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Abstract The ‘‘optimal fingerprint’’ method, usually used

for detection and attribution studies, requires to know, or,

in practice, to estimate the covariance matrix of the internal

climate variability. In this work, a new adaptation of the

‘‘optimal fingerprints’’ method is presented. The main goal

is to allow the use of a covariance matrix estimate based on

an observation dataset in which the number of years used

for covariance estimation is close to the number of

observed time series. Our adaptation is based on the use of

a regularized estimate of the covariance matrix, that is

well-conditioned, and asymptotically more precise, in the

sense of the mean square error. This method is shown to be

more powerful than the basic ‘‘guess pattern fingerprint’’,

and than the classical use of a pseudo-inverted truncation

of the empirical covariance matrix. The construction of the

detection test is achieved by using a bootstrap technique

particularly well-suited to estimate the internal climate

variability in real world observations. In order to validate

the efficiency of the detection algorithm with climate data,

the methodology presented here is first applied with

pseudo-observations derived from transient regional cli-

mate change scenarios covering the 1960–2099 period. It is

then used to perform a formal detection study of climate

change over France, analyzing homogenized observed

temperature series from 1900 to 2006. In this case, the

estimation of the covariance matrix is only based on a part

of the observation dataset. This new approach allows the

confirmation and extension of previous results regarding

the detection of an anthropogenic climate change signal

over the country.

Keywords Anthropogenic climate change � Detection �
Optimal fingerprints � Covariance matrix estimation

1 Introduction

According to the IPCC third assessment report (IPCC

2001), ‘‘detection is the process of demonstrating that an

observed change is significantly different (in a statistical

sense) than can be explained by natural internal variabi-

lity’’. As a consequence of this definition, detection is

mainly a statistical issue. A first methodology for the

detection of a model-predicted signal in observational data

has been proposed by Hasselmann (1979, 1993). This

method, commonly referred to as the ‘‘optimal fingerprint’’

method, is based on a maximization of the signal to noise

ratio, with a classical approach of statistics.

The ‘‘optimal fingerprint’’ method was first applied to

climate data to detect a signal of change in the global

surface temperature by Hegerl et al. (1996), and subse-

quently to other parameters, such as the free atmosphere

temperature and oceanic data sets (Barnett et al. 2001; Tett

et al. 2002). The issue of the scale on which the climate

change signal can be detected has also been investigated

(Stott and Tett 1998; Zwiers and Zhang 2003), and there

have been some successful detection studies at a regional

scale (Stott 2003).
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CNRM-GAME, Météo France-CNRS, 42 av G Coriolis,

31057 Toulouse, France

e-mail: aurelien.ribes@cnrm.meteo.fr

S. Planton

e-mail: serge.planton@meteo.fr

J.-M. Azaı̈s
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The main difficulty when using the ‘‘optimal finger-

print’’ is that it requires to know with a good accuracy the

expected direction of climate change and the covariance

matrix associated with the internal climate variability of

the climate vector used. This is particularly challenging

when the detection is applied at the sub-regional scale

(Spagnoli et al. 2002).

On the one hand, the expected signal of climate change

is classically taken from climate simulations using either

general circulation models (GCMs) or regional climate

models (RCMs) according to the scale of the analysis.

Although various sources of uncertainties are associated to

this ‘‘guess-pattern’’, detection studies usually assume that

this direction of change is known.

On the other hand, the covariance matrix of the observa-

tions (namely the ‘‘covariance matrix’’ associated to the

internal variability) is never known exactly, and has to be

estimated. When studying the climate, the estimation of this

covariance matrix C can be based directly on observations, as

in Spagnoli et al. (2002), or on pseudo-observations gene-

rated by climate model simulations without external forcing,

as in Hegerl et al. (1996, 1997), and many other detection-

attribution studies since. The choice of pseudo-observations

can be justified by several reasons. Firstly, the matrix C

denotes the only internal climate variability, whereas obser-

vations may include a part of natural variability, due to

changes in natural forcings like solar radiation or volcanic

aerosols, and a part of externally forced variability, notably

due to human induced greenhouse effect. Secondly, the

number of available years of observation is generally limited

to a hundred or less, deteriorating the estimation.

The main difficulty when estimating C using pseudo-

observations is to quantify the errors and uncertainties due

to model representation. The sub-regional detection case is

even more problematic than the detection at continental

scales due to limited available long-term simulations of

unforced climate variability with RCMs. To avoid this

difficulty, in this study, the use of observations to estimate

C is preferred. The difficulty in distinguishing forced and

internal variability can be overcome by noting that the use

of real observations yields an overestimation of the internal

variability from the total variability. This overestimation is

conservative for the statistical tests performed. The lack of

observational years remains the main weakness, and this

point is precisely dealt with by the methodological deve-

lopment proposed here. The new ‘‘optimal fingerprint’’

adaptation we introduce here allows us to perform a rela-

tively efficient detection test in the unfavorable case where

the length in years of the observed series used for the

estimation of C, n, is of the same order as the number of

series p. This allows the undertaking of a detection study

without using pseudo-observations for the estimation of the

internal variability.

Another key difficulty for applying the ‘‘optimal fin-

gerprint’’ method, is to compute the inverse of the matrix

C. The classical adaptation of the ‘‘optimal fingerprint’’

computes an estimate of the covariance C at first, and then

takes into account a pseudo-inverted truncation of this

estimate. This is a way to decrease the errors involved in

the estimation procedure. These errors may be dramatic

when taking the inverse of the matrix. However, such a

procedure requires the use of a truncation parameter, the

value of which is difficult to choose.

The main contribution of this paper is to revisit the

‘‘optimal fingerprint’’ method, and to propose an adaptation

of this method that yields a test procedure avoiding the use

of a pseudo-inverted truncation of a C estimate (Sect. 2.3).

This procedure is shown to be efficient in the sense that it is

more powerful than the classical adaptation of the ‘‘optimal

fingerprint’’, and than a relatively simple test named

‘‘guess-pattern fingerprint’’ also introduced by Hegerl et al

(1996). This paper also discusses the choice of the

parameter truncation of the classical adaptation, focusing

on the efficiency of the corresponding test.

The hypothesis and methods used in this study are

introduced in the next section. Section 3 presents a com-

parison of these different methods, especially demonstra-

ting why the new method may be preferred. Section 3 then

provides some illustrations of the new method, where the

estimation of C is based on observations. We conclude in

the last section.

2 Presentation of the methods

2.1 Optimal climate change detection

2.1.1 Detection framework

We start by introducing some basic notations and

hypothesis, following Hasselmann (1993). The observed

climate state will be represented by a p-dimensional vector

w, each coordinate representing one observational station.

Within the probabilistic framework used, w is considered

as a random vector, taking one value each year, typi-

cally the annual or seasonal average of one climatic

parameter.

The assumption is made that, in a climate change con-

text, the observed climate vector may be decomposed such

as:

w ¼ ws þ ~w; ð1Þ

where ws denotes the climate change signal, and ~w denotes

an internal-variability realization. It is also assumed that ~w
is centered, that is to say that:
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Eð~wÞ ¼ 0; ð2Þ

denoting by E the mathematical expectation. This is vir-

tually the case by removing the mean. Note that the first

term on the right hand side of (1) is a consequence of

external forcing, and it is not random. This decomposition

assumes in particular that the internal variability is the

same with or without climate change.

