Sequential Kernel Herding: Frank-Wolfe Optimization for Particle Filtering

Simon Lacoste-Julien Fredrik Lindsten

INRIA / ENS, France SIERRA Project Team University of Cambridge, UK Department of Engineering Francis Bach INRIA / ENS, France SIERRA Project Team

Journée MAS 2014 – Session statistique et optimisation August 27th 2014

Summary in one slide

- Recent work [Bach et al. ICML 12] showed how Frank-Wolfe optimization could obtain adaptive quadrature rules with potentially better rates than Monte-Carlo (MC) or quasi-Monte-Carlo (QMC) integration
- Here we replace the random sampling phase in a particle filter with Frank-Wolfe optimization to get better locations of particles to approximate the distribution (a mixture of Gaussians)
- Our preliminary empirical study indicates that we can obtain improvements over MC or QMC in term of number of particles

Part I: Adaptive quadrature rule with Frank-Wolfe optimization

• Approximating integrals: $\int_{\mathcal{X}} f(x)p(x)dx \approx \frac{1}{N} \sum_{i=1}^{N} f(x^{(i)})$

for fixed p, and multiple f 's in a RKHS ${\cal H}$

- Random sampling $x^{(i)} \sim p(x)$ yields $O(1/\sqrt{N})$ error
- Kernel herding [Chen et al. 10] (can) yield O(1/N) error! (need finite dim. H) (like quasi-MC)
- -> generalized to FW optimization [Bach et al. 12] and could even get $O(e^{-cN})$ error

• Trick: run Frank-Wolfe optimization on dummy objective: where $\mathcal{M} = \text{cl-conv}(\Phi(\mathcal{X}))$ is the marginal polytope $\min_{g \in \mathcal{M}} \frac{1}{2} ||g - \mu(p)||_{\mathcal{H}}^2$ and $\mu(p) = \mathbb{E}_{p(x)} \Phi(x)$ is the mean map representer: $k(x, \cdot) \in \mathcal{H}$

Approx. integrals in RKHS

- Why? Well, controlling moment discrepancy ||µ(p̂) − µ(p)||_H is enough to control error of integrals in RKHS H :
 - Reproducing property: $f \in \mathcal{H} \Rightarrow f(x) = \langle f, \Phi(x) \rangle$
 - Define *mean map* : $\mu(p) = \mathbb{E}_{p(x)} \Phi(x)$
 - Want to approximate integrals of the form: $\mathbb{E}_{p(x)}f(x) = \mathbb{E}_{p(x)}\langle f, \Phi(x) \rangle = \langle f, \mu(p) \rangle$
- Use weighted sum to get approximated mean: $\hat{p} = \sum_{i=1}^{N} w_t^{(i)} \delta_{x^{(i)}}$ $w(\hat{p}) = \mathbb{E} \longleftrightarrow \Phi(x) = \sum_{i=1}^{N} w_t^{(i)} \Phi(x^{(i)}) \Rightarrow \mathbb{E} \longleftrightarrow f(x) = \sum_{i=1}^{N} w_t^{(i)} f(x^{(i)})$

$$u(p) = \mathbb{E}_{\widehat{p}(x)} \Phi(x) = \sum_{i=1}^{\infty} w^{(i)} \Phi(x^{(i)}) \Rightarrow \mathbb{E}_{\widehat{p}(x)} f(x) = \sum_{i=1}^{\infty} w^{(i)} f(x^{(i)})$$

Approximation error is then bounded by:

$$|\mathbb{E}_{p(x)}f(x) - \mathbb{E}_{\widehat{p}(x)}f(x)| \le ||f||_{\mathcal{H}} ||\mu(p) - \mu(\widehat{p})||_{\mathcal{H}}$$

Frank-Wolfe algorithm [Frank, Wolfe 1956]

(aka conditional gradient)

• alg. for constrained opt.: $\min_{\alpha \in \mathcal{M}} f(\alpha)$ where:

f convex & cts. differentiable

- ${\mathcal M}$ convex & compact
- FW algorithm repeat:
- 1) Find good feasible direction by minimizing linearization of f :

$$s_{k+1} \in rg\min_{s' \in \mathcal{M}} \left\langle s',
abla f(oldsymbol{lpha}_k)
ight
angle$$

2) Take convex step in direction:

$$lpha_{k+1} = \left(1-\gamma_k
ight) lpha_k + \gamma_k \, s_{k+1}$$

- Properties: O(1/N) rate
 - sparse iterates
 - get duality gap $g(\alpha)$ for free
 - affine invariant
 - rate holds even if linear subproblem solved approximately

FW quadrature

Fitting a mixture of Gaussian

Part II: Particle filtering

- HMM / state-space model: $p(x_{1:T}, y_{1:T}) = \prod_{t=1}^{\infty} p(x_t | x_{t-1}) p(y_t | x_t)$
- goal: approximate filtering distribution $p(x_{1:t}|y_{1:t})$ with weighted set of N 'particles' $\{x_{1:t}^{(i)}, w_t^{(i)}\}_{i=1}^N$: $p(x_{1:t}|y_{1:t}) \approx q_t(x_{1:t}) := \sum_{i=1}^N w_t^{(i)} \,\delta(x_{1:t}^{(i)}, x_{1:t})$ E.g. a mixture of
- One view of PF algorithm:

Propagate approximation forward in time by:

1) Sample new particles from: $\bar{q}_{t+1}(x_{1:(t+1)}) := p(x_{t+1}|x_t)q_t(x_{1:t})$

$$x_{1:(t+1)}^{(i)} \sim \bar{q}_{t+1} = \sum_{i=1}^{N} w_t^{(i)} \,\delta(x_{1:t}^{(i)}, x_{1:t}) p(x_{t+1}|x_t^{(i)})$$

T

2) Reweight particles according to observation:

 $w_{t+1}^{(i)} \propto p(y_{t+1}|x_{t+1}^{(i)})$

New weighted set gives: $q_{t+1}(x_{1:(t+1)})$

Gaussians!

Sequential Kernel Herding

- Main idea: replace the random sampling step to approximate \bar{q}_{t+1} with FW-quadrature
 - (aside: if use quasi-random sampling from \bar{q}_{t+1} instead, we get the previously proposed QMC particle filters)

[Philomin et al. ECCV 00, Ormoneit et al. UAI 01]

- 1) $\{x_{1:(t+1)}^{(i)}, \bar{w}_{t+1}^{(i)}\}_{i=1}^{N}$ obtained from FW-quadrature on $\bar{q}_{t+1}(x_{1:(t+1)})$
- 2) $w_{t+1}^{(i)} \propto \bar{w}_{t+1}^{(i)} p(y_{t+1}|x_{t+1}^{(i)})$ $:= p(x_{t+1}|x_t)q_t(x_{1:t})$
- Modular algorithm! Can add FW-quadrature anywhere need to get particles to approximate distribution
- Conditions to run:
 - need to be able to compute expectation of kernel with \overline{q}_{t+1}
 - need to be able to (approx.) optimize this function
- In our experiments: \overline{q}_{t+1} is a mixture of Gaussians; we use Gaussian kernel; optimize non-convex problem using exhaustive search over **random sample** from \overline{q}_{t+1}

Convergence result

- current result (roughly):
 - assume that: $\mathcal{H}_t = \mathcal{H} \quad \forall t$

 $f_t(x_{t+1}, \cdot) := p(x_{t+1}|\cdot) p(y_t|\cdot) \in \mathcal{H} \quad \forall x_{t+1}$

and regularity condition on norm of f_t

then:

for fixed t, MMD error on **predictive** $p(x_{t+1}|y_{1:t})$ is $O(\epsilon)$

where ϵ is bound on FW MMD error at each t

- so in if \mathcal{H} is finite dimensional:
 - can get provably faster rates than PF (for integrals of members of ${\cal H}$)
 - compare with $o(\frac{1}{\sqrt{N}})$ for sequential QMC in [Garber & Chopin 14]

Synthetic experiments

Evaluated in simulation study on different models:

- Linear Gaussian models (orders d=3 and d=15)
- Jump Markov linear model

 $P(r_t = l | r_{t-1} = k) \sim \Pi_{kl}$ $x_t = A(r_t) x_{t-1} + v_t$ $y_t = C(r_t) x_t + e_t$

Nonlinear time series model

$$\begin{aligned} x_t &= \frac{1}{2} x_{t-1} + \frac{25x_{t-1}}{1+x_{t-1}^2} & 8\cos(1.2(t-1)) + v_t \\ y_t &= \frac{1}{20} x_t^2 + e_t \end{aligned}$$

- T=100 time steps for all models
- $\sigma^2 \in \{0.01, 0.1, 1\}$ (variance of Gaussian kernel)
- FW quadrature points for mixture of Gaussians chosen by optimizing through 50k random samples

Results: Linear Gaussian system

Nonlinear 1d time series results:

Robot localization experiment

- The UAV is tracked using IMU and visual odometry
- High-dimensional vehicle state:
 - pose, velocities, accelerations
 - sensor biases
 - landmark positions
- Four filters:
 - PF, QMC, FW-SKH, FCFW-SKH
 - all Rao-Blackwellized

[particles on 7d state:

3d space + quaternion rotation]

 Compare position errors relative to a reference trajectory (mean of 10 PF with N = 100k)

Yamaha RMAX UAV

Robot localization results

Conclusion

- Tools from optimization to help deterministic sampling!
- With FW-quadrature, getting each particle is more costly, but empirically, we need less particles to get a good error
 - -> this could be useful when evaluating $p(y_{t+1}|x_{t+1}^{(i)})$ is very expensive (e.g. in robot localization problem)
 - [e.g. 0.2 s for N=50 PF; overhead of 0.1 s for N=50 FW]
- Current work:
 - refine convergence theory
 - results somewhat sensitive to kernel bandwidth parameter -> find ways to adaptively choose it
 - understand better relationship between kernel and error propagation for class of functions
 - (e.g. introduce a kernel on past histories as well changing \mathcal{H}_t)

Thank you! Any question?

Jump Markov Gaussian linear model results: 10°

 RMSE computed on mean predicted position vs. good approximation from Rao-Blackwellized Discrete PF with 10k particles

$$d = 2$$
, 3 modes, $\sigma^2 = 1$

Nonlinear 1d time series results:

