GdT Pes de décisoin Eequentelle
$07 / 22 / 2013$ associé à l'action qu'or a shoivie.
Ds un premier tamps, on no relacher eette hyptheie en suffosent qu'bu a sces à toun les zoins" qu'or aunait fu encouir ssi on avait pacédé differemment ("information porfite")".
I/ Appentinage réquentiel robuste : combinaisor d'actions en information paffite

1) Formubtion du problène

A choque bur $t \in \mathbb{N}^{*}$, le ittisticion choisit une action $I_{t} \in\{1, \ldots, K\}$ selon le potocole uninant.
Fen de fídiction: à choque bur $t \in \mathbb{N}^{*}$,

1) EL statiticier sharit $p_{R} \in \triangle(K)=\mathcal{M}_{(}^{+}(\{1, \cdots, K\})$, en forction des

2) Simultorément:

- Ze stotisticier tive $I_{t} \sim P_{t}$ (conditionnellement au posse)
- G'emoiromement cairit $\underline{l}_{t}=\left(\ell_{i, t}\right)_{1 \leqslant i \leqslant K} \in[0, M]^{K}$ en farctior des domines dispribles $\left(I_{0}, p_{0}\right), s=1, \ldots, t-1$ et même $p_{t}\left(\right.$ mis pos $\left.I_{t}\right)$.

3) Lée stbtiticion encout $l_{\text {a }}$ parte $l_{I_{t}, t}$ et obsevve le vectem l_{t};

Gbjectif de prediction: minimiser le "reget"

$$
R_{T}=\sum_{t=1}^{T} l_{F_{t}, t}-\min _{1 \leq i \leq K} \sum_{t=1}^{T} l_{i, t}
$$

Plus précirément, on cherche des statégies/politiques ($=$ chioid séquentill des $\left.p_{t}\right)$ qui anurent que $\left\{\mathbb{E}\left[R_{T}\right] \leqslant \alpha(T) \quad\right.$ (ex: $\left.: \mathbb{E}\left[R_{T}\right] \leqslant \square \sqrt{T \ln K}\right)$

2) Ľe prédictern por pondéation exprentielle

Dappel: pur esperer vérifier $\mathbb{E}\left[R_{T}\right] \leqslant 0(T)$, il fut comoexifier! Afutement dit: $p_{t}=$ divac est proserit.

Algoittime: EWA (η) ["Eaprentially Weighted Average"]

- Pasamétre: $\eta>0$
- At-hoque date $t \in \mathbb{N}^{*}$,

$$
P_{i, k}=\frac{\exp \left(-\eta \sum_{D=1}^{K-1} l_{i, s}\right)}{\sum_{j=1}^{K} \exp \left(-\eta \sum_{i=1}^{k-1} l_{j, 0}\right)}, 1 \leqslant i \leqslant K .
$$

chem: $p_{1}=\left(\frac{1}{K}, \cdots, \frac{1}{K}\right)$
theg me dépend que des putes pasiés $l_{\Delta}, s=1, \ldots, t-1$.
η à caliber
Propsition 1: borme de regret de EWA(η)
Supposons que les putes $l_{i, t}$ sunt à soleurs $[0, M]$.
Abas, p.s.,

$$
\begin{aligned}
& \sum_{t=1}^{T} \sum_{i=1}^{K} p_{i, t} l_{i, t}-\min _{1 \leq i \leq K} \sum_{t=1}^{T} l_{i, t} \leqslant \frac{\ln K}{\eta}+\frac{\eta T M^{2}}{8} \\
& \leqslant \sqrt{\frac{T}{2} \ln K} \text { pur le elicix } \\
& \text { de } \eta=\frac{1}{M} \sqrt{\frac{8 \ln K}{T}}
\end{aligned}
$$

Peuve: on motera $p_{t} \cdot l_{t}=\sum_{i=1}^{K} p_{i, t} l_{i, t}$
som tact $t \in\{1, \ldots, T\}$, sin:

$$
\begin{aligned}
& p_{t} \cdot I_{t}=-\frac{1}{\eta} \ln \left(\sum_{i=1}^{K} p_{i, t} e^{-\eta l_{i, t}}\right)+\underbrace{\frac{1}{\eta} \ln \left(\sum_{i=1}^{K} p_{i, t} e^{-\eta\left(l_{i, t}-p_{t}-l_{t}\right)}\right)}
\end{aligned}
$$