Furthermore, a second assumption is made concerning

the first term of the decomposition with:

ws ¼ lg; ð3Þ

where l denotes a real amplitude factor, and g is the

expected p-dimensional climate change vector, taken

from climate model simulations, called ‘‘guess-pattern’’. In

practice, g corresponds to the response of the earth-system

to an external forcing, which is generally, in the case of

climate change detection, the anthropogenic climate

change. Moreover, g is assumed to be known but is, as

above mentioned, derived from an ensemble of climate

model simulations.

With these notations, a detection study consists in

applying a statistical test to the ‘‘null’’ hypothesis H0:

‘‘l = 0’’ against the alternative hypothesis H1: ‘‘l[ 0’’.

These hypothesis can be rewritten H0: ‘‘E(w) = 0’’ and H1:

‘‘E(w) = lg, with l[ 0’’.

Note that this formulation and this type of statistical test

only deal with the climate expectation, assuming that the

noise structure is invariant. The study of possible changes

on the variability could be investigated, but with a different

approach.

As mentioned in the introduction, the matrix C, namely

the covariance matrix of w due to internal climate vari-

ability, is a key parameter of the optimal climate change

detection formalism. It will be seen that the ‘‘optimal fin-

gerprint’’ method is derived while assuming that this

matrix is known (Sect. 1). In practice, this is not the case,

and C has to be estimated. Therefore, we will assume that n

years ðwiÞ1� i� n; are available for estimating C, and

another year, denoted wn?1, will be tested for the climate

change hypothesis. Note that for clarity, the theoretical part

of the study will be presented with only one tested obser-

vation wn?1, although in practice, the detection procedure

can be applied to several (see Sect. 4).

Some assumptions are made about the data ðwiÞ1� i� n;

that can be either observed or taken from a control run. On

the one hand, they are assumed to be uncontaminated by

external forcings. If these values are observed, this condition

is not satisfied, but the detection will be more conservative,

as stated before. On the other hand, these data are assumed

to have a covariance C, that is to say the same covariance

matrix than the tested observation wn?1. This assumption

can be discussed in the case of pseudo-observations taken

from a climate model control run. ~w being the random

term of covariance C due to internal climate variability

in Eq. (1), both assumptions can be summarized by

writing:

wi ¼ ~wi; for 1� i� n: ð4Þ

2.1.2 The optimal fingerprint

In order to introduce the optimal fingerprint, the covariance

matrix C of the internal climate variability component ~w is

temporarily assumed to be known. ~w being the only ran-

dom component of w, C also can be seen as the covariance

of w. Note that C being known, the data ðwiÞ1� i� n are not

used in this Sect. 2.1.2.

The fingerprint approach consists in studying the set of

the linear detection variables, to determine the best one,

according to the signal to noise ratio. We introduce a

family of ‘‘linear detection variables’’ df with:

df ¼ hwnþ1; f i; ð5Þ

where f is an unspecified p-dimensional vector, and h, i is

the symbol for the standard p-dimensional euclidean scalar

product.

The use of the variable df naturally leads to a test Tf,

whose rejection region is

Wf ¼ wnþ1; df ¼ hwnþ1; f i� d
ðaÞ
f

n o
; ð6Þ

considering a a-level test, and denoting by df
(a) the (1-a)-

quantile of df under H0.

One of the main result of Hasselmann (1993) is to show

that the df maximizing the signal-to-noise ratio is dC�1g . To

use the optimal fingerprint method then leads to use the test

TC�1g; that is optimal according to the signal-to-noise ratio.

In the following, fo will denote the optimal fingerprint

vector:

fo ¼ C�1g; ð7Þ

used in this test Tfo .

Some others interpretations have been proposed for this

result. At first, it has been shown that the ‘‘optimal fin-

gerprint’’ can be seen as a regression technique (Allen and

Tett 1999; Allen and Stott 2003). With this formalism, C-1

can be seen as an optimal metric for the regression. This

point of view has also been developed in attribution studies

by the same authors.

Focusing on a statistical testing theory, and using an

assumption of Gaussian distribution for wn?1, that is quite

usual, other interpretations of this result can be useful. It

can be shown first that, among the Tf family, Tfo is the

better test, in the sense that it is the most powerful. The

‘‘optimal fingerprint’’ detection test can also be interpreted

as the likelihood ratio test (Hasselmann 1997).
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2.2 Classical adaptation of the optimal fingerprint

In practice, in the case of climate studies, the covariance

matrix C is not known. In such a case, and assuming that

data are available for estimating C, it is much more difficult

to find one optimal test. Consequently, authors have sear-

ched for an approximation of the optimal fingerprint test.

A natural idea, to adapt the Eq. (7) when C is not known

might be to use the empirical covariance matrix deduced

from the ðwiÞ1� i� n sample:

Ĉ ¼ 1

n

Xn

i¼1

wiw
0
i: ð8Þ

However, substituting directly the estimate Ĉ in Eq. (7)

yield to a rather bad test. This test even is not defined when

p [ n, because Ĉ is not invertible. For this reason, the more

frequently used adaptation of optimal fingerprints consists

of applying a Moore-Penrose pseudo-inversion to a trun-

cation of Ĉ:

This adaptation can be introduced as follows. Let R be a

p 9 p symmetric positive matrix. R is diagonalisable in an

orthonormal basis, that can be written R = P0 K P, where P

denotes the changing basis matrix, and K the diagonal

matrix of R-eigenvalues: (k1, ..., kk, 0, ..., 0), denoting by k

the rank of R. The Moore-Penrose pseudo-inverse of the

q-truncation of R, what will be denoted by Rþq ;can be

defined, for q B k:

Rþq ¼ P0diag
1

k1

; . . .;
1

kq
; 0; . . .; 0

� �
P; ð9Þ

where diag(v) denotes the diagonal matrix of diagonal v.

Note that Rk
? is simply the Moore-Penrose pseudo-inverse

of R, without truncation.

With this definition, using a pseudo-inverted truncation

of Ĉ is equivalent to making a projection on the q first

eigenvectors of Ĉ (EOFs) and optimizing the fingerprint in

the reduced space of dimension q. Above all, this solution

can be adopted to prevent estimation problems which can

occur for the smallest eigenvalues of the empirical

covariance. Indeed, the use of empirical covariance intro-

duces a bias in the estimation of eigenvalues: the biggest

eigenvalues are over-estimated, whereas the smallest ones

are underestimated.

The pseudo-inverted truncation of Ĉ; that will be noted

Ĉþq ; provides a possible adaptation of the optimal finger-

print test Tfo , that is TĈþq g: This test is based on the detection

variable dĈþq g :

dĈþq g ¼ hwnþ1; Ĉ
þ
q gi: ð10Þ

In order to use the test TĈþq g; some methods have been

developed in the literature to select q and apply a test

procedure, in particular in Hegerl et al. 1996, and Allen

and Tett 1999. However, the choice is generally not

discussed in terms of optimality. We try to focus on this

point in Sect. 3.4.

Another test, Tg, usually referred to as the guess pattern

fingerprint (GPF) test, and introduced by Hegerl et al.

(1996), will be used for comparison. Although it is not

exactly an adaptation of Tfo ; it is worth using it as a basic

reference. As the notation Tg suggests it, this test is based

on the variable

dg ¼ hwnþ1; gi: ð11Þ

It is then a quite intuitive test, because a potential change of

the expectation in the g direction is searched by making a

projection on g. It also can be seen as the optimal test when

C = Ip (Ip being the p 9 p identity matrix).

