SNECMA

Health Monitoring Algorithms

Jérôme Lacaille Expert Emérite Safran

SNECMA jerome.lacaille@shecma.fr +33 1 60 59 70 24

6

A SAFRAN Company

1 / SNECMA / R&T / INTEGRATION / ALGORITHMS

This document and the information therein are the property of Snecma, They must not be copied or communicated to a third party without the prior written authorization of Snecma.

b

PROPULSION: FROM 9 GRAMS TO 135 TONS OF THRUST

2 / SNECMA / R&T / INTEGRATION / ALGORITHMS

This document and the information therein are the property of Snecma, They must not be copied or communicated to a third party without the prior written authorization of Snecma.

SAFRAN Snecma

CFM INTERNATIONAL

Snecma

Design, development, production, sale and support of commercial aircraft engines in the 18,000 to 50,000 lb thrust range

CFM56, the world's best selling commercial engine

CFM56-5B

Over 95 million flight-hours to date* 5,500* engines in service with 130 operators Thrust range: 21,600 to 32,000 lb Applications: Airbus A318, A319, A320, A321

* As of December 31, 2012

CFM56-7B

More than 176 million flight-hours to date* 9,180* engines in service with 190 operators Thrust range: 19,500 to 27,300 lb Applications: Boeing 737-600, 737-700, 737-800, 737-900

A320

* As of December 31, 2012

CFM is an equally-owned subsidiary of Snecma (Safran group, France) and GE (United States).

4 / SNECMA / R&T / INTEGRATION / ALGORITHMS

LEAP, CFM'S NEW-GENERATION ENGINE

Featuring innovative technologies that have been proven effective (new materials, 3D aero, etc.), the LEAP engine combines performance, reliability, environmental-friendliness and reduced operating costs.

Fuel consumption and CO_2 emissions: 15% lower than CFM56 TI engines

NOx: 50% margin versus the CAEP/6 standard

Noise: Compliant with anticipated Chapter 5 regulations

Same reliability as CFM56 with equivalent maintenance costs

More than 4,350 orders and commitments as of December 2012

Thrust range: 20,000 to 33,000 lb

Boeing 737 MAX

Selected to power the Airbus A320neo, Boeing 737 MAX and Comac C919 Service entry in 2016

CFM is an equally-owned subsidiary of Snecma (Safran group, France) and GE (United States).

POWERJET

SaM146 engine design, production, sale and support

Snecma is responsible for propulsion system integration and flight tests

SATURN

Fan

Low-pressure compressor Low-pressure turbine

NPO Saturn is responsible for final engine assembly and ground tests

PowerJet is an equally-owned subsidiary of Snecma (Safran), France and NPO Saturn, Russia

SaM146 1S18

EASA certification: January 17th, 2012 Thrust range: 16,100 to 17,800 lb Applications: SSJ100-95LR, SBJ (EASA certified on February 3th, 2012)

SILVERCREST, THE NEW-GENERATION BUSINESS JET ENGINE

SILVERCREST

Designed to power super mid-size and large business jets

Innovative solutions to simplify engine architecture and reduce the parts count, for significant benefits:

Specific fuel consumption 15% lower than current engines

50% reduction in NOx (nitrogen oxides) in compliance with CAEP/6

Noise: Up to 20 EPNdb margin vs. Stage 4 requirements

Thrust range: 9,500 to 12,000 lb

Selected to power the Cessna Citation Longitude Service entry in 2017

7 / SNECMA / R&T / INTEGRATION / ALGORITHMS

COMBAT AIRCRAFT ENGINES

M88

Over 310 engines in service Over 230,000 flight-hours Thrust: 75 kN Applications: Dassault Rafale air force (C/B) and naval (M) versions

* As of December 31 2012

M53

Over 580 engines produced for 9 air forces Nearly 1.8 million flight-hours Thrust: 95 kN Applications: Dassault Mirage 2000 C/B, Mirage 2000 N/B Mirage 2000-5/-9

Rafale

* As of December 31 2012

8 / SNECMA / R&T / INTEGRATION / ALGORITHMS

TP400, A European engine for the A400M

European consortium grouping ITP (Spain), MTU Aero Engines

SAFRA

Snecma

(Germany), Rolls-Royce (UK) and Snecma Safran (France). Europrop International is responsible for engine integration

and program management

9 / SNECMA / R&T / INTEGRATION / ALGORITHMS

Europrop International

Liquid Propulsion for Launchers

Over 60 years of experience in liquid rocket propulsion, including 30 years on the Ariane 1 to 5 launchers

More than 1,200 engines launched.

European cryogenic propulsion prime contractor: Vulcain®2 and HM7B[™] for Ariane 5, the world's leading commercial launch vehicle.

Prime contractor for development of the propulsion system on a new restartable upper stage for Ariane 5, powered by the new Vinci engine.

