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Summary in one slide 

 Recent work [Bach et al. ICML 12] showed how Frank-
Wolfe optimization could obtain adaptive quadrature 
rules with potentially better rates than Monte-Carlo (MC) 
or quasi-Monte-Carlo (QMC) integration 
 

 Here we replace the random sampling phase in a particle 
filter with Frank-Wolfe optimization to get better 
locations of particles to approximate the distribution (a 
mixture of Gaussians) 
 

 Our preliminary empirical study indicates that we can 
obtain improvements over MC or QMC in term of number 
of particles 
 



Part I: Adaptive quadrature rule with 
Frank-Wolfe optimization 

 Approximating integrals: 
  

 
 Random sampling    yields                error 
 Kernel herding [Chen et al. 10]  (can) yield          error! 

          (like quasi-MC) 

 -> generalized to FW optimization [Bach et al. 12] and 
could even get              error 
 

 Trick: run Frank-Wolfe optimization on dummy objective: 
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is the marginal polytope

and ¹(p) = Ep(x)©(x) is the mean map
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 Why? Well, controlling moment discrepancy  
 is enough to control error of integrals in RKHS      : 

Approx. integrals in RKHS 

 
 
 Reproducing property: 
 Define mean map : 
 Want to approximate integrals of the form: 

 
 Use weighted sum to get approximated mean:  

 
 

 Approximation error is then bounded by: 
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 FW algorithm – repeat: 
 

f   convex & cts. differentiable 

M   convex & compact 

 alg. for constrained opt.: 

(aka conditional gradient) 

where: 

1) Find good feasible direction by 
    minimizing linearization of    : f

2) Take convex step in direction:  

®k+1 = (1¡ °k)®k + °k sk+1

Frank-Wolfe algorithm [Frank, Wolfe 1956] 

 Properties:   O(1/N) rate 
 sparse iterates 
 get duality gap         for free 
 affine invariant 
 rate holds even if linear 

subproblem solved 
approximately 

 

min
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f(®)



FW quadrature 

1) FW search: 
 
2) convex combo: 
 
 
 variations: 

 kernel herding:  
 

 line-search FW 
 

 fully-corrective FW (FCFW) 

x(k+1) = argmin
x2X

gk(x)¡ ¹(p)(x)

gk+1 = (1¡ °k) gk + °k©(x(k+1))

e.g. minimum of a difference of 
mixture of Gaussian bumps! 

°k =
1

k +1 O(1=N)

 Theoretical rates for k¹(p̂)¡ ¹(p)kH
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repeat: input: p 

at end:  
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   finite  infinite dim(H) :



Fitting a mixture of Gaussian 



 

higher d: 



Part II: Particle filtering 
 HMM / state-space model: 
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 goal: approximate filtering distribution 
 with weighted set of N ‘particles’                    : 
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 One view of PF algorithm: 
 
 
 
 

Propagate approximation forward in time by:  

1) Sample new particles from:  ¹qt+1(x1:(t+1)) := p(xt+1jxt)qt(x1:t)

=
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2) Reweight particles according to observation:  

x
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w
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New weighted set gives:  

E.g. a mixture of 
Gaussians! 

 

 



 (aside: if use quasi-random sampling from         instead, 
we get the previously proposed QMC particle filters)   

 
 
 

Sequential Kernel Herding 
 Main idea: replace the random sampling step 

to approximate        with FW-quadrature 
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[Philomin et al. ECCV 00, Ormoneit et al. UAI 01]   
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 Modular algorithm! Can add FW-quadrature anywhere need 
to get particles to approximate distribution 

 Conditions to run: 
 need to be able to compute expectation of kernel with 
 need to be able to (approx.) optimize this function 

 In our experiments:          is a mixture of Gaussians; we use  
Gaussian kernel; optimize non-convex problem using 
exhaustive search over random sample from   
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Convergence result 
 current result (roughly): 

 assume that:  
 
 

  
 then: 
 
 

 so in if      is finite dimensional: 
 can get provably faster rates than PF (for integrals of members of     ) 
 compare with           for sequential QMC in [Garber & Chopin 14] 

 

ft(xt+1; ¢) := p(xt+1j¢) p(ytj¢) 2 H 8xt+1

Ht = H 8t

for ¯xed t, MMD error on predictive p(xt+1jy1:t) is O(²)

where ² is bound on FW MMD error at each t

o( 1p
N
)

and regularity condition on norm of ft

H
H



Synthetic experiments 

 FW quadrature points for mixture of Gaussians 
chosen by optimizing through 50k random samples 

 

(variance of Gaussian kernel) 
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Results: Linear Gaussian system 

 
 
 

 
 

d = 15

d = 3

¾2 = 1



 
Nonlinear 1d time series results:  



Robot localization experiment 

 The UAV is tracked using IMU 
and visual odometry 

 High-dimensional vehicle state: 
 pose, velocities, accelerations 
 sensor biases 
 landmark positions 

 Four filters: 
 PF, QMC, FW-SKH, FCFW-SKH 
 all Rao-Blackwellized 
[particles on 7d state:  
 3d space + quaternion rotation] 

 Compare position errors relative 
to a reference trajectory (mean 
of 10 PF with N = 100k) 

Yamaha RMAX UAV 



Robot localization results 
error last time step 



Conclusion 
 Tools from optimization to help deterministic sampling! 
 With FW-quadrature, getting each particle is more costly, 

but empirically, we need less particles to get a good error 
 -> this could be useful when evaluating                    is very 

expensive (e.g. in robot localization problem) 
 [e.g. 0.2 s for N=50 PF; overhead of 0.1 s for N=50 FW] 

 Current work: 
 refine convergence theory 
 results somewhat sensitive to kernel bandwidth parameter -> find 

ways to adaptively choose it 
 understand better relationship between kernel and error 

propagation for class of functions 
 (e.g. introduce a kernel on past histories as well – changing        ) 

p(yt+1jx
(i)
t+1)

Ht



Thank you! Any question? 



 

Jump Markov Gaussian linear 
model results: 

 RMSE computed on mean 
predicted position vs. good 
approximation from Rao-
Blackwellized Discrete PF 
with 10k particles 

 
 
 
 

d = 2, 3 modes, ¾2 = 1

Nonlinear 1d time series results:  
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