2.3 A new method: the regularized optimal fingerprint

We introduce here a new adaptation of the optimal fin-

gerprints, based on the use of the Ledoit regularized esti-

mate ĈI ; introduced in Ledoit and Wolf (2004), and

technically presented in the Appendix 1. Using ĈI for

estimating C, the optimal fingerprint C-1g can be

approximated by Ĉ�1
I g; hereafter referred to as the ROF

(regularized optimal fingerprint). A corresponding test

TĈ�1
I g (ROF test) can be proposed, based on the detection

variable:

dĈ�1
I g ¼ hwnþ1; Ĉ

�1
I gi: ð12Þ

The basic idea of this original adaptation is to use a

regularization technique, by searching for a suitable

covariance matrix estimate of the form:

cĈ þ qIp; ð13Þ

where Ip is the p� p identity matrix, c and q being real

numbers. Several arguments can justify the use of this kind

of estimate.

Firstly, the use of such a regularization technique has some

simple and qualitative justifications. In a ‘‘large dimension’’

framework, that is when n and p are close, the weakest

eigenvalues of C are both strongly underestimated in Ĉ; and

very affected by the addition of the term qIp. This term, by

increasing these estimated eigenvalues, decreases their weight

after inversion and then in the detection algorithm. That is why

this type of method is called ‘‘regularization’’, and provides a

more stable algorithm. On the contrary, using a pseudo-

inverted truncation of Ĉ; by setting to 0 the dominating terms

of C-1, cannot provide a suitable estimate of C-1. Although Ĉ

or its q-truncation Ĉq; give generally an acceptable approxi-

mation of C, the inverted or pseudo-inverted matrices C-1,

Ĉ�1; and Ĉþq are usually very different, as are the directions

C-1 g, Ĉ�1g and Ĉþq g; that may be used for detection.
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Secondly, the use of a covariance estimate of the form

(13) can be interpreted as a way to make a balance between

the detection variables dĈ�1g and dg.

Thirdly, this method can be justified in a regression

framework. The links between the optimal fingerprint

method and a regression of the observation vector w under

the ‘‘guess-pattern’’ g has already been established (Allen

and Tett 1999; Allen and Stott 2003). The basic idea is to

estimate by l̂ the amplitude coefficient l such as E(w)

= lg, and to compute a confidence interval for l. When 0

doesn’t belong to this confidence interval, the hypothesis

H0: l = 0 is rejected. Within this framework, the addition

of the qIp term to the empirical estimate exactly amounts to

use a ridge-regression technique, well-known in statistics.

The more classical justification of it is that it allows the

decrease of the root mean square error of the estimate. The

use of a ridge regression is also justified in a Bayesian

framework.

The main difficulty in using this regularization tech-

nique is to find relevant estimators of the parameters c and

q. Various methods might be considered. The method

selected in this paper is taken from Ledoit and Wolf

(2004). The main concepts are reviewed in the Appendix 1,

and lead to the Ledoit regularized estimate ĈI : Basically,

the choice of this estimate can be justified by the better

properties of ĈI as an estimator of C. The corresponding

estimate Ĉ�1
I of C-1 has also better properties than Ĉþq (see

above).

3 Evaluating the methods

3.1 What kind of evaluation?

The final goal of this paper is to adapt the ‘‘optimal fin-

gerprint’’ test Tfo ; for leading to an ‘‘efficient’’ test proce-

dure when the covariance matrix C is not assumed to be

known. As mentioned previously, in such a case, it is much

more difficult to find one optimal test, and we will only

compare the three adaptations of Sect. 2: TĈþq g; TĈ�1
I g; and

Tg.

Some assumptions are made for this part of the study.

First, the ðwiÞ1� i� n; are assumed to be independent, cen-

tered, and normally distributed, with mean 0 and covari-

ance C. Second, wn?1 is assumed to be independent of the

ðwiÞ1� i� n; and to have a N(lg,C) distribution, where the

vector g is known, unlike the coefficient l. As in Sect. 2,

this coefficient l is the tested parameter. Third, we assume

that n and p are of the same order, that is an unfavorable

case in which few data are available for estimating C

(relatively to the size of C). This framework is called

‘‘large dimension’’ or ‘‘general asymptotics’’, when n and p

go to the infinity together, as in Ledoit and Wolf (2004). If

one wants to estimate the covariance matrix C with

observations, this is a rather reasonable assumption.

While searching for an ‘‘efficient’’ method, we will focus

first on the power of the statistical tests. Indeed, for a statis-

tical test of a hypothesis H0 against a defined alternative

hypothesis H1, the power is the criterion that allows to

measure the efficiency of the test. Moreover, it has been

mentioned that the Tfo ; is optimal among the Tf family in the

sense that it is the most powerful. So we will search for a good

approximation by searching for the most powerful adaptation.

An important difficulty, when C is assumed to be

unknown, is to control the level of the proposed tests.

Indeed, the level being the probability to reject H0 whereas

H0 is true, the control of the level requires to know the

distribution of the test variable d under H0. In our case, the

distribution of d under H0 depends on C and as a conse-

quence is difficult to compute.

This can be illustrated as follows. Using the normality

assumption for the tested observation wn?1, the distribution

of the optimal fingerprint test variable dfo can be written,

under H0:

dfo ¼ hwnþ1; foi� H0
Nð0;

ffiffiffiffiffiffiffiffiffiffi
f 0oCfo

p
Þ: ð14Þ

The covariance C is used twice in Eq. (14): first, for

computing the optimal fingerprint fo, and second, for

determining the threshold and the p-value of the test.

In our case, the distribution under H0 has to be com-

puted or approximated using only the observations

ðwiÞ1� i� n; as well as the estimate of the optimal finger-

print vector fo. Making errors while computing this distri-

bution can lead to a test which hasn’t a nominal level, that

is to say for which the probability to wrongly reject H0 is

smaller than the expected value (the conservative test) or

greater than the expected value (the permissive test). This

directly impacts the power of the tests. For example, the

power of a permissive test is artificially increased, the

threshold being different from what it should be. Tests that

do not have a nominal level cannot be compared in terms

of power, and are usually dangerous to use (unless they are

known to be conservative).

Finally, the ability of a test to provide a correct p-value

and to have a nominal level needs to be evaluated too. Note

that this feature will be called accuracy of the test.

In the following we will separate the study into three

steps. Firstly, we will search for an efficient estimation of

the optimal fingerprint fo. This will be done by comparing

the power of the test in the ideal case where they have a

nominal level. Secondly, we will evaluate the accuracy of

the ROF method. For this purpose, a bootstrap is performed

in order to estimate the H0 distribution, and then it is

verified that this procedure leads to an exact test, that is to

say a test having a nominal level. Thirdly, we will study

specifically some aspects of the classical adaptation of the
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optimal fingerprints TĈþq g; and explain why this test is not

used in Sect. 4.

3.2 Comparing the efficiency

The goal of this section is to compare the efficiency of the

three tests presented: TĈþq g; TĈ�1
I g; and Tg.

