

Big Data, Machine Learning : qu'est-ce que la science des données ?

Journée de l'IREM, Bordeaux

Aurélien Garivier

18 janvier 2017

Institut de Mathématiques de Toulouse LabeX CIMI Université Paul Sabatier

Plan de la présentation

- 1. Un monde numérique
- 2. Qu'est-ce que le machine learning ?
- 3. Le phénomène Big Data
- 4. Quel Machine Learning pour les Big Data?
- 5. Les Big Data, le Machine learning et la loi
- 6. Enseignement des sciences des données

Un monde numérique

Un monde numérique

Nous vivons aujourd'hui dans une "ère du numérique":

- Les données sont partout : sondages, indices de popularité, scores électoraux, statistiques économiques voire sportives...
- Nous produisons nous-mêmes des données de notre plein gré : photos, interactions sur les réseaux sociaux, objets connectés...
- sans le vouloir vraiment : recherches sur Internet, traces laissées par nos actions (achats, réseaux sociaux ...),
- ou en échange de services (pas si) gratuits.

Un monde numérique

Notre vie est de plus en plus dirigée par ce monde numérique :

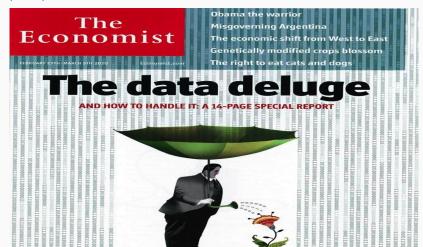
- Société de consommation (prédiction des goûts et des achats)
- Notre relation avec les banques, assurances (scoring pour déterminer crédit, avantages)
- Algorithmes pour la carte scolaire, pour l'orientation scolaire...
- Surveillance policière...
- Choix d'un conjoint par sites de rencontre...
- Voitures qui roulent seule et réagissent à leur environnement ...

Tout cela grâce avec des algorithmes...

Un monde numérique : le mythe du Big Data

Des chiffres tous les jours dans tous les media, chiffres sur lesquels s'appuie la pensée :

Economie quantitative, psychologie quantitative mais aussi décisions politiques.



Un monde numérique : points positifs

- Une donnée quantitative (un nombre) ça ne se discute pas
- c'est sérieux
- c'est facile à interpréter
- c'est synthétique ..

Un monde numérique : points positifs

Bref ... c'est efficace!

- Une donnée quantitative (un nombre) ça ne se discute pas
- c'est sérieux
- c'est facile à interpréter
- c'est synthétique ..

Points négatifs

Peut-on faire mentir les nombres ?

• Disraeli : Il y a les mensonges, les gros mensonges, et les statistiques.

Par manque de temps , de connaissances, on s'expose à des erreurs d'interprétation.

Nécessité de comprendre l'usage de la statistique et leur signification : la vérité mathématique est-elle vérité au sens usuel ?

 HG. Wells: Le jugement statistique sera un jour aussi nécessaire à l'exercice de base des fonctions du citoyen que la capacité de lire et d'écrire.

La science historique des données : la statistique

 La statistique est l'étude de la collecte de données, leur analyse, leur traitement, l'interprétation des résultats et leur présentation afin de rendre les données compréhensibles par tous. C'est à la fois une science, une méthode et un ensemble de techniques.

Source: Wikipedia

- La statistique est utilisée dans presque tous les domaines de l'activité humaine : sciences sociales, économie, médecine, biologie, industrie ...
- Mais aujourd'hui, Open Data, Big Data, Big Science... changent les règles du jeu.

Qu'est-ce que le machine learning ?

Plan de la présentation

- 1. Un monde numérique
- Qu'est-ce que le machine learning ?
 Intelligence artificielle
 Machine Learning
- 3. Le phénomène Big Data
- 4. Quel Machine Learning pour les Big Data?
- 5. Les Big Data, le Machine learning et la lo
- 6. Enseignement des sciences des données

Intelligence Artificielle (IA): définition

Intelligence des machines

- simuler les capacités cognitives des humains
 (big data: les humains apprennent en utilisant des sources de données très abondantes et diverses).
- une machine mime les fonctions cognitives que les humains associent à l'esprit humain, tels que apprendre ou résoudre un problème.

Machine intelligente idéale =

agent rationnel flexible qui *perçoit* son environnement et qui *prend des décisions* qui maximisent ses chances de succès pour un but donné.

