
Sequential Kernel Herding:
Frank-Wolfe Optimization for

Particle Filtering
Simon Lacoste-Julien

INRIA / ENS, France
SIERRA Project Team

Journée MAS 2014 – Session statistique et optimisation
August 27th 2014

Fredrik Lindsten
University of Cambridge, UK
Department of Engineering

Francis Bach
INRIA / ENS, France
SIERRA Project Team

Summary in one slide

 Recent work [Bach et al. ICML 12] showed how Frank-
Wolfe optimization could obtain adaptive quadrature
rules with potentially better rates than Monte-Carlo (MC)
or quasi-Monte-Carlo (QMC) integration

 Here we replace the random sampling phase in a particle
filter with Frank-Wolfe optimization to get better
locations of particles to approximate the distribution (a
mixture of Gaussians)

 Our preliminary empirical study indicates that we can
obtain improvements over MC or QMC in term of number
of particles

Part I: Adaptive quadrature rule with
Frank-Wolfe optimization

 Approximating integrals:

 Random sampling yields error
 Kernel herding [Chen et al. 10] (can) yield error!

 (like quasi-MC)

 -> generalized to FW optimization [Bach et al. 12] and
could even get error

 Trick: run Frank-Wolfe optimization on dummy objective:

Z

X
f(x)p(x)dx ¼

1

N

NX

i=1

f(x(i))

x(i) » p(x) O(1=
p
N)

O(1=N)

for ¯xed p, and multiple f 's in a RKHS H

O(e¡cN)

(need ¯nite dim. H)

min
g2M

1

2
kg ¡ ¹(p)k2H

where M = cl-conv (©(X))

is the marginal polytope

and ¹(p) = Ep(x)©(x) is the mean map
representer: k(x; ¢) 2 H

 Why? Well, controlling moment discrepancy
 is enough to control error of integrals in RKHS :

Approx. integrals in RKHS

 Reproducing property:
 Define mean map :
 Want to approximate integrals of the form:

 Use weighted sum to get approximated mean:

 Approximation error is then bounded by:

f 2 H) f(x) = hf;©(x)i
¹(p) = Ep(x)©(x)

Ep(x)f(x) = Ep(x)hf;©(x)i= hf; ¹(p)i

Ep̂(x)f(x) =
NX

i=1

w(i)f(x(i))

jEp(x)f(x)¡ Ep̂(x)f(x)j · kfkH k¹(p)¡ ¹(p̂)kH

H
k¹(p̂)¡ ¹(p)kH

¹(p̂) = Ep̂(x)©(x) =
NX

i=1

w(i)©(x(i)))

p̂ =
NX

i=1

w
(i)
t ±

x(i)

 FW algorithm – repeat:

f convex & cts. differentiable

M convex & compact

 alg. for constrained opt.:

(aka conditional gradient)

where:

1) Find good feasible direction by
 minimizing linearization of : f

2) Take convex step in direction:

®k+1 = (1¡ °k)®k + °k sk+1

Frank-Wolfe algorithm [Frank, Wolfe 1956]

 Properties: O(1/N) rate
 sparse iterates
 get duality gap for free
 affine invariant
 rate holds even if linear

subproblem solved
approximately

min
®2M

f(®)

FW quadrature

1) FW search:

2) convex combo:

 variations:

 kernel herding:

 line-search FW

 fully-corrective FW (FCFW)

x(k+1) = argmin
x2X

gk(x)¡ ¹(p)(x)

gk+1 = (1¡ °k) gk + °k©(x(k+1))

e.g. minimum of a difference of
mixture of Gaussian bumps!

°k =
1

k +1 O(1=N)

 Theoretical rates for k¹(p̂)¡ ¹(p)kH

O(e¡cN)

O(e¡cN)

O(1=
p
N)

O(1=
p
N)

O(1=
p
N)

repeat: input: p

at end:
gN =

NX

i=1

w(i)©(x(i))

 finite infinite dim(H) :

Fitting a mixture of Gaussian

higher d:

Part II: Particle filtering
 HMM / state-space model:

p(x1:T ; y1:T) =
TY

t=1

p(xtjxt¡1) p(ytjxt)

 goal: approximate filtering distribution
 with weighted set of N ‘particles’ :

p(x1:tjy1:t)

fx(i)1:t; w
(i)
t gNi=1

p(x1:tjy1:t) ¼ qt(x1:t) :=
NX

i=1

w
(i)
t ±(x

(i)
1:t; x1:t)

 One view of PF algorithm:

Propagate approximation forward in time by:

1) Sample new particles from: ¹qt+1(x1:(t+1)) := p(xt+1jxt)qt(x1:t)

=
NX

i=1

w
(i)
t ±(x

(i)
1:t; x1:t)p(xt+1jx

(i)
t)

2) Reweight particles according to observation:

x
(i)
1:(t+1)

» ¹qt+1

w
(i)
t+1 / p(yt+1jx

(i)
t+1) qt+1(x1:(t+1))

New weighted set gives:

E.g. a mixture of
Gaussians!