This comparison has been mainly carried out by per-

forming simulations, in order to compute empirically the

power of these tests. As mentioned in Eq. (1), the power is

the natural measure of efficiency, as long as the compared

tests have a nominal level. Therefore, in those simulations,

the covariance matrix C is still assumed to be known, but

only for computing the distribution under H0 (and then, the

‘‘correct’’ threshold and p-value). The optimal fingerprint

vector, for its part, is estimated from the ðwiÞ1� i� n: Note

that all the simulations were performed in the case n = p,

that clearly increases the errors due to the estimation of

C. The only two parameters used for those simulations are

the ‘‘true’’ covariance matrix C and the ‘‘true’’ vector g.

The results may depend on the chosen values.

Firstly, some simulations have been performed, using

values of C and g arbitrarily chosen. This type of simulation

shows that for many cases, the power of TĈþq g is weaker than

the Tg one, whatever the value of q (not shown). The power

of Tg, for its part, is weaker than the one of TĈ�1
I g; unless C

and Ip are very close.

Secondly, in order to evaluate the tests’ properties when

dealing with climate, simulations have been performed

using values of C and g more consistent with the real cases.

Concerning g, we used the expected climate change vector g

taken from a climate model, as in Sect. 4. This allows to

compute the power for the hypothesis H1 really tested. The

choice of a ‘‘true’’ covariance matrix C close to the real one

is more difficult. We then compute the simulations for three

different plausible values, deduced from observed data, that

are spatially centered (see Sect. 4 for details about data and

spatial centering). We used the regularized covariance

matrix ĈI (C1), the empirical covariance matrix Ĉ (C2), and a

spatial covariance matrix (C3), with entries of the form:

Covðti; tjÞ ¼ le�kdðsi;sjÞ; ð15Þ

ti and tj denoting the observation at the stations si and sj,

and d being the distance between the stations si and sj.

Starting from either C1, C2 or C3, samples

ðwiÞ1� i� nþ1; are simulated, assuming that the H1 hypo-

thesis is true (a positive value is chosen for the coefficient l).

The compared tests Tg, TĈ�1
I g; and TĈþq g are then applied to

the sample ðwiÞ1� i� nþ1; and the empirical powers are

computed.

On the one hand, the first case C1 must be considered as

the most significant, because of two reasons : the Ledoit

regularized estimate is more precise, and, in this case, the

observed sample ðwiÞ1� i� n; is really a typical realization

assuming that the Ledoit estimate is the ‘‘true’’ covariance.

On the other hand, it is useful to study whether the results

remain qualitatively the same, even if the ‘‘true’’ covari-

ance matrix is weakly regular (the two other cases).

The Fig. 1 shows such a comparison for values of g and

C taken from a summer daily minimum temperatures

dataset covering France. It can be seen that the ROF

method is more powerful in all cases; the GPF method

leads sometimes to a power higher than the one of the

pseudo-inverted truncation method, depending on the value

of q and on the supposed ‘‘true’’ covariance matrix used.

The results for other variables (eg daily minimum or

maximum temperatures, and different seasons) are quali-

tatively the same (not shown). Note that equivalent simu-

lations have been performed with a higher value of n, and

gave qualitatively the same results. This allows in partic-

ular the use of the ROF method even to estimate C from

pseudo-observation taken from a control run.

This result provides the main reason to prefer the ROF

method to the two other ones. It is rather reinforced by a

theoretical power study. Indeed, instead of computing the

empirical power of TĈþq g; one can wonder what is the effect

of using a pseudo-inverted truncation, by studying the

power of TCþq g; and comparing it with the power of Tg. The

estimation errors due to the estimation of C are then

ignored. This theoretical comparison is not detailed for

briefness, but it shows that even without estimation errors,

TCþq g has not necessarily better properties than Tg, unless

q = p. It also shows that the power of TCþq g increases with

q. This result allows an interpretation of the behavior of the

empirical power of TĈþq g: When q is small, the estimation

errors don’t matter, and the TĈþq g power increases with q as

in TCþq g: When q is large, the estimation errors, which are

strongest for the smallest eigenvalues, are dominating and

the power of TĈþq g decreases with q.

3.3 Bootstrap and accuracy of the ROF method

In this Section, we describe a method for computing the

threshold of the test (and more generally the p-value),

starting from the sample ðwiÞ1� i� n;and we check the

accuracy of the resulting test. Note that this task is done

only for the ROF test, and we will denote by f̂o the ROF:

f̂o ¼ Ĉ�1
I g: ð16Þ

In order to compute the threshold and the p-value of the

test, it is necessary to determine the distribution of the

variable df̂o
under the hypothesis H0. This is not a trivial

problem. Indeed, only the distribution of df̂o
conditionally

to the ðwiÞ1� i� n is known:
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df̂o
jðwiÞ1� i� n� H0

Nð0; f̂o
0
Cf̂oÞ: ð17Þ

Moreover, the covariance C being still unknown, this for-

mula is worthless, and it is necessary to substitute an

estimate of the matrix. ĈI is the main candidate, but two

problems have to be taken into account. First, the use of an

estimate, instead of the true value, carries some additional

errors that lead to a different distribution (a classical

example is the Student distribution). Second, the estimate

ĈI is also used in f̂o; and the dependence between both

estimates may bias the results. This was pointed out by

Allen and Tett (1999), who proposed to split the data into

to two independent samples.

We here used an alternative strategy, namely a bootstrap

procedure, that approximates the distribution of the nor-

malized detection variable:

d ¼
df̂offiffiffiffiffiffiffiffiffiffiffiffiffiffi

f̂o
0
ĈI f̂o

q ; ð18Þ

as it can be made for a Student variable. In this way, the

dependence between ĈI and f̂o is explicitly taken into

account in order to avoid bias. Note that this (uncondi-

tioned) distribution only depends on C and g, and will be

denoted by DC;g: The basic idea of the bootstrap is to

estimate the distribution DC;g by DĈI ;g
; that can be simu-

lated by Monte-Carlo technique. The details of this com-

putation procedure are given in Appendix 2.

Let TĈ�1
I g be the ROF test using this bootstrap procedure

for evaluating both threshold and p-value.

A validation step is then necessary to demonstrate the

accuracy of TĈ�1
I g and to justify that the use of DĈI ;g

instead

of DC;g is acceptable for computing the p-value of the test.

In fact, there is no absolute reason for justifying this

approximation. It has been shown that ĈI is a relatively

good estimate of C, but this is not a conclusive argument.

This validation has been achieved by simulating the

whole test procedure, starting from a pseudo sample whose

covariance is known. All the details about the implemen-

tation of the validation procedure are given in Appendix 2.

It can be noted that this procedure requires a starting

covariance matrix C (similarly to the simulations per-

formed in 2), and then focuses on the level of TĈ�1
I g:

The validation has been first applied to some simple

starting matrices, and gave the required results: the level of

TĈ�1
I g is shown to be close to the nominal value, and its

power is still greater than that of Tg. Finally, in order to

validate the method for a starting covariance C next to that

of the climate vector, this procedure has been applied to the

matrix ĈI estimated from real observations, with the same

success.

3.4 Specific study of the classical approach

Although the power study presented in Sect. 3.2 could be

thought as sufficient an argument to prefer the ROF

method, we want here to discuss some characteristics of the
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Fig. 1 Power study: Comparison of the power of the tests Tg (GPF test,

green line), TĈ�1
I g (ROF test, red line), and TĈþq g (blue curve), as a

function of q. Three covariance estimates are used as ‘‘true’’ C : the Ledoit

regularized estimate ĈI (top figure), the empirical estimate (middle
figure), and the spatial covariance estimate (bottom figure); see text
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classical approach, particularly those due to the choice of

the parameter q .