En somment sun $t=1, \ldots, T$ et en poant $W_{t}=\frac{1}{K} \sum_{i=1}^{K} \exp \left(-\eta \sum_{i=1}^{t-1} l_{i, s}\right)$ il vient:

$$
\left(W_{1}=1\right)
$$

$$
\begin{aligned}
\sum_{t=1}^{T} P_{t} \cdot l_{t} & \leqslant-\frac{1}{\eta} \sum_{t=1}^{T} \ln \left(\frac{W_{t+1}}{W_{t}}\right)+\frac{\eta T M^{2}}{8} \\
& =-\frac{1}{\eta} \ln \frac{W_{T+1}}{W_{1}}+\frac{\eta T M^{2}}{8} \\
& =-\frac{1}{\eta} \ln \left(\frac{1}{K} \sum_{i=1}^{K} \exp \left(-\eta \sum_{t=1}^{T} l_{i, k}\right)\right)+\frac{\eta^{T M^{2}}}{8}
\end{aligned}
$$

Ybapel Thaffaing:
Joit Z une v.a.centíé t.q. $a \leqslant z \leqslant b$ p.s.
Abso: $\forall \lambda \in \mathbb{R}, \ln \mathbb{E}\left[e^{\lambda z}\right] \leqslant \frac{\lambda^{2}}{2} \frac{(b-a)^{2}}{4}$.

Conséquences de la poposition:

- Majpatior du regret en esperance: comme

$$
\text { d'sic } \mathbb{E}\left[R_{T}\right] \leqslant \sqrt{\frac{T}{2} \ln K}=o(T) \text {. }
$$

$$
\begin{aligned}
& \mathbb{E}\left[l_{I_{t}, t}\right]=\mathbb{E}\left[\mathbb { E } \left[l_{s_{t}, t} \mid \Psi\right.\right. \\
&=\left.\mathbb{E}\left[P_{t-1}\right]\right] \\
&\left.P_{t} l_{t}\right] \\
& \text { engendure } \\
& \text { por }\left(\frac{I}{1}+\cdots, \frac{T}{t-1}\right)
\end{aligned}
$$

- Majoratiar p.s. En pernant $\delta_{T}=\frac{6 / \pi^{2}}{T^{2}}$ et en appliquent Bosel-6antelli, il oient:
p.S., pur T suffiammant grond, $R_{T} \leqslant \sqrt{\frac{T}{2} \ln K}+M \sqrt{\frac{T}{2} \ln \frac{\pi^{2} R^{2}}{6}}$ dbü p.s. $\overline{\lim }_{T \rightarrow+\infty} \frac{R_{T}}{T} \leqslant 0$.
N.B. Gn put five mienc:

$$
\sqrt{T \operatorname{len} \ln T}(y \text {-itecé })
$$

- Inúdiction avec avis d'experto et ferte comverse Si $l_{i, t}=l\left(a_{i, t}, y_{t}\right)$ avec $l(\cdot, y)$ comexce $\forall y \in y$., dons

$$
\sum_{t=1}^{T} e\left(\sum_{i=1}^{K} P_{i, t} a_{i, t 1} g_{t}\right) \leqslant \sum_{t=1}^{T} p_{t} \cdot l_{t} \leqslant \min _{1 \leq i \leq k} \sum_{k=1}^{T} e_{i t t}+\sqrt{\frac{T}{2} \ln k} \text { p.s. }
$$

aute nogen de somecrifier!
(flus bevion de sandoriser)
3) Galibation réquentielle du poramète de tempéalume

Pb: le cliax de $\eta=\frac{1}{M} \sqrt{\frac{P \operatorname{sen} K}{T}}$ dépend de T (et de M). Gn va chisir η_{E} (éventieltement en fonctor des domnéss sbrewées).

