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Abstract. Let A be an m×m real random matrix with independently and identically distributed
standard Gaussian entries. We prove that there exist universal positive constants c and C such
that the tail of the probability distribution of the condition number κ(A) satisfies the inequalities
c
x
< P{κ(A) > mx} < C

x
for every x > 1. The proof requires a new estimation of the joint density

of the largest and the smallest eigenvalues of ATA which follows from a formula for the expectation
of the number of zeros of a certain random field defined on a smooth manifold.
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1. Introduction and main result. Let A be an m×m real matrix and denote
by

‖A‖ = sup
‖x‖=1

‖Ax‖

its Euclidean operator norm. ‖x‖ denotes the Euclidean norm of x in R
m. If A is

nonsingular, its condition number κ(A) is defined by

κ(A) = ‖A‖‖A−1‖

(von Neumann and Goldstine [18]; Turing [17]). The role of κ(A) in a variety of
numerical analysis problems is well established (see, for example, Wilkinson [20],
Smale [14], Higham [9], and Demmel [6]). The purpose of the present paper is to
prove the following.

Theorem 1.1. Assume that A = ((aij))i,j=1,...,m, m ≥ 3, and that the aij’s are

independently and identically distributed (i.i.d.) Gaussian standard random variables.
Then there exist universal positive constants c, C such that for x > 1,

c

x
< P{κ(A) > mx} <

C

x
.(1.1)

Remarks. The following are remarks on the statement of Theorem 1.1:
1. It is well known that as m tends to infinity, the distribution of the random

variable κ(A)/m converges to a certain distribution (this follows easily, for
example, from Edelman [7]). The interest of (1.1) lies in the fact that it holds
true for all m ≥ 3 and x > 1
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2. We will see below that c = 0.13, C = 5.60 satisfy (1.1) for every m = 3, 4, . . .
and x > 1. Using the same methods, one can obtain more precise upper and
lower bounds for each m, but we will not detail these calculations here.
The simulation study of section 3 suggests that P{κ(A) > mx} is increasing
with m, so that c should be the value corresponding to m = 3, i.e., c ≈ 0.88,
and C the one derived from the mentioned asymptotic result in Edelman [7],
i.e., C = 2.

3. In Sankar, Spielman, and Teng [13] it was conjectured that

P{κ(A) > x} = O
( m

σx

)

when the aij ’s are independent Gaussian random variables having a common
variance σ2 ≤ 1 and supi,j |E (aij)| ≤ 1.
The upper bound part of (1.1) implies that this conjecture holds true in the
centered case. The lower bound shows that, up to a constant factor, this is
the exact order of the behavior of the tail of the probability distribution of
κ(A). See Wschebor [22] for the noncentered case.

4. This theorem, and related ones, can be considered as results on the Wishart
matrix ATA (AT denotes the transpose of A). Introducing some minor
changes, it is possible to use the same methods to study the condition num-
ber of ATA for rectangular n×m matrices A having i.i.d. Gaussian standard
entries, n > m. This will be considered elsewhere.

Some examples of related results on the random variable κ(A) are the following.

Theorem 1.2 (see [7]). Under the same hypothesis as that of Theorem 1.1, one
has

E (log κ(A)) = logm + C1 + εm,

where C1 is a known constant (C1 ≈ 1.537) and εm → 0 as m → +∞.

Theorem 1.3 (see [4]). Let A = ((aij))i,j=1,...,m and assume that the aij’s are

independent Gaussian random variables with a common variance σ2 and mij = E(aij).
Denote by M = ((mij))i,j=1,...,m the nonrandom matrix of expectations. Then

E (log κ(A)) ≤ logm + log

[
‖M‖
σ
√
m

+ 4

]
+ C ′

1,

where C ′
1 is a known constant.

Next, we introduce some notation. Given A, an m × m real matrix, we denote
by λ1, . . . , λm, 0 ≤ λ1 ≤ · · · ≤ λm, the eigenvalues of ATA. If X : Sm−1 → R is the
quadratic polynomial X(x) = xTATAx, then

• λm = ‖A‖2
= maxx∈Sm−1 X(x),

• in case λ1 > 0, λ1 = 1
‖A−1‖2 = minx∈Sm−1 X(x).