Fondé sur le postulat que l'intelligence humaine

peut être décrite si précisément qu'on peut construire une machine la simulant.

Intelligence Artificielle: Tension

Buts opérationnels

- Robots autonomes pour réaliser des tâches pas trop spécialisées
- En particulier, vision + compréhension et production de langage (naturel)

Tension entre les objectifs opérationnels et les buts philosophiques

- Au fur et à mesure que les machines accomplissent de plus en plus de tâches, des compétences qu'on pensait relever de l'intelligence sont progressivement retirées de la liste. Par exemple, la reconnaissance de caractères n'est plus considérée comme relevant de l'IA, mais comme une technologie de routine.
- Parmi les compétences encore classées en IA, il y a le jeu de go ou les voitures autonomes...

Al: principaux thèmes

Principaux objectifs de l'IA:

- raisonnement
- connaissance
- planification
- apprentissage
- traitement des langues naturelles
- perception
- intelligence "générale"

Approches centrales de l'IA:

- approche symbolique traditionnelle (cf. logique)
- méthodes d'inspiration statistique
- soft computing

S'appuie sur:

- informatique
- mathématiques
- linguistique
- philosophie
- neurosciences
- psychologie (artificielle)

Outils:

- optimisation mathématique
- logique
- algorithmes d'inspiration probabiliste

Plan de la présentation

- 1. Un monde numérique
- Qu'est-ce que le machine learning ?
 Intelligence artificielle
 Machine Learning
- 3. Le phénomène Big Data
- 4. Quel Machine Learning pour les Big Data?
- 5. Les Big Data, le Machine learning et la loi
- 6. Enseignement des sciences des données

Machine Learning (ML): Définition

Arthur Samuel (1959)

Champ d'étude qui donne aux ordinateurs la capacité d'apprendre sans avoir été programmés explicitement

Tom M. Mitchell (1997)

On dit qu'un programme apprend d'une expérience E par rapport à une classe de tâches T et à une mesure de performance P si sa performance sur T, mesurée par P, augmente avec l'expérience E.

ML: Apprendre des données et faire des prédictions

- Les algorithmes construisent un modèle à partir d'exemples donnés en entrée, dans but de faire des prédictions ou de prendre des décisions...
- ...plutôt que de suivre strictement une suite statique d'instructions : c'est utile quand il serait impossible ou inefficace de concevoir et de programmer de tels algorithmes.

Analyse de données (Data Analytics)

- Le Machine Learning est utilisé pour concevoir des modèles complexes et des algorithmes qui conduisent eux-même à des prédictions - le mot commercial est souvent predictive analytics.
- www.sas.com: "Produce reliable, repeatable decisions and results" and uncover "hidden insights" through learning from historical relationships and trends in the data.
- évolution à partir de la reconnaissance de motifs (pattern recognition) de la computational learning theory en IA.

Machine Learning: problèmes-types

- filtrage de spams, classification de textes
- reconnaissance de caractères (OCR)
- moteurs de recherche
- plateformes de recommandation
- outils de reconnaissance de la parole
- vision par ordinateur
- bio-informatique, analyse du génome, médecine (prédictive)

Pour chacune de ces tâches, il est possible mais inefficace d'écrire des programmes explicitement destinés à résoudre les buts recherchés.

Il apparaît beaucoup plus fécond d'apprendre à des machines à inférer elles-même les bonnes règles de décision.

Disciplines connexes

- Statistique computationnelle: centré sur la prédiction obtenue par l'usage de modèles statistiques nécessitant des calculs numériques intensifs (ex: méthodes bayésiennes)
- Apprentissage statistique: ML basé sur des méthodes statistiques, avec un point de vue statistique (garanties probabilistes: consistence, inégalités oracles, minimax...)
 - ightarrow plus axés sur la $\it corr\'elation$, et moins sur la $\it causalit\'e$
- Data Mining (apprentissage non supervisé) centré plutôt sur l'analyse exploratoire des données et la découverte de propriétés inconnues des données.
- Importance des méthodes basées sur les probabilités et les statistiques → Data Science (Michael Jordan)
- Liens très forts avec l'**optimisation mathématique**, qui fournit des méthodes, des concepts et des applications au ML.

