Sequential Kernel Herding:
Frank-Wolfe Optimization for
Particle Filtering

Simon Lacoste-Julien Fredrik Lindsten Francis Bach
INRIA / ENS, France University of Cambridge, UK INRIA / ENS, France

SIERRA Project Team Department of Engineering SIERRA Project Team

ol e UNIVERSITY OF VZ

T \%\ ’—‘E e ;
B CAMBRIDGE {2757 o 2
J ECOLE N R

Journée MAS 2014 — Session statistique et optimisation
August 27t 2014

Summary in one slide

= Recent work [Bach et al. ICML 12] showed how Frank-
Wolfe optimization could obtain adaptive guadrature
rules with potentially better rates than Monte-Carlo (MC)
or quasi-Monte-Carlo (QMC) integration

= Here we replace the random sampling phase in a particle
filter with Frank-Wolfe optimization to get better
locations of particles to approximate the distribution (a
mixture of Gaussians)

= Our preliminary empirical study indicates that we can
obtain improvements over MC or QMC in term of number
of particles

Part |: Adaptive quadrature rule with
Frank-Wolfe optimization

. . 1 Y -
= Approximating integrals: /X f@p(@)de = — 37 f(@)
i=1
for fixed p, and multiple f's in a RKHS H

= Random sampling z(® ~ p(z) yields O(1/V'N) error
= Kernel herding [Chen et al. 10] (can) yield O(1/N) error!
(need finite dim. 7—[)/ (like quasi-MC)

= -> generalized to FW optimization [Bach et al. 12] and
could even get O(e~ ") error

= Trick: run Frank-Wolfe optimization on dummy objective:
where M = cl-conv (P(X))
IS the marginal polytope

and u(p) = Ep(w)CD(:c) is the mean map
—— representer: k(x,-) € H

1 ,
min =g —
g€M2||9 pn(p) 3

Approx. integrals in RKHS

= Why? Well, controlling moment discrepancy ||x(p) — u(p) |y
is enough to control error of integrals in RKHS H :

= Reproducing property: f € H = f(z) = (f, P(z))

= Define mean map : 1(p) = B, P (x)

= Want to approximate integrals of the form:
Ep(:c)f(x) — Ep(a:)<f7 CD(ZU» — <f7 ,LL(p)> .

= Use weighted sum to get approximated mean: ﬁ=; wi 3,0

N

w(B) =By py® (@) = Y. wDa (@) = By, f(z) = ﬁl w® f(a®)

i=1 i=

= Approximation error is then bounded by:
Ep (o) f(2) — E505) f(@)| < [flln lln(p) — 1(P)]l#

Frank-Wolfe algorithm rank, woite 1956

(aka conditional gradient)

= alg. for constrained opt.: min f(a)

where:
f convex & cts. differentiable

M convex & compact

= FW algorithm — repeat:

1) Find good feasible direction by
minimizing linearization off :

S € arg min (s, Vf(a
k+1 € arg min (s, V(o))

= Properties: O(1/N) rate
= Sparse iterates
= get duality gap g(«) for free

2) Take convex step in direction: = affine invariant
= rate holds even if linear
apt1 = (1 —) o + Vg Sg41 subproblem solved

approximately

FW quadrature

repeat: Input: p - .
e.g. minimum of a difference of
1) FW search: mixture of Gaussian bumps!
L~
2P T = arg min gy (2) — u(p)(e) <
- N
2) convex combo: at eg?vd': Y w® o (z()
= (1 —) g + 7 P(=FTD) i=1
9k+1 V&) 9k T Vk
s Theoretical rates for |[#(P) — p(p)llx
.. dim(H) :fini infini
« variations: 1 im(H) : finite infinite
= kernel herding: 7 = 73 O(1/N) O(1/VN)
= line-search FW O(e=<V) O(1/v/N)
= fully-corrective FW (FCFW) O(e~) O(1/VN)

Fitting a mixture of Gaussian

10

d=2 K=5 o°=1 | h
. |
[N ;
thJ =106 -'5 0 5
2 ~§:78
=10 1—uc -0.95
—QMC ,
Fw ~1.67
_,||—FCFW
10 10 10 10