As mentioned while introducing the test TĈþq g; the choice

of q is a first difficulty when using this approach, and some

methods have been proposed to select a value. Hegerl et al.

(1996) chose to study the spatial correlation between the

‘‘guess-pattern’’ g and the fingerprints fq ¼ ~Cþq g; where ~C

denotes an estimate of the covariance matrix C carried

from a climate model simulation. The dependence of the

result on q is mentioned as not changing the result for

neighboring values.

Allen and Tett (1999), after having presented the opti-

mal fingerprint formalism as regression, and some problem

due to the estimation of the covariance matrix, proposed a

different treatment. In particular, they proposed to use a

consistency test to check whether the estimate provided by

some control simulations is consistent with the observed

residuals. The values of q for which this consistency

hypothesis is significantly rejected are not studied. In this

way, a set of values of q is used, and an answer can be

given to the detection question depending on the agreement

of the results of the different tests computed for each

selected q.

In both methods, some values are proposed for q, but the

choice is not discussed in terms of optimality. One can

wonder whether the power study highlights what could

potentially be a good choice of q. We have tried in Sect. 2

to focus on this point, by studying the power of the tests.

Figure 1 suggests that finding the best value for q is

actually a difficult task. In particular, it can be seen by

comparing the three graphics that a small difference on the

starting covariance matrix used for simulations should lead

to a different choice.

After having chosen the value of q, which is a difficult

task, the construction of a useful test using the direction

Ĉþq g should require an estimation of the threshold (as in

Eq. (3)). But as the empirical estimate of the covariance

matrix is not well-conditioned in large dimension, it can be

thought that yielding a nominal level test is very difficult.

In particular, the threshold estimation would have been

more difficult than the threshold estimation used in Sect.

3.3.

One can also wonder about the q-stability of the results

when using the test TĈþq g: Are the results actually sensitive

to the choice of q? An important dependence on q could

make the interpretation much more difficult, although this

wouldn’t be the most conclusive argument to prefer the

ROF test.

We have tried to discuss this problem theoretically,

focusing first on the tests TCþq g; and then on the family

TĈþq g: This part of the study is detailed in Appendix 3. It

shows that the stability is generally not ensured, even

without estimation problems (case TCþq gÞ:
Another way to discuss this sensitivity may be to look at

the discrepancies of the results for several values of the

parameter q. We have done such a comparison for two real-

case applications studied using the ROF method in Sect. 4.

The results of these comparisons are represented in Fig. 2,

and show that the choice of q clearly impacts the results of

the test.

However, some care should be taken when interpreting

Fig. 2. The p-value is actually the result provided by a

statistical test, and is the criterion that allows to reject, or

not, the ‘‘null’’ hypothesis. So the evaluation of the dis-

crepancies between several tests should have been done by

comparing their p-values. This is quite difficult in our case,

because we haven’t proposed a way to compute the correct

p-values of the tests TĈþq g: Consequently, Fig. 2 represents

the time evolution of the normalized detection variable d
introduced in Eq. (18), for several values of q, and the

black dashed line shows what might have been the

threshold of the tests using the basic assumption that the

H0-distribution of d is a standard normal distribution.

Although using this threshold may lead to non exact TĈþq g
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Fig. 2 q-sensitivity: Comparison of the the time evolution of the

normalized detection variable d using the classical ‘‘optimal finger-

print’’ adaptation TĈþq g; for different values of the truncation

parameter q. The comparison is done for autumn (on the left) and

summer (on the right) daily maximum temperatures, following the

procedure described in Sect. 4. The black dashed line shows an

hypothetical threshold assuming that the H0-distribution is a standard

normal distribution
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tests, Fig. 2 gives a qualitative illustration of the sensitivity

to the choice of q.

In the case of autumn daily maximum temperatures, it

can be seen that the results at the end of the period are

scattered on both side of the hypothetical threshold. In such

a case, it would be difficult to conclude whether the clas-

sical approach has detected a change. It would have been

even more difficult to compute a p-value, due to these

discrepancies. In the case of summer daily maximum

temperatures, it can be seen that the sign of the normalized

detection variable may depend on the choice q. It can also

be noted that some very small values of q may reject the

hypothesis H0 whereas higher values do not.

It can be noted that many detection studies, performed at

global or continental scales using many values for the

truncation parameter q, haven’t highlighted so large dis-

crepancies. In our case, such a sensitivity may be due to the

sub-regional scale of the study (we used a dataset covering

France), or to the spatial centering (see Sect. 4), that

removes the main part of the signal.

Finally, the classical approach of optimal fingerprint is

difficult to implement in our case: the choice of q can be

debated all the more so as it really impacts the results, and

the computation of a correct p-value for this test is not

guaranteed. This is the reason why we have preferred to use

the GPF test instead of this method as reference in the

following section, devoted to the application.

4 Application

4.1 Data

In order to perform a detection study based on the pre-

sented ROF methodology, two types of data are used:

observations, and climate simulations for the 21st century.

Concerning the observations, a detection study requires

data of high quality, covering a period as long as possible,

and with a high spatial density. Such a dataset, covering

France, has been produced at Météo France using an

adapted penalized log-likelihood procedure (Caussinus and

Mestre 2004). This data covers the 1900–2006 period, with

about 60 stations distributed over the country.

Regarding the estimate of the climate change signal

(‘‘guess pattern’’), a set of eight simulations is averaged

over the 2070–2099 period. The simulations are performed

with the ARPEGE-Climat regional climate model with

variable horizontal resolution (Gibelin and Déqué 2003).

This model is forced with sea surface temperatures and ice

field extensions taken from climate change simulations,

corresponding to different IPCC scenarios (A2 and B2) and

to different global coupled atmosphere ocean general cir-

culation models. In order to represent the present climate, a

set of three simulations performed with the same model

over the 1960–1999 period, is averaged. The guess-pattern

is then deduced as the difference between temperatures

averaged over the 2070–2099 period, and the ones aver-

aged over the 1960–1999 period.

Among the set of future climate simulations, two sim-

ulations are transient scenarios covering the 1960–2099

period (one A2 scenario and one B2 scenario). These two

simulations will be used as an illustration of the ROF

method presented here.

4.2 Implementation of the method

The precise implementation of the method is described

here, starting from the two main variables used: the

observations dataset W, and the guess-pattern g.

The set W can be seen as a sample, or a N 9 p matrix

(wt,s), where t represents the time (usually 1 year), and s the

space (one station). This set has to be divided into two

subsets WL and WT, that are respectively the learning

sample, and the tested sample. The first one, WL, is dedi-

cated to estimating the covariance matrix, and is usually

constituted of the NL first years of W. The second one, WT

groups the data that we want to test. The choice of the

separating year between WT and WL is quite arbitrary, and

allows to partially modulate the size of these subsets. Some

care has to be taken when using the ROF algorithm when

the number of years in WL is rather small. When presenting

the method in Sect. 2.3, the subsets WL and WT were,

respectively, the family ðwiÞ1� i� n; and the one-year vector

(wn?1). In the applications presented, the subset WT will

usually contain more than one year, in particular for

studying the time evolution of the detection variable. Note

that strictly speaking, those two sets WL and WT could have

been taken from different datasets, for example for testing

observations, using a covariance matrix estimate deduced

from a climate model run.