Classification supervisée : cadre statistique

Définition (terme anglais)	ex: reconnaissance de chiffres
Input space ${\mathcal X}$	64 × 64 images
Output space ${\cal Y}$	$\{0,1,\ldots,9\}$
Joint distribution $P(x, y)$?
Prediction function $h \in \mathcal{H}$	
Risk $R(h) = P(h(X) \neq Y)$	
Sample $\{(x_i, y_i)\}_{i=1}^n$	MNIST dataset
Empirical risk	
$\hat{R}_n(h) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{h(x_i) \neq y_i\}$	
Learning algorithm	
$\phi_n: (\mathcal{X} \times \mathcal{Y})^n \to \mathcal{H}$	NN,boosting
Expected risk $R_n(\phi) = \mathbb{E}_n[R(\phi_n)]$	
Empirical risk minimizer	
$\hat{h}_n = arg min_{h \in \mathcal{H}} \hat{R}_n(h)$	
Regularized empirical risk minimizer	
$\hat{h}_n = \operatorname{argmin}_{h \in \mathcal{H}} \hat{R}_n(h) + \lambda C(h)$	

Minimisation du risque empirique

Inégalité de Hoeffding: avec probabilité au moins $1-\eta$,

$$\left| R(h) - \hat{R}_n(h) \right| \leq \sqrt{\frac{1}{2n} \log \left(\frac{2}{\eta} \right)} \ .$$

Problème: vrai pour chaque h fixé mais pas pour \hat{h}_n !

Ex: Prédiction of 10 lancers de Pile ou Face

Ex: régression polynomiale \rightarrow sur-apprentissage

Fléau de la dimension

Minimisation structurelle du risque

ightarrow loi des grands nombres uniforme — inégalité de Vapnik-Chervonenkis : si $\mathcal H$ a une dimension de VC $d_{\mathcal H}$, alors

$$\sup_{h\in\mathcal{H}} \left| R(h) - \hat{R}_n(h) \right| \leq O\left(\sqrt{\frac{1}{2n}\log\left(\frac{2}{\eta}\right) + \frac{d_{\mathcal{H}}}{n}\log\left(\frac{n}{d_{\mathcal{H}}}\right)}\right) \ .$$

Structure:

$$\mathcal{H} = \bigcup_{m} \mathcal{H}_{m}$$

Ex: polynômes/splines de degré m, arbres de décision de profondeur m,...

Décompotion du risque en biais-variance

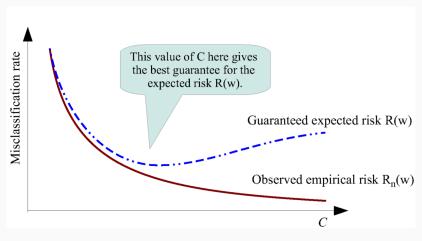
Minimisation structurelle du risque :

$$\hat{h}_n = \operatorname*{arg\,min}_{h \in \mathcal{H}} \hat{R}_n(h) + \lambda K(h)$$

OH

$$\hat{h}_n = \underset{K(h) < C}{\operatorname{arg min}} \hat{R}_n(h)$$

Structural Risk Minimization Tradeoff



Source: Bottou et al. tutorial on optimization

Machine Learning et Statistique

- L'analyse de données (inférence, description) est le but des statistiques depuis longtemps.
- Le Machine Learning a des buts plus opérationels (ex: la consistence est importante en statistique mais moins en ML).
 Les modèles (quand il y en a) sont instrumentaux.
 Ex: modèle linéaires (jolie théorie mathématique) vs Random Forests (utilisation massive de modèles pauvres et sans signification propre).
- Machine Learning pour les big data: plus de séparation entre modélisation stochastique et optimisation (contrairement aux statistiques classiques).
- En ML, les données sont souvent là a priori (malheureusement).
- Pas de frontière infranchissable (la statistique aussi évolue).

Le phénomène Big Data

Sur le site du CNRS

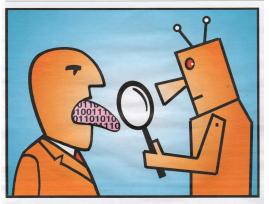
Et ailleurs The Economist The data deluge www.cnrs.fr Hāryara

40 . Courrier international | nº 1130 | du 28 juin au 4 juillet 2012

En couverture

Nouvelles technologies

Le partage des données nous sauvera-t-il?



CNRS - MI

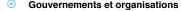
↑ Dessin de Kopelnitsky, Etats-Unis.

Plan de la présentation

- 1. Un monde numérique
- 2. Qu'est-ce que le machine learning ?
- 3. Le phénomène Big Data Les Big Data dans la presse Qu'est-ce que les Big Data? Éviter les fausses découvertes
- 4. Quel Machine Learning pour les Big Data?
- 5. Les Big Data, le Machine learning et la lo
- 6. Enseignement des sciences des données

Aucun domaine n'échappe à l'avalanche des données

 SI d'entreprise, Banques, transactions commerciales, systèmes de réservation, ...



Lois, réglementations, standards, infrastructures,

O Musique, vidéo, jeux, réseaux sociaux...

Sciences fondamentales

O Astronomie, physique et énergie, génome, ...

Santé

Dossier médical, sécurité sociale....

Environnement

Climat, dév durable, pollution, alimentation,...

Humanités et Sciences Sociales

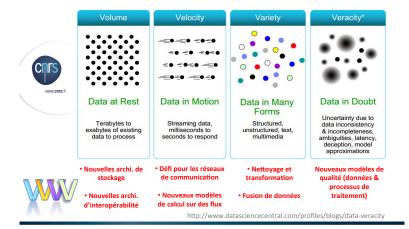
 Numérisation du savoir (littérature, histoire,art, srchitectures), données archéologiques...

Qu'est-ce qu'une (très grande) masse de données ?

Unit	Size	What it means
Bit (b)	1 or 0	Short for "binary digit", after the binary code (1 or 0) computers use to store and process data
Byte (B)	8 bits	Enough information to create an English letter or number in computer code. It is the basic unit of computing
Kilobyte (KB)	1,000, or 2 ¹⁰ , bytes	From "thousand" in Greek. One page of typed text is 2KB
Megabyte (MB)	1,000KB; 2 ²⁰ bytes	From "large" in Greek. The complete works of Shakespeare total 5MB. A typical pop song is about 4MB
Gigabyte (GB)	1,000MB; 2 ³⁰ bytes	From "giant" in Greek. A two-hour film can be compressed into 1-2GB
Terabyte (TB)	1,000GB; 2 ⁴⁰ bytes	From "monster" in Greek. All the catalogued books in America's Library of Congress total 15TB
Petabyte (PB)	1,000TB; 2 ⁵⁰ bytes	All letters delivered by America's postal service this year will amount to around 5PB. Google processes around 1PB every hour
Exabyte (EB)	1,000PB; 2 ⁶⁰ bytes	Equivalent to 10 billion copies of The Economist
Zettabyte (ZB)	1,000EB; 2 ⁷⁰ bytes	The total amount of information in existence this year is forecast to be around 1.2ZB
Yottabyte (YB)	1,000ZB; 2 ⁸⁰ bytes	Currently too big to imagine

Grandes Conf du domaine: VLDB, XLDB, ICDE, EDBT,

Complexité multidimensionnele des Big Data



Plan de la présentation

- 1. Un monde numérique
- 2. Qu'est-ce que le machine learning ?
- 3. Le phénomène Big Data Les Big Data dans la presse Qu'est-ce que les Big Data ? Éviter les fausses découvertes
- 4. Quel Machine Learning pour les Big Data?
- 5. Les Big Data, le Machine learning et la lo
- 6. Enseignement des sciences des données

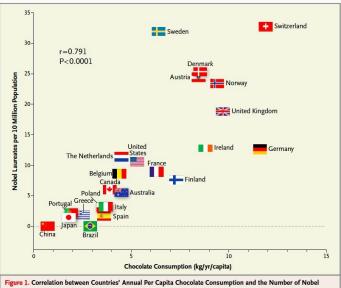
Corrélations en statistique

De nombreux journaux parlent d'études scientifiques s'appuyant sur des études et des sondages

Corrélations en statistique

De nombreux journaux parlent d'études scientifiques s'appuyant sur des études et des sondages

Si les mathématiques l'affirment ...



Laureates per 10 Million Population.