$$
\begin{aligned}
& \leqslant-\frac{1}{\eta} \ln \left(\max _{1 k_{i} \leq K} \operatorname{eap}\left(-\eta \sum_{t=1}^{T} e_{i, t}\right)\right)+\frac{\ln K}{\eta}+\frac{\eta^{T M^{2}}}{8} \\
& =\min _{1 \leqslant i \leqslant K} \sum_{k=1}^{T} l_{i, t}+\frac{\ln K}{\eta}+\frac{\eta^{T M^{2}}}{8} \\
& \text { if explistion bayéneime + fommle } \\
& \text { de dualite su la orulloock } \\
& \text { pur dovantóge dientiution. }
\end{aligned}
$$

teg: $P_{i, t}=\frac{\exp \left(-\eta_{t} \sum_{\Delta=1}^{k-1} l_{i, s}\right)}{\sum_{j=1}^{K} \exp \left(-\sum_{t=1}^{t-1} e_{j, s}\right)}, 1 \leqslant i \leqslant K$.
Moppoition 2.: P.S., ì la siute $\left(\eta_{t}\right)_{k \geqslant 1}$ est décainante, dbrs:

$$
\sum_{t=1}^{T} p_{t} \cdot l_{t}-\min _{1 \leqslant i \leqslant K} \sum_{t=1}^{T} l_{i, t} \leqslant \frac{\ln K}{\eta_{T+1}}+\sum_{i=1}^{T} \frac{1}{\eta_{t}} \ln \left(\sum_{i=1}^{K} p_{i, t} e^{-\eta_{t}\left(l_{i, t}-p_{t} \cdot l_{t}\right)}\right)
$$

Perve: adoptotion de le peuve \rightarrow

$$
\begin{aligned}
& p_{t} \cdot l_{t} \stackrel{\text { df } p_{t}}{=}-\frac{1}{\eta_{t}} \ln \left(\frac{\sum_{i=1}^{K} \exp \left(-\eta_{t} \sum_{0=1}^{k} l_{i, 0}\right)}{\sum_{i=1}^{K} \exp \left(-\eta_{t} \sum_{0=1}^{k=1} l_{i, 0}\right)}\right)+\delta_{t} \\
& =-\frac{1}{\eta_{t}} \ln \left(\frac{W_{t+1}^{\prime}}{W_{t}}\right)+\delta_{t} \text { où } W_{t+1}^{\prime}=\frac{1}{k} \sum_{i=1}^{K} \operatorname{eop}\left(-\eta_{t} \sum_{i=1}^{k} e_{i, 0}\right) \\
& =\frac{\ln W_{t}}{\eta_{t}}-\frac{\ln W_{t+1}}{\eta_{t+1}}+(\underbrace{\frac{\ln W_{t+1}}{\eta_{t+1}}-\frac{\ln W_{t+1}^{\prime}}{\eta_{t}}}) \\
& \text { our }^{\uparrow} \text { lim de } \eta_{t+1} \\
& \leqslant 0 \text { d'apos Jemear et or } \eta_{t+1} \leqslant \eta_{t}
\end{aligned}
$$

En samment $\operatorname{sur} t=1, \ldots, T$, il sient :

$$
\begin{aligned}
\sum_{t=1}^{T} p_{t} \cdot l_{t} & \leqslant-\frac{1}{\eta_{T+1}} \ln W_{T+1}+\sum_{t=1}^{T} \delta_{t} \quad\left(\operatorname{ar} \ln W_{1}=\ln 1=0\right) \\
& \leqslant \min _{1 \leq i \leqslant K} \sum_{t=1}^{T} l_{i, t}+\frac{\ln K}{\eta_{T+1}}+\sum_{t=1}^{T} \delta_{t}
\end{aligned}
$$

Conséquences:

- $\eta_{t}=\frac{c}{M} \sqrt{\frac{\ln K}{\underline{t}}}$ et majoation Bobefffeng u regret arditiomel $\leqslant \square \sqrt{T \ln K}$
- Arutes choicx plus fins de η_{t}, ef perex Gearibionchi, Manson $\forall T \geqslant 1$ et Volty (2007) pur une boime en variance : segret anditimel $\leqslant a \sqrt{\sum_{k=1}^{T} V_{t} \ln K}$
- Ex de majoation plus fine que Hhoiffoing: majpration de tyje Bemett Bappal: Li Z est une v.a. tq $Z \leqslant b$ p.s. $(b>0)$ et $\mathbb{E}\left[Z^{2}\right]=v$, dlans: $\forall \lambda>0, \ln \mathbb{E}\left[e^{\lambda(2-E z)}\right] \leqslant \frac{v}{b^{2}} \phi(\lambda b)$ ou $\phi(x)=e^{x}-x-1$.