It follows that

κ(A) =

(
λm

λ1

) 1
2

when λ1 > 0. We put κ(A) = +∞ if λ1 = 0. Note also that κ(A) ≥ 1 and κ(rA) =
κ(A) for any real r, r �= 0.
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There is an important difference between the proof of Theorem 1.1 and those of
the two other theorems mentioned above. In the latter cases, one puts

log κ(A) =
1

2
log λm − 1

2
log λ1,

and if one takes expectations, the joint distribution of the random variables λm, λ1

does not play any role; the proof uses only the individual distributions of λm and
λ1. On the contrary, the proof below of Theorem 1.1 depends essentially on the
joint distribution of the pair (λm, λ1). A general formula for the joint density of
λ1, . . . , λm has been well known for a long time (see, for example, Wilks [21], Wigner
[19], Krishnaiah and Chang [11], Kendall, Stuart, and Ord [10], and the references
therein), but it seems to be difficult to adapt this to our present requirements. In
fact, we will use a different approach, based on the expected value of the number of
zeros of a random field parameterized on a smooth manifold.

We have also applied this technique to give a new proof of the known result of
Lemma 2.2, a lower bound for P{λ1 < a}.

One can ask if Theorem 1.1 follows from the well-known exponential bounds
for the concentration of the distribution of λm together with known bounds for the
distribution of λ1 (see, for example, Szarek [15], Davidson and Szarek [5], and Ledoux
[12] for these types of inequalities).

More precisely, consider the upper bound in Theorem 1.1. For ε > 0 one has

P
{
κ(A) > mx

}
= P

{
λm

λ1
> m2x2

}

≤ P
{
λm > (4 + ε)m

}
+ P

{
λm ≤ (4 + ε)m,

λm

λ1
> m2x2

}

≤ P
{
λm > (4 + ε)m

}
+ P

{
λ1 <

(4 + ε)

mx2

}

≤ C1 exp
[
−C2mε2

]
+ C3

√
4 + ε

x
,(1.2)

where C1, C2, C3 are positive constants. From (1.2), making an adequate choice of
ε one can get an upper bound for P{κ(A) > mx} of the form (const) 1

x

(
log x
m

)α
for

some α > 0 and x large enough. However, this kind of argument does not lead to the
precise order given by our Theorem 1.1.

On the other hand, using known results for the distribution of other functions of
the spectrum (for example, (λ1 + · · ·+ λm)/λ1 as in Edelman [8]), one can get upper
and lower bounds for the tails of the distribution of κ(A) which again do not reach
the precise behavior (const)/x.

2. Proof of Theorem 1.1. It is easy to see that, almost surely, the eigenvalues
of ATA are pairwise different. We introduce the following additional notation:

• 〈., .〉 is usual scalar product in R
m and {e1, . . . , em} the canonical basis.

• Ik denotes the k × k identity matrix.
• B = ATA = ((bij))i,j=1,...,m.

• For s �= 0 in R
m, πs : R

m → R
m denotes the orthogonal projection onto

{s}⊥, the orthogonal complement of s in R
m.

• M � 0 (resp., M ≺ 0) means that the symmetric matrix M is positive definite
(resp., negative definite).
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• If ξ is a random vector, pξ(.) is the density of its distribution whenever it
exists.

• For a differentiable function F defined on a smooth manifold M embedded in
some Euclidean space, F ′(s) and F ′′(s) are the first and the second derivative
of F that we will represent, in each case, with respect to an appropriate
orthonormal basis of the tangent space.

Instead of (1.1) we prove the equivalent statement: for x > m,

cm

x
< P{κ(A) > x} <

Cm

x
.(2.1)

We break the proof into several steps. Our main task is to estimate the joint
density of the pair (λm, λ1); this will be done in Step 4.

Step 1. For a, b ∈ R, a > b, one has almost surely

(2.2) {λm ∈ (a, a + da) , λ1 ∈ (b, b + db)}

=

{
∃ s, t ∈ Sm−1, 〈s, t〉 = 0, X(s) ∈ (a, a + da) , X(t) ∈ (b, b + db) ,

πs(Bs) = 0, πt(Bt) = 0, X ′′(s) ≺ 0, X ′′(t) � 0

}
.