The vector g, taken from a climate model scenario, has

to be represented on the same points as the observations,

that are the p observation stations. This operation can be

conducted with a basic interpolation procedure.

However, the p-dimensional space thus used for repre-

senting W and g, could be inappropriate for the detection,

for example due to a very irregular spatial distribution of

the observation stations. In order to improve the regularity

of this spatial distribution, a hierarchical clustering algo-

rithm is applied to the observation stations (see for example

Mardia et al. 1979). Such a procedure allows to reduce the

spatial dimension from p to p0, with p0 B p. The reduced

dimension p0 is then chosen to provide an exact test, and

maximize the power. Note that if p is close to n, or smaller,

p0 = p is often selected. This confirms the good behavior of

the test TĈ�1
I g in large dimension, as mentioned in Sect. 3.
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In contrast, if the spatial dimension p is higher than the size

of the learning sample NL, a reduction of the dimension

could be required for ensuring the accuracy of the ROF

test.

An important characteristic of this study is its focus on

the regional scale and, as a consequence, on the spatial

distribution of the studied variables. Indeed, detecting a

change on the variable w can be the consequence of an

uniform global change, without any regional specificity. To

avoid the detection of such a global signal, each observa-

tion w is decomposed into the sum of a spatial mean w and

a centered variable ~w; and it is chosen to filter out the

detection variable part due to the evolution of the spatial

mean w; basing the detection only on ~w:
A preliminary temporal treatment is usually applied in

order to deal with climate. Indeed, as the notations of the

previous section suggest, a detection test can be applied to

the climatic observations of a unique year. But rejecting the

hypothesis H0 for 1 year doesn’t allow to conclude on

climate change. Climate denoting the characteristics of the

weather on a long time period, the detection test must be

applied to a more representative variable.

The first detection studies were based on linear trends

over 15, 20 or 30-year periods, with some preferences for

the last one (Hegerl et al. 1996). Here the use of moving

averages has been preferred, as these are less sensitive to

the interannual variability. The tested vectors used are then

the difference between a moving average of NT years (NT

can be chosen), and a reference average, that is the average

under the learning period (the length of which is NL). Note

that this reference average is independent of the covariance

estimate ĈI . Thus, if the NT years averaged are taken in

WT, those tested vectors are independent of ĈI .

Both transformations of spatial centering and temporal

treatment can be summarized by the following formulas,

denoting by (wt,s) the original variables, and (/t,s) the

transformed ones:

wt;: ¼
1

p

Xp

s¼1

wt;s; ð19Þ

/t;s ¼
1

NT

XNT

h¼1

ðwtþh;s � wtþh;:Þ �
1

NL

XNL

h¼1

ðwh;s � wh;:Þ: ð20Þ

Thus, the transformed vectors /t = (/t,1, ..., /t,s, ..., /t,p)

are deduced from the original vectors wt = (wt,1, ..., wt,s, ...,

wt,p) via a projection and an average operations.

Consequently, the covariance matrix of the vectors /t

can be deduced from the original covariance matrix of the

vectors wt using some simple formulas. The hypothesis of

independence between wt and wt?1 is used here. It is

important to note that this hypothesis only impacts on the

threshold computation, and not on the temporal evolution

of the detection variable. Furthermore, if the dependence is

weak, the impact on the threshold will be weak. Finally, we

compute the covariance matrix of the (wt) first, then we

deduce the one of the (/t), and we carry out the test.

4.3 Results: ideal case

In order to illustrate the presented ROF methodology, and

to highlight its efficiency, the method is first applied to

pseudo-observations derived from transient regional cli-

mate change B2 scenarios covering the 1960–2099 period.

This is a kind of idealized experiment, because of two

reasons. First, it allows to be placed under the hypothesis

H1, the existence of a climate change being sure. Second, it

avoids the difficulties for representing the climate change

vector g. Indeed, the g used can be taken from the tested

simulation itself. On the contrary, to apply the algorithm to

the observations with an inexact g, can impact the effi-

ciency of the test. It has been verified that the use of a

guess-pattern g taken from a different simulation performed

with the same model doesn’t have an impact on the results

presented here, including using an A2 scenario (not shown).

The application to model data allows to verify that the

power of the test proposed is higher from a quasi-experi-

mental point of view. Indeed, a more powerful test will

reject H0 for a smaller amplitude coefficient l, or equiva-

lently, earlier during the 21st century.

This section is focused on one single temperature vari-

able that is the summer daily minimum near surface tem-

perature. Note that this variable has been chosen arbitrarily

among the eight ones studied in the next section; but this

choice doesn’t impact the results, which are virtually the

same ones for the other variables.

For this first application, the learning sample is chosen

to be the first 40 years of the scenarios (NL = 40), that is to

say the 1960–1999 period. In a transient scenario, this

period is clearly contaminated by the influence of climate

change. But as mentioned previously, taking into account

some climate change effect only leads to a more conser-

vative test. The choice of 40 years for the covariance

estimation is more or less arbitrary, but doesn’t impact the

results.

During this learning period, the covariance estimate ĈI

and the values taken by the tested climate vector aren’t

independent. As a consequence, the H0-distribution of the

detection variable is impacted, the threshold and the sta-

tistical significance have a different meaning and no con-

clusions can be drawn with respect to the detection issue.

For this reason, the detection threshold will be represented

only outside the learning period, and we take these cautions

into account by representing the statistical significance

with a dashed line (see Fig. 3).

In order to perform a statistical test as close as possible

to the one performed in the next section, the spatial
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dimension of model grid, presenting p = 220 points over

France, has been reduced to p0 = 50 (that is approximately

the value used in the application to observations). Note

however that the ROF has been shown to be efficient when

p and n are of the same order, but the case ‘‘p large rela-

tively to n’’ is not so favorable. In particular, it is possible

that the ROF test is not as accurate in such a case. Con-

sequently, a reduction of the spatial dimension is needed in

any case, due to the size of the learning sample chosen

(NL = 40).

It can be seen (Fig. 3) that the efficiency of the ROF

technique is greater, because the detection variable exceeds

the threshold more frequently, more rapidly. Note that in

order to compare the efficiency of the tests, the date on

which the detection variable goes beyond the threshold for

the first time isn’t a good criterion. In particular, the

threshold can be exceeded even under the hypothesis H0.

When the signal becomes strong enough three things

happen: the statistical significance cannot go down to too

small values, the detection variable ‘‘frequently’’ exceeds

the threshold, and some values of this variable are well

above the threshold. Looking at these different criteria on

the case represented confirms the first impression, which is

that the ROF test procedure is more efficient than the GPF

one. Others variables (changing the season or studying

daily maximum temperatures) give similar results.

It can be noted that for this experimental demonstration,

the length NT of the moving averages used (5 years) has

been chosen arbitrarily, in order to highlight the differences

between both tests. For example, the signal being strong

over the 21st century, the use of 30-year moving averages

over this period leads to a very significant detection,

whatever the test used.