Incompréhension autour de la notion de corrélation

- En grandes dimensions tout est corrélé.
- Corrélation n'est pas causalité :
 A nombre de prix Nobel et B consommation de chocolat

$$A \mapsto B$$
 on $B \mapsto A$

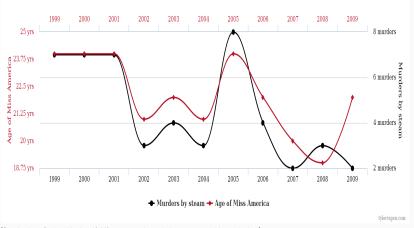
Variables non observées : variables confondantes



Age of Miss America

correlates with

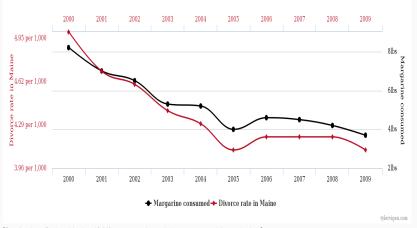
Murders by steam, hot vapours and hot objects



[Src: Loubes, Petit guide de self-défense contre la statistique et ceux qui la manipulent]

correlates with

Per capita consumption of margarine



[Src: Loubes, Petit guide de self-défense contre la statistique et ceux qui la manipulent]

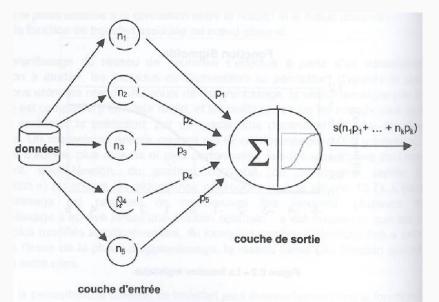
Quel Machine Learning pour les Big Data?

Réseaux de neurones

Source: http://insanedev.co.uk/open-cranium/

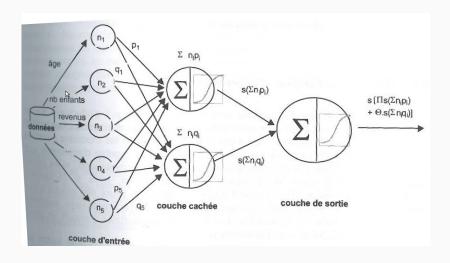
Réseau mono-couche

Source: [Tufféry, Data Mining et Informatique Décisionnelle]

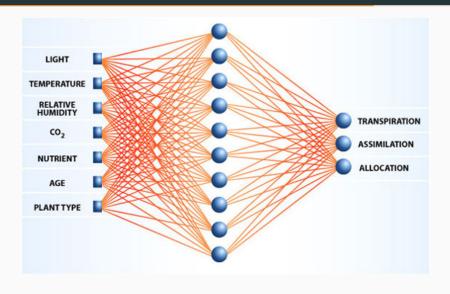


Réseau avec couche intermédiaire

Source: [Tufféry, Data Mining et Informatique Décisionnelle]



Réseau à une couche cachée

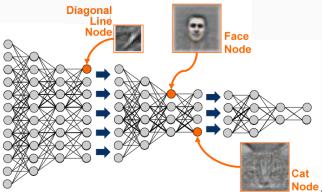


Src: http://www.makhfi.com

Des réseaux de neurones au deep learning (apprentissage profond)

Deep learning = réseaux de neurones + 3 améliorations:

- extensions (nouvelles fonction d'activation, convolution, récursivité)
- régularisation (dropout, pooling)
- calcul (GPU, jeux de donnés massifs)



Plan de la présentation

- 1. Un monde numérique
- 2. Qu'est-ce que le machine learning ?
- 3. Le phénomène Big Data
- 4. Quel Machine Learning pour les Big Data?

Deep Learning

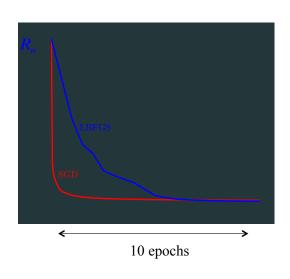
Optimisation

- 5. Les Big Data, le Machine learning et la loi
- 6. Enseignement des sciences des données

Optimisation: Gradient Stochastique

- Les méthodes du second ordre sont trop coûteuses (même une seule itération)
- Même les méthodes classiques du premier ordre sont trop coûteuses avec des données vraiment massives
- Le gradient stochastique (et ses variantes) utilisent plus efficacement l'information que les algorithmes batch.