An instant reflection shows that almost surely the number

Na,b,da,db

of pairs (s, t) belonging to the right-hand side of (2.2) is equal to 0 or to 4, so that

P{λm ∈ (a, a + da), λ1 ∈ (b, b + db)} =
1

4
E(Na,b,da,db).(2.3)

Step 2. In this step we will give a bound for E (Na,b,da,db) using what we call a
Rice-type formula (see Azäıs and Wschebor [3] for some related problems and general
tools). Let

V =
{
(s, t) : s, t ∈ Sm−1, 〈s, t〉 = 0

}
.

V is a C∞-differentiable manifold without boundary, embedded in R
2m, dim(V ) =

2m−3. We will denote by τ = (s, t) a generic point in V and by σV (dτ) the geometric
measure on V .

It is easy to see that σV (V ) =
√

2σm−1.σm−2, where σm−1 denotes the surface

area of Sm−1 ⊂ R
m, that is, σm−1 = 2πm/2

Γ(m/2) . On V we define the random field

Y : V → R
2m

by means of

Y (s, t) =

(
πs(Bs)
πt(Bt)

)
.

For τ = (s, t) a given point in V , we have that

Y (τ) ∈ {(t,−s)}⊥ ∩
{
{s}⊥ × {t}⊥

}
= Wτ

for any value of the matrix B, where {(t,−s)}⊥ is the orthogonal complement of the
point (t,−s) in R

2m.
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In fact, (t,−s) ∈ {s}⊥ × {t}⊥ and

〈Y (s, t), (t,−s)〉R2m = 〈πs(Bs), t〉 − 〈πt(Bt), s〉
= 〈Bs− 〈s,Bs〉s, t〉 − 〈Bt− 〈t, Bt〉t, s〉 = 0

since 〈s, t〉 = 0 and B is symmetric. Notice that dim(Wτ ) = 2m− 3.
We also set

∆(τ) =
[
det

[
(Y ′(τ))

T
Y ′(τ)

]] 1
2

,

N = 	 {τ : τ ∈ V, Y (τ) = 0} .

For τ = (s, t) ∈ V , Fτ denotes the event

Fτ = {X(s) ∈ (a, a + da), X(t) ∈ (b, b + db), X ′′(s) ≺ 0, X ′′(t) � 0} ,

and pY (τ)(.) is the density of the random vector Y (τ) in the (2m − 3)-dimensional
subspace Wτ of R

2m.
Assume that 0 is not a critical value of Y , that is, if Y (τ) = 0, then ∆(τ) �= 0. This

holds true with probability 1. By compactness of V , this implies N < ∞. Assume
that N �= 0 and denote by τ1, . . . , τN the roots of the equation Y (τ) = 0.

Because of the implicit function theorem, if δ > 0 is small enough, one can find in
V open neighborhoods U1, . . . , UN of the points τ1, . . . , τN , respectively, so that the
following hold:

• Y is a diffeomorphism between Uj and Y (V ) ∩ B2m(0, δ) (B2m(0, δ) is the
Euclidean ball of radius δ centered at the origin, in R

2m).
• U1, . . . , UN are pairwise disjoint.
• If τ /∈

⋃N
j=1 Uj , then Y (τ) /∈ B2m(0, δ).

Using the change of variable formula, it follows that

∫
V

∆(τ) 1{‖Y (τ)‖<δ}σV (dτ) =

N∑
j=1

∫
Uj

∆(τ) σV (dτ) =

N∑
j=1

µ (Y (Uj)) ,(2.4)

where µ (Y (Uj)) denotes the—(2m − 3)-dimensional—geometric measure of Y (Uj).
As δ ↓ 0, µ (Y (Uj)) ∼ |B2m−3(δ)|, where |B2m−3(δ)| is the (2m − 3)-dimensional
Lebesgue measure of a ball of radius δ in R

2m−3. It follows from (2.4) that, almost
surely,

N = lim
δ↓0

1

|B2m−3(δ)|

∫
V

∆(τ)1l{‖Y (τ)‖<δ}σV (dτ).

In exactly the same way, one can prove that

Na,b,da,db = lim
δ↓0

1

|B2m−3(δ)|

∫
V

∆(τ)1lFτ 1l{‖Y (τ)‖<δ}σV (dτ).

Applying Fatou’s lemma and Fubini’s theorem,

E(Na,b,da,db) ≤ lim inf
δ↓0

1

|B2m−3(δ)|

∫
V

E
(
∆(τ) 1lFτ

1l{‖Y (τ)‖<δ}
)
σV (dτ)

= lim inf
δ↓0

∫
V

σV (dτ)

∫
Bm,δ,τ

E (∆(τ)1lFτ
/Y (τ) = y) pY (τ)(y)

dy

|B2m−3(δ)|

=

∫
V

E (∆(τ)1lFτ /Y (τ) = 0) pY (τ)(0) σV (dτ),
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where Bm,δ,τ = B2m(0, δ) ∩ Wτ . The validity of the last passage to the limit will
become clear below, since it will follow from the calculations we will perform that the
integrand in the inner integral is a continuous function of the pair (τ, y). Hence,

(2.5) E (Na,b,da,db) ≤
∫ a+da

a

dx

∫ b+db

b

dy

∫
V

E
(
∆(s, t)1l{X′′(s)≺0,X′′(t)
0}/Cs,t,x,y

)
× pX(s),X(t),Y (s,t)(x, y, 0) σV (d(s, t)),

where Cs,t,x,y is the condition {X(s) = x,X(t) = y, Y (s, t) = 0}. The invariance of
the law of A with respect to isometries of R

m implies that the integrand in (2.5) does
not depend on (s, t) ∈ V . Hence, we have proved that the joint law of λm and λ1 has
a density g(a, b), a > b, and

(2.6) g(a, b) ≤
√

2

4
σm−1σm−2E

(
∆(e1, e2)1l{X′′(e1)≺0,X′′(e2)
0}/Ce1,e2,a,b

)
× pX(e1),X(e2),Y (e1,e2)(a, b, 0).

In fact, using the method of Azäıs and Wschebor [3], it could be proved that (2.6) is
an equality, but we do not need such a precise result here.

Step 3. Next, we compute the ingredients in the right-hand member of (2.6). We
take as orthonormal basis for the subspace W(e1,e2){

(e3, 0), . . . , (em, 0), (0, e3), . . . , (0, em),
1√
2
(e2, e1)

}
= L1.

We have

X(e1) = b11,

X(e2) = b22,

X ′′(e1) = B1 − b11Im−1,

X ′′(e2) = B2 − b22Im−1,

where B1 (resp., B2) is the (m−1)× (m−1) matrix obtained by suppressing the first
(resp., the second) row and column in B,

Y (e1, e2) = (0, b21, b31, . . . , bm1, b12, 0, b32, . . . , bm2)
T ,

so that it has the following expression in the orthonormal basis L1:

Y (e1, e2) =

m∑
i=3

(
bi1(ei, 0) + bi2(0, ei)

)
+
√

2b12

(
1√
2
(e2, e1)

)
.

It follows that the joint density of X(e1), X(e2), Y (e1, e2) appearing in (2.6) in the
space R × R ×W(e1,e2) is the joint density of the random variables

b11, b22,
√

2b12, b31, . . . , bm1, b32, . . . , bm2

at the point (a, b, 0, . . . , 0). To compute this density, first compute the joint density q
of

b31, . . . , bm1, b32, . . . , bm2,
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given a1, a2, where aj denotes the jth column of A which is Gaussian standard in R
m.

q is the normal density in R
2(m−2), centered with variance matrix

(
‖a1‖2Im−2 〈a1, a2〉Im−2

〈a1, a2〉Im−2 ‖a2‖2Im−2

)
.

Set

a′j =
aj

‖aj‖
, j = 1, 2.

The density of the triplet

(b11, b22, b12) = (‖a1‖2, ‖a2‖2, ‖a1‖‖a2‖〈a′1, a′2〉)

at the point (a, b, 0) can be computed as follows.

Since 〈a′1, a′2〉 and (‖a1‖, ‖a2‖) are independent, the density of the triplet at
(a, b, 0) is equal to

χ2
m(a)χ2

m(b)(ab)−1/2p<a′
1,a

′
2>

(0),

where χ2
m(.) denotes the χ2 density with m degrees of freedom.

Let ξ = (ξ1, . . . , ξm)T be Gaussian standard in R
m. Clearly, 〈a′1, a′2〉 has the same

distribution as ξ1
‖ξ‖ , because of the invariance under rotations.

1

2t
P{|〈a′1, a′2〉| ≤ t} =

1

2t
P

{
ξ2
1

χ2
m−1

≤ t2

1 − t2

}
=

1

2t
P

{
F1,m−1 ≤ t2(m− 1)

1 − t2

}

=
1

2t

∫ t2(m−1)

1−t2

0

f1,m−1(x)dx,

where χ2
m−1 = ξ2

2 + · · · + ξ2
m and F1,m−1 has the Fisher distribution with (1,m − 1)

degrees of freedom and density f1,m−1. Letting t → 0, we obtain

p〈a′
1,a

′
2〉(0) =

1√
π

Γ(m/2)

Γ
(
(m− 1)/2

) .

Summing up, the density in (2.6) is equal to

1√
2
(2π)2−mπ− 1

2
1

Γ(m/2)Γ
(
(m− 1)/2

)2−m 1√
ab

exp

(
− a + b

2

)
.(2.7)

We now consider the conditional expectation in (2.6). First, observe that the
(2m−3)-dimensional tangent space to V at the point (s, t) is parallel to the orthogonal
complement in R

m×R
m of the triplet of vectors (s, 0); (0, t); (t, s). This is immediate

from the definition of V .

To compute the associated matrix for Y ′(e1, e2) take the set

{
(e3, 0), . . . , (em, 0), (0, e3), . . . , (0, em),

1√
2
(e2,−e1)

}
= L2
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as orthonormal basis in the tangent space and the canonical basis in R
2m. A direct

calculation gives

Y ′(e1, e2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−vT 01,m−2 − 1√
2
b21

wT 01,m−2
1√
2
(−b11 + b22)

B12 − b11Im−2 0m−2,m−2
1√
2
w

01,m−2 −wT 1√
2
(−b11 + b22)

01,m−2 vT 1√
2
b21

0m−2,m−2 B12 − b22Im−2 − 1√
2
v

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where vT = (b31, . . . , bm1), w
T = (b32, . . . , bm2), 0i,j is a null matrix with i rows and

j columns, and B12 is obtained from B by suppressing the first and second rows and
columns. The columns represent the derivatives in the directions of L2 at the point
(e1, e2). The first m rows correspond to the components of πs(Bs), the last m ones
to those of πt(Bt). Thus, under the condition Ce1,e2,a,b that is used in (2.6),

Y ′(e1, e2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

01,m−2 01,m−2 0
01,m−2 01,m−2

1√
2
(b− a)

B12 − aIm−2 0m−2,m−2 0m−2,1

01,m−2 01,m−2
1√
2
(b− a)

01,m−2 01,m−2 0
0m−2,m−2 B12 − bIm−2 0m−2,1

⎞
⎟⎟⎟⎟⎟⎟⎠

and

[
det

[(
Y ′(e1, e2)

)T
Y ′(e1, e2)

]] 1
2

= |det(B12 − aIm−2)||det(B12 − bIm−2)|(a− b).

Step 4. Note that B1−aIm−1 ≺ 0 ⇒ B12−aIm−2 ≺ 0, and similarly, B2−bIm−1 �
0 ⇒ B12 − bIm−2 � 0, and that for a > b, under Ce1,e2,a,b, there is equivalence in
these relations.

It is also clear that, since B12 � 0, one has

|det(B12 − aIm−2)|1lB12−aIm−2≺0 ≤ am−2,

and it follows that the conditional expectation in (2.6) is bounded by

am−1E
(
|det(B12 − bIm−2)|1lB12−bIm−2
0/C

)
,(2.8)

where C is the condition {b11 = a, b22 = b, b12 = 0, bi1 = bi2 = 0 (i = 3, . . . ,m)}.
To compute the conditional expectation in (2.8) we further condition on the value

of the random vectors a1 and a2. Since unconditionally a3, . . . , am are i.i.d. standard
Gaussian vectors in R

m, under this new conditioning, their joint law becomes the law
of i.i.d. standard Gaussian vectors in R

m−2 and independent of the condition. That
is, (2.8) is equal to

am−1E
(
|det(M − bIm−2)|1lM−bIm−2
0

)
,(2.9)

where M is an (m − 2) × (m − 2) random matrix with entries Mij = 〈vi, vj〉 (i, j =
1, . . . ,m− 2) and the vectors v1, . . . , vm−2 are i.i.d. Gaussian standard in R

m−2. The
expression in (2.9) is bounded by

am−1E
(
det(M)

)
= am−1(m− 2)!.
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The last equality is contained in the following lemma, which is well known; see, for
example, Edelman [7].

Lemma 2.1. Let ξ1, . . . , ξm be i.i.d. random vectors in R
p, p ≥ m, their common

distribution being Gaussian centered with variance Ip.
Denote by Wm,p the matrix

Wm,p = ((〈ξi, ξj〉))i,j=1,...,m,

and by

D(λ) = det (Wm,p − λIm)

its characteristic polynomial.
Then
(i)

E (det (Wm,p)) = p(p− 1) . . . (p−m + 1),(2.10)

(ii)

E (D(λ)) =

m∑
k=0

(−1)k
(
m

k

)
p!

(p−m + k)!
λk.(2.11)

Returning to the proof of the theorem and summing up this part, after substitut-
ing in (2.6), we get

g(a, b) ≤ Cm

exp
(
− (a + b)/2

)
√
ab

am−1,(2.12)

where Cm = 1
4(m−2)! .

Step 5. Now we prove the upper-bound part in (2.1). One has, for x > 1,

P{κ(A) > x} = P

{
λm

λ1
> x2

}
≤ P

{
λ1 <

L2m

x2

}
+ P

{
λm

λ1
> x2, λ1 ≥ L2m

x2

}
,

(2.13)

where L is a positive number to be chosen later on. For the first term in (2.13), we
use Proposition 9 in Cuesta-Albertos and Wschebor [4], which is a slight modification
of Theorem 3.2 in Sankar, Spielman, and Teng [13]:

P

{
λ1 <

L2m

x2

}
= P

{
‖A−1‖ >

x

L
√
m

}
≤ C2(m)

Lm

x
.

Here,

C2(m) =

(
2

π

) 1
2
[

sup
0<c<m

√
cP

{
t2m−1 >

(m− 1)c

m− c

}]−1

≤ C2(+∞) ≈ 2.3473,

where tm−1 is a random variable having Student’s distribution with m− 1 degrees of
freedom.

For the second term in (2.13),

P

{
λm

λ1
> x2, λ1 ≥ L2m

x2

}
=

∫ +∞

L2mx−2

db

∫ +∞

bx2

g(a, b)da ≤ Gm(x2)
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with

Gm(y) = Cm

∫ +∞

L2my−1

db

∫ +∞

by

exp
(
− (a + b)/2

)
√
ab

am−1da,

using (2.12). We have

(2.14) G′
m(y) = Cm

[
−
∫ +∞

L2my−1

exp(−b/2)
√
b exp

(
− (by)/2

)
(by)m−3/2db

+ L2my−2

∫ +∞

L2m

exp

(
− 1

2

(
a +

L2m

y

))
am−3/2L−1m− 1

2 y
1
2 da

]
,

which implies

−G′
m(y) ≤ Cmym−3/2

∫ +∞

L2my−1

exp

(
− b(1 + y)

2

)
bm−1db

=
y−3/2

4(m− 2)!

(
y

1 + y

)m

2m
∫ +∞

L2m
2y (1+y)

e−zzm−1dz

≤ y−3/2

4(m− 2)!
2m

∫ +∞

L2m
2

e−zzm−1dz.

Put Im(a) =
∫ +∞
a

e−zzm−1dz. Integrating by parts,

Im(a) = e−a
[
am−1 + (m− 1)am−2 + (m− 1)(m− 2)am−3 + · · · + (m− 1)!

]
,

so that for a > 2.5m

Im(a) ≤ 5

3
e−aam−1.

If L2 > 5, we obtain the bound

−G′
m(y) ≤ Dmy−3/2 with Dm =

5

6

mm−1

(m− 2)!
L2(m−1) exp

(
−L2m

2

)
.