4.4 Results: observation dataset

In the case of observations, eight detection studies are

performed, corresponding to the minimum and maximum

near-surface temperatures, for each one of the four sea-

sons. All studies are based on 30-year moving averages,

spatially centered observations (NT = 30). The learning

sample consists of first 70 years, from 1900 to 1969

(NL = 70). The choice of the size of the learning sample

is quite arbitrary, because there is no evidence that would

allow us to highlight a period less contaminated by cli-

mate change. But this choice is conservative just as in the

application to the scenarios. The ROF method is applied

in each case.

Some results are represented in Figs. 4 and 5. The same

conventions as those of the previous section are used, for

representing the 95% confidence level threshold, and the

statistical significance. Over the learning period, that is

prior to the year 2000 in this case, great care must be taken

when interpreting the results. Indeed, the dependencies

between the used ðwiÞ1� i� n impact the distribution of the

detection variable, and the statistical significance repre-

sented by the dashed line isn’t exact.

Firstly, the strongest signal is observed on summer

minimum temperatures. The p-value yields for the

1977–2006 period (that is compared with the mean over
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Fig. 3 Summer minimum

temperatures in a transient B2

scenario: Comparison between

the GPF test procedure and the

ROF one for summer minimum

temperatures taken from a

transient B2 scenario from 1960

to 2099. The comparison is

based on 5-year moving

averages (NT = 5), spatially

centered, on 50 pseudo-stations

over France. The top figures
show the time evolution of the

normalized detection variables

(black curve), that is compared

with the 95% confidence

threshold (red dashed line),

when it makes sense. The

bottom figures represents the

time evolution of the statistical

significance (1 - p-value) of

each test. The corresponding

curves are dashed over the

learning period
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1900–1969) a value smaller than 10-3. This result confirms

and reinforces the findings of Spagnoli et al. (2002).

Secondly, two other variables present significant chan-

ges, although in a less significant way. The first one of

these is the maximum autumn temperature, for which the

final value of the normalized detection variable goes just

beyond the threshold. Some higher values are observed,

over more than one decade, for the last years of the

learning period (these years being very slightly dependent

on the observations used for covariance estimation). We

then conclude that the detection is positive in this case. The

second variable that present significant change is the winter

maximum temperature. The last observed value of the

associated nomrmalized detection variable is smaller than

the threshold considered, but stays quite high. Moreover,

significant values are observed some years before. For

example, the statistical significance of the test yields to

97% in 2001 (testing the 1972–2001 average).
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Fig. 4 Summer temperatures in

observations. Results of the

ROF methodology applied on

observed daily minimum (left)
and maximum (right) near-

surface summer temperatures,

from 1900 to 2006. The

comparison is based on 30-year

moving averages, spatially

centered. The top figures show

the time evolution of the

normalized detection variables

(black curve), that is compared

with the 95% confidence

threshold (red dashed line), over

the tested sample. The bottom
figures represent the time

evolution of the statistical

significance of each test. The

corresponding curves are

dashed over the learning period
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Fig. 5 Autumn and winter

daily maximum temperatures in

observations: results of the ROF

methodology applied on

observed autumn (left) and

winter (right) daily maximum

near-surface temperatures, from

1900 to 2006. The comparison

is based on 30-year moving

averages, spatially centered.

The representation is the same

than in Fig. 4
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These two success, beyond illustrating the possibilities

of the method, constitutes advances with regards to

detecting climate change over France, relatively to previ-

ous studies (Spagnoli et al. 2002, Planton et al. 2005).

Thirdly, in the case of summer daily maximum tem-

peratures, and for the other variables studied, the detection

algorithm failed to detect a change. We do not represent the

whole time evolution of the detection variable for each

studied case, but the p-value provided by the ROF test at

the end of the period are given in Table 1. It can be seen

that autumn and spring daily minimum temperatures show

interesting behaviour. In both cases, especially for the

second one, the detection variable takes very small values,

that are quite unlikely under the hypothesis H0. The three

last variables don’t show a significant evolution. The

explanation of such discrepancies would require further

work, but it may be due to the weakness of the signal of

change, or to an imperfect simulation of the pattern by the

climate model, for some of the variables.

5 Conclusion

We have introduced a new adaptation of the ‘‘optimal

fingerprint’’ statistical technique, based on the use of a

well-conditioned covariance matrix estimate. This adapta-

tion has been compared to the commonly used adaptation,

in which the ‘‘optimal fingerprint’’ is computed in a

reduced space corresponding to the first EOFs. The non-

optimized ‘‘Guess Pattern Fingerprint’’ has also been used

as a reference.

We have shown that our method is more efficient, in the

sense that it yields a more powerful statistical test. Note

that the comparison of the methods has been performed

using a detection framework, and that the extension of the

ROF methodology to the attribution problem could be a

natural continuation of this work. Furthermore, to apply the

‘‘optimal fingerprint’’ in a reduced space requires to choose

the dimension of this reduced space. Such a choice is

difficult and can impact on the results. Our adaptation

avoids this step, and thus is easier to implement.

Moreover, the use of regularization allows to base the

covariance matrix estimation on a small-sized sample. In

the case of climate change detection, the estimation of the

internal climate variability can be based on observations,

even if the number of available observations is reduced.

Such a possibility has been used for the detection tests

performed in this paper. This is an alternative to the use of

an estimate based on long control simulations, and avoids

the model imperfections when representing the covariance

structure.

A last step is needed to achieve the implementation of a

statistical detection test, that is to compute the threshold

and the p-value of the test. Due to the small number of data

available for estimation, we have chosen to compute this p-

value and to estimate the covariance matrix on the same

sample. The dependencies between these two problems are

taken into account via a bootstrap procedure.

The application of the Regularized Optimal Fingerprint

(ROF) method on climate data confirms the theoretical results.

Firstly, the ROF has been applied on the ideal case of a climate

scenario which insures that the alternative hypothesis H1 is

true. Then, it is shown from a quasi experimental point of view

that the power of the ROF method is greater than the power of

the GPF technique. Secondly, the ROF has been used to study

a temperature dataset over France. Some previous results

concerning climate change detection are reinforced, espe-

cially concerning the summer daily minimum temperatures,

and some new results are highlighted. However, it is difficult

to make a general conclusion about the detectability of climate

change over France: among the set of eight temperature

variables studied, the results show some discrepancies. Fur-

ther works will be useful to answer this question, for example

by using a multi-model approach.
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Appendix 1

Ledoit estimate ĈI

The main concepts of Ledoit and Wolf (2004) to lead to the

Ledoit regularized estimate ĈI are here reviewed.