Number of particles

MMD Err

d=2, K=100, o°=1 d=2, K=100, o°=1

-
0 \\\ ©
£
-
S
-1 | 5
663 @ =2
B — MC ' é
—QMC ~0.95 .
—FW L
,|—FCFwW \ -1.47 _,/|—FCFwW
0 1 2 3 0 1 2
10 10 10 10 10 10 10 10
Number of particles Number of particles
. d=5 K=5 o°=1
higher d: 3 ,,-
=]
= | —MC .68 |
—QMC ~0.65
—FW _
_,||—FCFW
10 0 : I“““J1 | ‘”“”l2 ‘ 3
10 10 10 10

Number of particles

Part 11: Particle filtering

T

= HMM / state-space model: p(z1:my1:7) =]] p(yt|=t)
t=1

= goal: approximate filtering distribution P(z1:t/y1:¢)
with weighted set of N ‘particles’ {z{¥), w(P}Y ;:

Lq-4 Wy
E.g. a mixture of
Gaussians!

1) Sample new particles from: @+1(z1:(141)) = qt(x1:¢)

N \
S_Z)(t_|_1) ~ Qt-|-1 — Z 2 5(37]_) xl:t)

N
p(r1aly1e) = a(er) = Y w? 8(xi), 1)
1=1
= One view of PF algorithm:

Propagate approximation forward in time by:

2) Reweight particles according to observation: _ _
o) New weighted set gives:

Wy q OCp(yt+1|xt_|_1) Qt—|—1(w12(t—|-1))

Sequential Kernel Herding

= Main idea: replace the random sampling step
to approximate a+1 with FW-guadrature

= (aside: if use quasi-random sampling from g¢;41 Instead,
we get the previously proposed QMC particle filters)
[Philomin et al. ECCV 00, Ormoneit et al. UAI 01]
50

1) {5131 (t4+1)7 t-|_1}z—1 obtained from FW-quadrature on @+1(Z1:(¢4+1))

2) wt—l—l x wt+1p(yt+1|$t+1) = qt(T1:¢)

= Modular algorithm! Can add Fw-quadrature anywhere need
to get particles to approximate distribution

= Conditions to run:
= need to be able to compute expectation of kernel with 9t+1
= need to be able to (approx.) optimize this function

= In our experiments: 9:t+1 is a mixture of Gaussians; we use
Gaussian kernel; optimize non-convex problem using
exhaustive search over random sample from ¢¢41

Convergence result

= current result (roughly):
= assume that: Hi=H VWt
ft(zegq1,7) = p(yt|) €H Vrpq

and regularity condition on norm of f;

= then:
for fixed t, MMD error on predictive p(z;41|y1:¢) is O(e)

where € is bound on FW MMD error at each ¢

= so inif 7 is finite dimensional:
= can get provably faster rates than PF (for integrals of members of H)
= compare with 0(\/—%) for sequential QMC in [Garber & Chopin 14]

Synthetic experiments

= Evaluated in simulation study on different models:

« Linear Gaussian models (orders d=3 and d=15)

= Jump Markov linear model
P(r: = llre—1 = k)~Ily,
x¢ = A(1e)xp—q + V¢
Ve = C(rp)x: + e

= Nonlinear time series model

25x¢_
Xy = %Xr_’] + f;tz ! 8c05(1.2(t — 1)) + v,

-1

Ve = z—i,xtg + e
= T=100 time steps for all models
= 02€ {0.01,0.1,1} (variance of Gaussian kernel)

= FW quadrature points for mixture of Gaussians
chosen by optimizing through 50k random samples

Results: Linear Gaussian system

d=3

RMSE, LGSS, MMD RMS, LGSS, d=3
10° — d=3 | |
-0.46
=TT -0.55 =TT
——FW (02 = 1) ~0.56 101 o FW (02 =1))
107 -8=FCFW (02 = 1) | —8=FCFW (02 = 1) 0.54
« min/max -0.60 * min/max | -0.64
20 50 100 200 20 50 100 200
Number of particles Number of particles
RMSE, LGSS, d =15 - MMD RMS, LGSS, d =15
, | d=15 | | |
"X * % *
1072
1 0—0.4
——QMC i ——QMC -0.36
—a— W (0’2 =]) _036 —a—FW (0'2 =]) _
(0 | ~=FCFW (2 = 1) b 107°%!| -8=FCFW (02 = 1) §-0:43
* min/max . * min/max #
20 50 100 200 20 50 100 200