We now apply Stirling’s formula (Abramowitz and Stegun [1, sect. 6.1.38]), i.e., for
all x > 0

Γ(x + 1) exp

(
− 1

12x

)
≤

(x
e

)x √
2πx ≤ Γ(x + 1),

to get

Dm ≤ 5
√

2

12
√
πL2

m√
m− 2

exp

(
−m

L2 − 4log(L) − 2

2

)
≤ 5

√
2

12
√
πL2

m,

if we choose for L the only root larger than 1 of the equation L2 − 4 log(L) − 2 = 0
(check that L ≈ 2.3145). To finish,

0 ≤ Gm(y) =

∫ +∞

y

−G′
m(t)dt < Dm

∫ +∞

y

dt

t3/2
= 2Dmy−

1
2 .



436 JEAN-MARC AZAÏS AND MARIO WSCHEBOR

Replacing y by x2 and performing the numerical evaluations, the upper bound in (2.1)
follows, and we get for the constant C the value 5.60.

Step 6. We consider now the lower bound in (2.1). For γ > 0 and x > 1, we have

(2.15) P{κ(A) > x} = P

{
λm

λ1
> x2

}
≥ P

{
λm

λ1
> x2, λ1 <

γ2m

x2

}

= P

{
λ1 <

γ2m

x2

}
− P

{
λm

λ1
≤ x2, λ1 <

γ2m

x2

}
.

A lower bound for the first term in the right-hand member of (2.15) is obtained using
the following inequality, which we state as a separate lemma. In fact, this result is
known; see, for example, Szarek [15, Theorem 1.2], where it is proved without giving
an explicit value for the constant. See also Edelman [7, Corollary 3.1], for a related
result.

Lemma 2.2. If 0 < a < 1/m, then

P{λ1 < a} ≥ β
√
am,

where we can choose β =
(

2
3

)3/2
e−1/3.

Proof. Define the index iX(t) of a critical point t ∈ Sm−1 of the function X as
the number of negative eigenvalues of X”(t). For each a > 0 put

Ni(a) = 	{t ∈ Sm−1 : X(t) = tTBt < a,X ′(t) = 0, iX(t) = i}

for i = 0, 1, . . . ,m− 1. One easily checks that if the eigenvalues of B are λ1, . . . , λm,
0 < λ1 < · · · < λm, then

• if a ≤ λ1, then Ni(a) = 0

for i = 0, 1, . . . ,m− 1;

• if λi < a ≤ λi+1, then Nk(a) = 2

for some i = 0, 1, . . . ,m1 for k = 0, . . . , i− 1,

Nk(a) = 0

for k = i, . . . ,m− 1;

• if λm < a, then Ni(a) = 2

for i = 0, 1, . . . ,m− 1.

Now consider

M(a) =

m−1∑
i=0

(−1)iNi(a).

M(a) is the Euler characteristic of the set S = {t ∈ Sm−1 : X(t) < a}; see Adler [2].
It follows from the relations above that

• if N0(a) = 0, then Ni(a) = 0 for i = 1, . . . ,m− 1, and hence M(a) = 0;
• if N0(a) = 2, then M(a) = 0 or 2,

so that in any case

M(a) ≤ N0(a).



TAILS OF THE DISTRIBUTION OF THE CONDITION NUMBER 437

Hence,

P{λ1 < a} = P{N0(a) = 2} =
1

2
E
(
N0(a)

)
≥ 1

2
E
(
M(a)

)
.(2.16)

The expectation of M(a) can be written using the Rice-type formula (see Azäıs and
Wschebor [3] or Taylor and Adler [16])

E
(
M(a)

)
=

∫ a

0

dy

∫
Sm−1

E
[
det

(
X”(t)

)
/X(t) = y,X ′(t) = 0

]
pX(t),X′(t)(y, 0)σm−1(dt)

=

∫ a

0

σm−1(S
m−1)E

[
det

(
X”(e1)

)
/X(e1) = y,X ′(e1) = 0

]
pX(e1),X′(e1)(y, 0)dy,

where we have used again invariance under isometries. Applying a similar Gaussian
regression—as we did in Step 4 to get rid of the conditioning—we obtain

E
(
M(a)

)
=

∫ a

0

E
[
det

(
Q− yIm−1

)] √2π

2m−1
Γ−2

(
m

2

)
exp(−y/2)

√
y

dy,(2.17)

where Q is an (m− 1)× (m− 1) random matrix with entry i, j equal to (〈vi, vj〉) and
v1, . . . , vm−1 are i.i.d. Gaussian standard in R

m−1. We now use part (ii) of Lemma 2.1:

E
[
det

(
Q− yIm−1

)]
= (m− 1)!

m−1∑
k=0

(
m− 1

k

)
(−y)k

k!
.(2.18)

Under condition 0 < a < m−1, since 0 < y < a, as k increases, the terms of the sum
in the right-hand member of (2.18) have decreasing absolute value, so that

E
[
det

(
Q− yIm−1

)]
≥ (m− 1)![1 − (m− 1)y].