Practical Experience

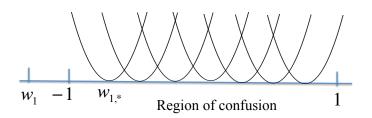


Fast initial progress of SG followed by drastic slowdown

Can we explain this?

Example by Bertsekas

$$R_n(w) = \frac{1}{n} \sum_{i=1}^n f_i(w)$$



Note that this is a geographical argument

Analysis: given w_k what is the expected decrease in the objective function R_n as we choose one of the quadratics randomly?

et la loi

Les Big Data, le Machine learning

Deux principes et une contrainte

Principes:

- principe de minimisation
 enlever les données qui ne sont pas utiles (contre logique big-data)
- principe de finalité
 pas le droit de croiser des données de différents services

Contrainte:

• contrainte de compatibilité ne pas empêcher les progrès en France!

(au moins) 5 challenges

• explicabilité des décisions

ex: pour les systèmes de référencement, la loi République numérique adoptée en oct 2016 oblige à préciser les modalités de référencement Quel contrôle ?

- anonymisation des données garantir la non-identifiabilité (contre-exemples célèbres)
- non-discrimination des sous-populations création d'une plateforme de dénonciation des mauvaises expériences avec les algorithmes
- distorsion de concurrence
 barrière à l'entrée du fait d'avoir les données
- ouverture/transparence versus protection du secret d'affaire

L'Apprentissage Machine comdamné

THE WALL STREET JOURNAL

Subscribe Now | Sign In SPECIAL OFFER: JOIN NOW

U.S. Politics Economy Business Tech

Markets Opinion Arts Life

Real Estate

Oil at One-Year High on Falling Stockpiles

U.S. Stocks Rise on Oil Rally, Bank Earnings

a

MARKETS

U.S. Government Uses Race Test for \$80 Million in Payments

Checks are ready for minority borrowers allegedly discriminated against on Ally Financial auto loans

By ANNAMARIA ANDRIOTIS and RACHEL LOUISE ENSIGN

Updated Oct. 29, 2015 9:32 p.m. ET

Recommended Videos

43

Enseignement des sciences des

données

Enseignement des sciences des donnés

Dosage informatique (bases de données) / mathématique (statistiques)

Bordeaux: Master Mathématiques appliquées et statistique (MAS): parcours

- Modélisation Mathématique pour le Signal et l'Image
- Modélisation statistique et stochastique
- Image Processing and Computer Vision
- Cursus Master Ingénierie Statistique et Informatique

Toulouse:

- UPS CMI MAPI3
- UPS CMI SID-bigdata
- INSA parcours GMM
- ISAE
- TSE Master StatEco

Challenges

Intérêts:

- motivation
- autonomie
- travail en équipe
- débrouillardise
- initiation recherche

Challenge 2016-2017 : voir http://challenge.openbikes.co/

TÉLECHARGER LES DONNÉES DE LA PREMIÈRE PARTIE
 TÉLECHARGER LES DONNÉES DE LA SECONDE PARTIE

Classement pour la première partie

 Classement	₩ Equipe	75 Parcours/Ecole	@ Score	△ Soumission(s)	⊞ Demière soumission
1	Dream Team	ISAE - SUPAERO	2.79442	49	2017/01/12
2	Mr Nobody	Université de Bordeaux	3.49000	14	2017/01/11
3	Oh l'équipe	Université de Bordeaux	3.49000	45	2017/01/11
4	PrédiX	Ecole Polytechnique	3.54023	47	2017/01/07
5	Louison Bobet	Toulouse School of Economics	3.61000	61	2017/01/11
6	Armstrong	INSA	3.62000	35	2017/01/09
7	OpenBikes	Université Paul Sabatier	3.62931	7	2016/12/28
8	Ravenclaw	Université de Bordeaux	3.67000	64	2017/01/11
9	LA ROUE ARRIÈRE	Université Paul Sabatier	3.67926	6	2016/12/06
10	WeLoveTheHail	INSA	3.70333	5	2017/01/11
11	GMMerclox	INSA	3.72667	20	2017/01/11
12	TEAM_SKY	Université de Bordeaux	3.73333	17	2017/01/12
13	zoomzoom	Université de Bordeaux	3.73333	21	2017/01/12
14	KAMEHAMEHA	Université de Bordeaux	3.73333	21	2017/01/12