Number of particles

Number of particles

Nonlinear 1d time series results:

RMSE, Nonlinear benchmark

10:"

T |
——PF " ~1.08 :
107" =—QMC H H RMSE, Nonlinear benchmark
| ——FW (62 =0.1)] . : :
| —a=FCFW (02 =0.1) :
'+ min/max N
20 50 100 200 10° |

Number of particles

[—e=PF
——QMC
—+—FW (0% =0.01)
- FCFW (02 = 0.01) -2.52
|| * min/max
10 - ’ ' ‘ .
20 50 100 200

Number of particles

Robot localization experiment

P

= The UAV is tracked using IMU
and visual odometry

= High-dimensional vehicle state:
= pose, velocities, accelerations
= Sensor biases
= landmark positions Yamaha RMAX UAV

= Four filters: ——
= PF, QMC, FW-SKH, FCFW-SKH
= all Rao-Blackwellized
[particles on 7d state:
3d space + guaternion rotation]

= Compare position errors relative
to a reference trajectory (mean
of 10 PF with N = 100k)

Position error (m)

Robot localization results

10

N =100

—o— |
—u—]é]K{C |
——FW (o2 =0.1)

gl 8- FCFW (02 =0.1)
PF N =10k
—o—PF N =100k

Time (s)

)

Position error (m

25

N
o

—
w

—
(=]

[9;]

o

error last time step

—Hic

—FW (62 =0.1)

—FCFW (62 =0.1) ||
PF N = 10k

——PF N = 100k
¢+ min/max

50 100 200

Number of particles

Conclusion

= Tools from optimization to help deterministic sampling!

= With FW-quadrature, getting each particle is more costly,
but empirically, we need less particles to get a good error

= -> this could be useful when evaluating p(yt+1|wt(21) IS very
expensive (e.g. in robot localization problem)

= [e.g. 0.2 s for N=50 PF; overhead of 0.1 s for N=50 FW]

s Current work:
= refine convergence theory

= results somewhat sensitive to kernel bandwidth parameter -> find
ways to adaptively choose it

= understand better relationship between kernel and error
propagation for class of functions
= (e.g. introduce a kernel on past histories as well — changing Hi¢)

Thank you! Any question?

Jump Markov Gaussian linear

model results:

RMSE computed on mean
predicted position vs. good

approximation from Rao-
Blackwellized Discrete PF

with 10k particles

d=2, 3 modes, 02 =1

RMSE, JMLS

10 | :
T _
| e *
I T
T :
T ' §
= : : ! +0.49
) L. | +0.46
I 2l |
11 ll 0.21
- 8-0.32
101 2 OMC - -
——FW (6% =1)
—-=FCFW (62 =1)
min/max : N
T * . M. e
20 50 100

Number of particles

Nonlinear 1d time series results:

RMSE, Nonlinear benchmark

——FW (62 =0.1)
- FCFW (02 = 0.1)

min/max
I

20 50 100
Number of particles

200

RMSE., Nonlinear benchmark

- L -
*

10° -
107

——PF

——QMC

——FW (0% = 0.01)

- FCFW (02 = 0.01)

|| * min/max

107" ‘

20 50 100
Number of particles

	Sequential Kernel Herding: Frank-Wolfe Optimization for Particle Filtering
	Summary in one slide
	Part I: Adaptive quadrature rule with Frank-Wolfe optimization
	Approx. integrals in RKHS
	Slide Number 5
	FW quadrature
	Fitting a mixture of Gaussian
	Slide Number 8
	Part II: Particle filtering
	Sequential Kernel Herding
	Convergence result
	Synthetic experiments
	Results: Linear Gaussian system
	Slide Number 14
	Robot localization experiment
	Robot localization results
	Conclusion
	Thank you! Any question?
	Slide Number 19