Substituting into the right-hand member of (2.17), we get

E
[
M(a)

]
≥

√
2π

2m−1

(m− 1)!

Γ2(m/2)
Jm(a),

where, using again 0 < a < m−1,

Jm(a) =

∫ a

0

(
1 − (m− 1)y

)exp(−y/2)
√
y

dy ≥
∫ a

0

(
1 − (m− 1)y

)
√
y

(1 − y/2)dy ≥ 4

3

√
a

by an elementary computation. Going back to (2.17), applying Stirling’s formula, and

remarking that
(
1 + 1/n

)n+1 ≥ e, we get

P{λ1 < a} ≥
(

2

3

)3/2

e−1/3
√
am.

This proves the lemma.
End of the proof of Theorem 1.1. Using Lemma 2.2, the first term on the right-

hand side of (2.15) is bounded below by

βγ
m

x
.
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Table 1

Values of the estimations P{κ(A) > mx} for x = 1, 2, 3, 5, 10, 15, 30, 50, 100 and m = 3, 5, 10, 30,
100, 300, 500 by Monte Carlo method over 40,000 simulations.

Value of x
Probability 1 2 3 5 10 20 30 50 100

Lower bound: .13/x .13 .065 .043 .026 .013 .007 .004 .003 .001
Upper bound: 5.6/x 1 1 1 1 .56 .28 .187 .112 .056

m = 3 .881 .57 .41 .26 .13 .067 .044 .027 .013
m = 5 .931 .66 .48 .30 .16 .079 .053 .033 .016
m = 10 .959 .71 .52 .34 .17 .088 .059 .035 .017
m = 30 .974 .75 .56 .36 .19 .096 .063 .038 .019
m = 100 .978 .77 .58 .38 .20 .098 .066 .040 .019
m = 300 .982 .77 .58 .38 .20 .101 .069 .041 .022
m = 500 .980 .77 .59 .38 .20 .100 .066 .039 .020

To obtain a bound for the second term, we use again our upper bound (2.12) on the
joint density g(a, b), so that we obtain

P
{λm

λ1
≤ x2, λ1 <

γ2m

x2

}
=

∫ γ2m

x2

0

db

∫ bx2

b

g(a, b)da(2.19)

≤ Cm

∫ γ2m

x2

0

db

∫ bx2

b

exp
(
− (a + b)/2

)
√
ab

am−1da

≤ Cm

∫ γ2m

x2

0

b(x2 − 1)b−
1
2 (bx2)

m−3
2 db

≤ 1

4(m− 2)!

x2 − 1

x3
γ2mmm−1 ≤

√
2

8
√
π
emγ2mm

x

on applying Stirling’s formula. Now choosing γ = 1/e, we see that the hypothesis of
Lemma 2.2 is satisfied and also

P
{λm

λ1
≤ x2, λ1 <

γ2m

x2

}
≤

√
2

8
√
π
e−3m

x
.

Substituting into (2.15), we obtain the lower bound in (1.1) with

c =

(
2

3

)3/2

e−4/3 −
√

2

8
√
π
e−3 ≈ 0.138.

3. Monte Carlo experiment. To study the tail of the distribution of the con-
dition number of Gaussian matrices of various size, we used the following Matlab
functions:

• normrnd, to simulate normal variables;
• cond, to compute the condition number of matrix A.

The results of over 40,000 simulations using Matlab are given in Table 1 and in
Figure 1.

The table suggests, taking into account the simulation variability, that the con-
stants c and C should take values smaller than 0.88 and bigger than 2.00, respectively.
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Fig. 1. Values of P{κ(A) > mx} as a function of x for m = 3, 10, 100, and 500.
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