idea that

PM>u)=P(X(0)>u)+P(EFteR: X(t)=u) =
P(X(0) > u) + E[#{t € R: X(t) =u}],

u) +
since the number of record timessuch thatX (¢) = w is either O or 1. Then, upon using a
discretization of the conditiof X (s) < X (¢),Vs € [0,t)}, one can use formula«) to obtain
explicit upper bounds o (M > u):

P(X(0) > u)

1
+/0 E[(X'(t) )X (0)<u. X (t(n-1)m)<u}| X () = u] px 1) (u)dt.
On the other hand, a similar time discretization provides the trivial lower bound
PM>u)>1-P(X(0)<wu,...,X((n—1)/n) <u),

where (at least for, up to 100) the integrals in the above upper and lower bounds can be easil
computed using the Matlab toolbox MAGP developed by Mercadier (2005). Subsequently thi
record method is adapted by the authors to deal with the case of a two-parameter Gaussian ranc
field.

Chapter 10 presents asymptotic results for one-parameter stationary Gaussian processes on
intervals whose size tends to infinity. First, provided that the lewehds to infinity jointly with
the size of the time interval so that the expectation of the number of up-crossings remains const:
and under the assumption of some local regularity (given by Geman’s condition) and some mixir
(given by Berman'’s condition) of the underlying process, the VolkarRkizanov theorem [V. A.



Volkonskil and Yu. A. Rozanov, Teor. Veroyatnost. i Primen@1i1961), 202—-215MR0137141

(25 #597) is proved, showing that the asymptotic distribution of the number of up-crossings
is Poisson. The latter in turn implies that the suitably renormalized maximum of the proces
converges to a Gumbel distribution. On the other hand, when thedeigelixed, under certain
conditions, the number of (up-)crossings is shown to satisfy a central limit theorem. In terms ¢
extensions of these results to a multiparameter setting, the authors quote Piterbarg’s theorem |\
Piterbarg Asymptotic methods in the theory of Gaussian processes and Tiedtslated from the
Russian by V. V. Piterbarg, Amer. Math. Soc., Providence, RI, 19881361884 (97d:60044or

a multiparameter analogue of the VolkorisRiozanov theorem. The multiparameter extensions of
the central limit type results for up-crossings are not directly developed in the book, but sever
useful references are provided.

Chapter 11 deals with applications of Rice formulas to the study of some geometric chara
teristics of random sea surfaces. The random sea surface is modeled as a Gaussian statio
3-parameter field which is the limit of the superposition of infinitely many elementary sea waves
Namely, if one considers a moving incompressible fluid in a domain of infinite depth, then the
classical Euler equations, after some approximations, imply that the se&léyel, y), wheret
is time and(x, y) are spatial variables, satisfies

X(t,z,y) = fcos(Mt+ Xpx+ Ay +0),
wheref andd are the amplitude and phase, and the pulsations, and\, are some parameters

satisfying the Airy relation\2 + )\2 = %? whereyg is the acceleration of gravity. If units are chosen
so thaty = 1 and if f andg are independent random variables withaving Rayleigh distribution
and@ being uniform on0, 7|, thenX (¢, z, y) is the Gaussian sine-cosine process of the form

X(t,z,y) =& sin( At + Ao + Ayy) + o cos( At + Az + \yy),

where&; and &, are independent standard normal random variables. The Rice formula is use
to derive from the directional spectrum of the sea various properties of the distribution of suc
geometric characteristics like length of crests and velocities of contours. In addition, two nor
Gaussian generalizations of the above Gaussian sea surface model are also briefly discussed.
Chapter 12 is devoted to the application of the Rice formula to the study of the number of re:
roots of a system of random equations, with a particular emphasis placed on large polynomi
systems with random coefficients. The authors start by proving the Shub-Smale theorem [M. Sh
and S. J. Smale, i@omputational algebraic geometry (Nice, 199267-285, Progr. Math., 109,
Birkhauser Boston, Boston, MA, 1998tR1230872 (94m:6808p3howing that ifN* equals the

number of roots of the system of equatioXig¢) = 0 foralli =1, ..., m, where
ORI R TR
jl+"'+jm§di

_____ prt=1l o migit e+, < d;} being centered independent Gauss-

: : : : (i) _ d;! Xy —
ian random variables with variancégar(a; . ) = A G then E(N*) =

Vdi - -dy,. Next, assuming that;, = d for all : = 1,...,m, where2 < d < dy < oo for some
constantd, independent ofn, the authors establish the asymptotic behaviomas> oo of the
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variance ofNX /v/d™. Namely, it is shown that fod = 2 the asymptotic variance d¥ X /v/d™

is log( ) for d = 3 the asymptotic variance Igog—m while for d > 4 the asymptotic variance is
W for certain known constants ;. Further extensmns of the Shub-Smale result to other sys-
tems that are invariant under the orthogonal group of the underlying Euclidean®paaed to
certain systems with noncentered random coefficients are also developed.

The last chapter (Chapter 13) of the book is devoted to the application of the Rice formula t
the study of condition numbers of random matrices. Condition numbers arise when one war
to understand how the solutione R™ of a linear system of equationdxr = b is affected by
perturbations in the inputA4, b), in which case the condition number is defined:&d4) = || A|| -
|A~1||, where||A|| denotes the usual operator norm. The meaninigydf) is that of a bound for
the amplification of the relative error between output and input when the input is small. This typ
of application is a new field aiming to further the understanding of algorithm complexity via the
randomization of the problems that the algorithms are designed to solve.

The book is a very valuable addition to the literature on Gaussian processes, random fields &
extreme value theory. It is well written and self-contained and presents a significant number
detailed and original applications to genomics, oceanography, the study of systems of randc
equations and condition numbers of random matrices. In comparison with another recent book |
J. Adler and J. E. TayloRandom fields and geometi§pringer, New York, 200MIR2319516
(2008m:60090) (with which it has some overlap in the material on the Rice formula and Rice
series and on tails of the distribution of the maximum), this book has a distinct analytic rathe
than geometric flavor, making it more accessible to audiences with no background in differenti
geometry (albeit at the expense of omitting some beautiful results on the geometry of excursic
sets, for example). Since the approaches adopted in these two books are very different and th
is generally little overlap in the material, the two books complement each other well. Anothe
valuable feature of the book under review, both from the self-study point of view and for its us
as a textbook in graduate classes, is the inclusion of end-of-chapter exercises. The latter not o
reinforce the material presented but also expose readers to a variety of new topics and ideas.

Reviewed byAnna Amirdjanova
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