The first question addressed is the following: given the

empirical estimate of a p 9 p covariance matrix, Ĉ;

deduced from a n 9 p sample X, can a linear combination

of the form ~C ¼ cĈ þ qIp be a more precise estimate of C

Table 1 Statistical significance of the ROF test: results of the ROF

test applied to daily minimum/maximum temperatures and each

season

Season Min T Max T

Summer [0.99 0.55

Autumn 0.08 0.95

Winter 0.50 0.85

Spring \0.01 0.78

The statistical significances (1 - p-values) given are obtained when

testing the 1977–2006 mean, and correspond to the last value repre-

sented in Figs. 4 and 5
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than Ĉ ? The answer is yes, in the sense of the mean square

error:

E j ~C � Cj2T
� �

; ð21Þ

for the classical norm:

jAj2T ¼
TrðA0AÞ

p
: ð22Þ

When C is known, the optimal values co and qo of c and q
are given by Ledoit and Wolf (2004):

co ¼
a2

d2
; ð23Þ

qo ¼
b2m

d2
; ð24Þ

where

m ¼ hC; IpiT ¼
TrðCÞ

p
; ð25Þ

h.,.iT being the scalar product associated with the norm |.|T,

and:

a2 ¼ jC � mIpj2T ; ð26Þ

b2 ¼ E jĈ � Cj2T
� �

; ð27Þ

d2 ¼ E jĈ � mIpj2T
� �

: ð28Þ

In the case when C is unknown, consistent estimators ĉ
and q̂ of those two optimal coefficients can be constructed,

and they are shown to be convergent under general

asymptotics hypothesis. Note that the ‘‘general asym-

ptotics’’ framework, also called ‘‘large dimensional’’, is

larger than the classical asymptotics framework for

statistics, and it especially covers the case n = p, and

n,p ??. More precisely, estimates of the coefficients m,a,b
and d are first defined:

m̂ ¼ ðĈ; IpÞ ¼
TrðĈÞ

p
; ð29Þ

d̂2 ¼ jĈ � m̂Ipj2T ; ð30Þ

b̂2 ¼ min d̂2;
1

n2

Xn

i¼1

jwiw
0
i � Ĉj2T

 !
; ð31Þ

â2 ¼ d̂2 � b̂2: ð32Þ

Then, the estimates of co and qo are deduced:

ĉ ¼ â2

d̂2
; ð33Þ

q̂ ¼ b̂2m̂

d̂2
: ð34Þ

These estimates lead to a new estimate of the covariance

matrix, namely the Ledoit regularized estimate:

ĈI ¼ ĉĈ þ q̂Ip: ð35Þ

Appendix 2

Bootstrap and validation implementation

Simulating DĈI ;g

The procedure implemented to simulate the distribution

DĈI ;g
is presented here.

Step 0 From the observed n 9 p sample X, containing

the observation vectors ðwiÞ1� i� n; the estimate ĈI of C is

computed.

Step 1 ĈI is used to simulate a set of N samples

ðX�j Þ1� j�N ; each one of size n 9 p, with a Monte Carlo

technique: similarly to the matrix X, the lines of a Xj
* matrix

(equivalent to one of the wi) are independent random

vectors, the distribution of which is a Nð0; ĈIÞ: The Xj
* are

independent between them.

Step 2 From Xj
*, an estimate Ĉ�j of ĈI is computed,

using the estimation method presented in Appendix 1.

Furthermore, an estimate f̂ �j ¼ ðĈ�j Þ
�1

g of f̂o is computed.

Step 3 For each j, the conditional distribution DĈI ;g

given Xj
* is known:

DĈI ;g
jX�j ¼ N 0;

f̂ �
0

j ĈI f̂
�
j

f̂ �
0

j Ĉ�j f̂ �j

 !
; ð36Þ

so that the conditional probability density function asso-

ciated can be deduced.

Now, the DĈI ;g
distribution being the mixture of the

conditional distributions, its density is approximated by

computing the mean of the N conditional densities

simulated.

Validation

The question addressed here is: in what measure the DĈI ;g
-

distribution can be used instead of the DC;g one for com-

puting the p-value of the test?

Using the distribution DĈI ;g
; we can proposed a ROF test

totally defined by the sample ðwiÞ1� i� n: This test, denoted

TĈ�1
I g is characterized by its rejection region WĈ�1

I g :

WĈ�1
I g ¼ ðwiÞ1� i� nþ1;

hwnþ1; Ĉ
�1
I giffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðĈ�1
I gÞ0ĈIðĈ�1

I gÞ
q �DðaÞ

ĈI ;g

8><
>:

9>=
>;
;

ð37Þ
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where DðaÞ
ĈI ;g

denotes the (1-a) quantile of the distribution

DĈI ;g
; estimated from the ðwiÞ1� i� n using the procedure

presented in the previous paragraph. Note that we use here

a specific notation TĈ�1
I g , because this test couldn’t be

defined by a rejection region of the form (6). So that TĈ�1
I g

isn’t part of the Tf family.

The validation proposed here focuses on the test level.

To verify that the TĈ�1
I g level is nominal, it is equivalent to

verify that:

PH0
ðWĈ�1

I gÞ ¼ a: ð38Þ

The validation of this equality can be made similarly with

the previous procedure.

Step 0 A ‘‘true’’ covariance matrix, C is fixed arbitrarily.

Step 1 C is used to simulate a set of N0 samples

ðXkÞ1� k�N0
; similarly to the (Xj

*) of the previous para-

graph: each (Xk) is of dimension n 9 p, and its lines are

independent random vectors, the distribution of which is a

N(0,C). Note that Xk is equivalent to the unique set of

available observations X. The regularized covariance esti-

mate Ĉ
ðkÞ
I is computed, for each k.

Step 2 Following the previously presented simulation

procedure, the distribution D
Ĉ
ðkÞ
I ;g

is generated. The can-

didate threshold DðaÞ
Ĉ
ðkÞ
I ;g

is deduced.

Step 3 The conditional distribution DC;g given Xk being

known, the level and the power conditionally to Xk can be

deduced. Finally, the unconditioned level and power are

approximated, using a relatively large number of samples

N0.

As mentioned in Sect. 3.3, this validation proce-

dure has been successfully applied to different starting

matrices C.

Appendix 3

Discussing the sensitivity to the choice of q

We first study the tests TCþq g . We denote respectively by

ki
2, gi and wi, the eigenvalues of C, and the coordinates of g

and w in the C eigenvectors basis. The detection variable

associated with TCþq g can be written:

dCþq g ¼ hw;Cþq gi ¼
Xq

i¼1

wigi

k2
i

: ð39Þ

Note that Varðw1

k1
; . . .;

wp

kp
Þ ¼ Ip; that is to say that the zi ¼ wi

ki

are random variables, independents and identically

distributed, and, under the hypothesis H0, with N(0,1)

distribution. So,

dCþq g ¼
Xq

i¼1

zi
gi

ki
; ð40Þ

is a random walk, with weights gi

ki
.

This formula highlights the role of the family ðgi

ki
Þ , and

shows that the results are generally ‘‘unstable’’ with respect

to the choice of q, even when q is large. Indeed, some

stability occurs only when the coefficients ðgi

ki
Þ become

‘‘small’’, as q goes to p. In such a case, the tests TCþq g tend

to TC�1g (and they are close to each other), so the choice of

q doesn’t matter, as soon as q is large.

However, in the case of climate study, there isn’t any

evidence that this condition on the ðgi

ki
Þ family is satisfied.

Consequently, under the hypothesis H0, the probability to

reject H0 for at least one of the considered tests can become

important (clearly greater than the individual level a of

each test). This illustrate the potential danger of the method

and of the choice of q.

A similar study can be made for the tests TĈþq g: Denoting

respectively by k̂2
i ; ĝi and ŵi the eigenvalues of Ĉ; and the

coordinates of g and w in the Ĉ eigenvectors basis,

d̂Ĉþq g ¼ hw; Ĉ
þ
q gi ¼

Xq

i¼1

ŵi

k̂i

ĝi

k̂i

: ð41Þ

Here, the main differences with the previous case is that,

first, the random variables
ŵi

k̂i
are not exactly independent

and identically distributed, and, second, the k̂i family

decreases more rapidly than the ki one, due to estimation

errors. Consequently to this last point, the sensitivity to the

choice of q is increased.
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