Snecma

SNECMA MRO: COMMERCIAL ENGINES

<u>3 Support services</u> spanning the entire life cycle

- Engine life operating support
- In-shop engine maintenance
- Component repair

8 engine overhaul centers 12 parts repair centers of excellence

Global market positions

- No. 2 worldwide for shop visits - CFM56
- GE90 No. 1 worldwide for high-pressure and low-pressure compressors
- GP7200 No. 1 shop to provide HPC servicing

More than 24,00 engines & subassemblies repaired to date

Engine

Prognostic & Health Monitoring

12 / SNECMA / R&T / INTEGRATION / ALGORITHMS

This document and the information therein are the property of Snecma, They must not be copied or communicated to a third party without the prior written authorization of Snecma.

6

Safran Aircraft Systems

13 / SNECMA / R&T / INTEGRATION / ALGORITHMS

On Board Sensors

HP shaft 2 bearings (15000 to 22000 rpm)

Around 20 disks with 20 to 80 blades each

SAFRA

Snecma

LP shaft 3 bearings (5000 to 8000 rpm)

accelerometers, tachometers, pressures, temperatures, flows ...

Condition Monitoring Process

→ On board

- Monitoring function located in the engine control system
- Data transfer using aircraft system (ACMS)

Transfer to the ground

- 3 possibilities (depending on the application)
 - During the flight (ACARS or SATCOM)
 - End of the flight (GSM or WiFi or manual)
 - Scheduled time

→ On ground

- Ground Monitoring System (GMS) with Web portal
- Client Support Center (CSC)

Storyboard of Damage Repair

Snecma

Methodology and Algorithms

17 / SNECMA / R&T / INTEGRATION / ALGORITHMS

This document and the information therein are the property of Snecma, They must not be copied or communicated to a third party without the prior written authorization of Snecma.

h

Ground Based Monitoring System

R&T Algorithms Deployment

Snecma

Diagnostic Algorithm

Once endogenous and exogenous sets of inputs defined

- The diagnostic is the computation of a likelihood according to a conditional data model
- The quality of the model depends on the calibration dataset
 - A robustness (capacity of generalization) may be computed by cross validation

SAFRA

Snecma

Prognostic Algorithm

The prognostic is the result of

- A detection
 - High risk and good quality
- A confirmation of the detection
 - Successive detections
- An anticipation
 - By estimation of the increasing rate of scores

The confirmation methodology helps adjust PFA (false alarm rate) and POD (probability of detection) performance indicators according to the specs.

Snecma

21 / SNECMA / R&T / INTEGRATION / ALGORITHMS

Risk and Reliability

Each diagnostic algorithm produces three outputs

- The risk
 - Is the probability to be unusual
- The precision
 - The variance of the risk (reliability information)
- The adequacy

- The probability that the computation is done in a context that corresponds to the calibration dataset
- The robustness
 - Is the generalization error computed by cross-validation

$$\begin{cases} \operatorname{Risk}(t) &= 1 - \operatorname{P}(X = x_t | U \approx u_t) \\ \operatorname{Precision}(t) &= \operatorname{tr}[\operatorname{var}(X | U \approx u_t)] \\ \operatorname{Adequacy}(t) &= \operatorname{P}(U \approx u_t) \end{cases} \begin{cases} U \text{ is the exogenous data} \\ X \text{ is the endogenous data} \\ (u_t, x_t) \text{ is the current observation} \end{cases}$$

Mathematic Methods

Identification & selection of important parameters

- Vibration (HF) analysis, features extraction
- Variable selection, mutual information,

Learning of normal behavior

Likelihood scores, extreme values, statistic tests

Abnormality signature classification

- Auto-organizing maps, outliers detection
- Auto adaptive classification

Trends detection and failure anticipation

Regressions, filters (*KF), importance sampling (PF)

Reliability management and diagnosis fusion

Bayesian models, statistics, logical inference (Fuzzy)

Bearing Monitoring Process Overview

Snecma

Bench Test Anomaly Detections

Snecma

Fleet Mapping

- → Using a fleet of engines and a historic database, the state of each engine is compressed in a 2D space that conserve distance order.
 - Each engine trajectory may be drawn on the map.
- → Trajectories comparisons allow the computation of statistics.

SAFRAN

Snecma

26 / SNECMA / R&T / INTEGRATION / ALGORITHMS

Engine to analyze

Control Loop Monitoring

The VSV (Variable Stator Vanes) is operated by

- two mechanically linked actuators
- two LVDT (Linear Variable Differential Transformer) position sensors
- a servovalve that transforms the electronic command into hydraulic power by means of fuel flow

Engine

Engine environment

Thank you ...

28 / SNECMA / R&T / INTEGRATION / ALGORITHMS

This document and the information therein are the property of Snecma, They must not be copied or communicated to a third party without the prior written authorization of Snecma.

b