Ge sontỉle sus-foissonien sera utile ensuite. Mentionnons une sonséquence: Ii $Z \leqslant 0$ p.s. et $\mathbb{E}\left[Z^{2}\right]=v$, dow
(*) $\quad \forall \lambda>0$, $\ln \mathbb{E}\left[e^{\lambda(z-\mathbb{E} z)}\right] \leqslant \frac{\lambda^{2} v}{2} \quad($ parge ì la limite $b \rightarrow 0)$.
Typliction: majation de δ_{t} de tyje Beemett

$$
\begin{aligned}
& \delta_{t}=\frac{1}{\eta_{t}} \ln \left(\sum_{i=1}^{K} p_{i, t} e^{-\eta_{t}\left(l_{i, k}-p_{t} \cdot l_{t}\right)}\right)=\frac{1}{\eta_{t}} \ln {\underset{i N p_{t}}{\mathbb{E}}\left[e^{-\eta_{t}\left(l_{i, t}-\frac{\mathbb{T}}{-1} l_{i, t, t}\right)}\right]}_{T} \\
& \underset{\operatorname{arc}}{\operatorname{arcques}\left(\begin{array}{l}
(k) \\
i=l_{i, t} \\
i \sim P_{t}
\end{array}\right.} \leqslant \frac{\eta_{t}}{2} \sum_{i=1}^{K} p_{i, t} l_{i, t}^{2} \quad \text { ar } l_{i, t} \geqslant 0 .
\end{aligned}
$$

II/Infoumation imporfite: les landito antagonistes

1) Fumubtion du problème

1 Dónavant, le statisticion n'obsevve plus $l_{i, t}$ pur $i \neq I_{b}$.
Proticole de décesion (bandits entogoinstes à K bas) : purchoque $t \in \mathbb{N}^{*}$,

1) Ze abtitatien ehricit et révile $p_{t} \in \mu_{1}^{+}(\{1, \cdots, K\})$ en fonction deo domies dispribles $\left(l_{I_{,},}, I_{\Delta}\right)_{\Delta \leqslant t-1}$.
2) Timultánément:- Ge stititicien tice $I_{t} \sim P_{t}$ ((-ditiomellement au proéc)

- C'empionnement chictet $l_{t}=\left(l_{i, t}\right)_{1 \leqslant i<k} \in[0, M]^{k}$ en forction des dominees diypmibles $\left(I_{0}, P_{S}\right)_{s \leq t-1}$ et mème $P_{t}\left(\right.$ mais poo $\left.I_{t}\right)$.

3) Ze statuticien encount at obsewve la perte $l_{I_{t}}, t\left(\operatorname{les} l_{j, t}, j \neq I_{t}\right.$, nestent (achés); l'ensisonnement obseve I_{t}.
Gejectif: innimiser le regret $R_{T}=\sum_{t=1}^{T} \ell_{x_{t}, t}-\min _{1 \leqslant i \leqslant k} \sum_{t=1}^{T} l_{i ; t}$
Plus fécisément, or cherche des statégies (clixi séquentids des pt) telle que, pur bute sinte de forctois $l_{t}(\cdot)$ (i.e. pur tut edoensive),

- $\mathbb{E}\left[R_{T}\right] \leqslant o(T) \quad$ (on sbtienda $\mathbb{E}\left[R_{T}\right] \leqslant \square \sqrt{T K \ln K}$)
- p.s., $\overline{\lim _{T \rightarrow+\infty}} \frac{R_{T}}{T} \leqslant 0 \quad$ (or obtienda $\overline{\lim _{T \rightarrow+\infty}} \frac{R_{T}}{\sqrt{T \ln \ln T}} \leqslant 0$)

Dans un premier temps, on na s'ítérener à une quantité plus foible:

$$
\mathbb{E}\left[\sum_{t=1}^{T} l_{I_{0, t}}\right]-\min _{i \leqslant i \leq K} \mathbb{E}\left[\sum_{t=1}^{T} l_{i, t}\right] \leftarrow \text { le "psendo-reget". }
$$