 (aside: if use quasi-random sampling from instead,
we get the previously proposed QMC particle filters)

Sequential Kernel Herding
 Main idea: replace the random sampling step

to approximate with FW-quadrature

¹qt+1

¹qt+1

[Philomin et al. ECCV 00, Ormoneit et al. UAI 01]
fx(i)

1:(t+1)
; ¹w

(i)
t+1g

N
i=11) obtained from FW-quadrature on ¹qt+1(x1:(t+1))

2) w
(i)
t+1 / ¹w

(i)
t+1p(yt+1jx

(i)
t+1)

:= p(xt+1jxt)qt(x1:t)

 Modular algorithm! Can add FW-quadrature anywhere need
to get particles to approximate distribution

 Conditions to run:
 need to be able to compute expectation of kernel with
 need to be able to (approx.) optimize this function

 In our experiments: is a mixture of Gaussians; we use
Gaussian kernel; optimize non-convex problem using
exhaustive search over random sample from

¹qt+1

¹qt+1

¹qt+1

Convergence result
 current result (roughly):

 assume that:

 then:

 so in if is finite dimensional:
 can get provably faster rates than PF (for integrals of members of)
 compare with for sequential QMC in [Garber & Chopin 14]

ft(xt+1; ¢) := p(xt+1j¢) p(ytj¢) 2 H 8xt+1

Ht = H 8t

for ¯xed t, MMD error on predictive p(xt+1jy1:t) is O(²)

where ² is bound on FW MMD error at each t

o(1p
N
)

and regularity condition on norm of ft

H
H

Synthetic experiments

 FW quadrature points for mixture of Gaussians
chosen by optimizing through 50k random samples

(variance of Gaussian kernel)

2

Results: Linear Gaussian system

d = 15

d = 3

¾2 = 1

Nonlinear 1d time series results:

Robot localization experiment

 The UAV is tracked using IMU
and visual odometry

 High-dimensional vehicle state:
 pose, velocities, accelerations
 sensor biases
 landmark positions

 Four filters:
 PF, QMC, FW-SKH, FCFW-SKH
 all Rao-Blackwellized
[particles on 7d state:
 3d space + quaternion rotation]

 Compare position errors relative
to a reference trajectory (mean
of 10 PF with N = 100k)

Yamaha RMAX UAV

Robot localization results
error last time step

Conclusion
 Tools from optimization to help deterministic sampling!
 With FW-quadrature, getting each particle is more costly,

but empirically, we need less particles to get a good error
 -> this could be useful when evaluating is very

expensive (e.g. in robot localization problem)
 [e.g. 0.2 s for N=50 PF; overhead of 0.1 s for N=50 FW]

 Current work:
 refine convergence theory
 results somewhat sensitive to kernel bandwidth parameter -> find

ways to adaptively choose it
 understand better relationship between kernel and error

propagation for class of functions
 (e.g. introduce a kernel on past histories as well – changing)

p(yt+1jx
(i)
t+1)

Ht

Thank you! Any question?

Jump Markov Gaussian linear
model results:

 RMSE computed on mean
predicted position vs. good
approximation from Rao-
Blackwellized Discrete PF
with 10k particles

d = 2, 3 modes, ¾2 = 1

Nonlinear 1d time series results:

	Sequential Kernel Herding: Frank-Wolfe Optimization for Particle Filtering
	Summary in one slide
	Part I: Adaptive quadrature rule with Frank-Wolfe optimization
	Approx. integrals in RKHS
	Slide Number 5
	FW quadrature
	Fitting a mixture of Gaussian
	Slide Number 8
	Part II: Particle filtering
	Sequential Kernel Herding
	Convergence result
	Synthetic experiments
	Results: Linear Gaussian system
	Slide Number 14
	Robot localization experiment
	Robot localization results
	Conclusion
	Thank you! Any question?
	Slide Number 19

