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Abstract. Bagging constructs an estimator by averaging predictors trained on bootstrap samples. Bagged es-
timates almost consistently improve on the original predictor. It is thus important to understand the reasons for
this success, and also for the occasional failures. It is widely believed that bagging is effective thanks to the
variance reduction stemming from averaging predictors. However, seven years from its introduction, bagging
is still not fully understood. This paper provides experimental evidence supporting the hypothesis that bagging
stabilizes prediction by equalizing the influence of training examples. This effect is detailed in two different
frameworks: estimation on the real line and regression. Bagging’s improvements/deteriorations are explained by
the goodness/badness of highly influential examples, in situations where the usual variance reduction argument is
at best questionable. Finally, reasons for the equalization effect are advanced. They support that other resampling
strategies such as half-sampling should provide qualitatively identical effects while being computationally less
demanding than bootstrap sampling.

Keywords: bagging, influence, leverage, bias/variance

1. Introduction

Bagging, introduced by Breiman in 1994 (1996a), is a procedure for building an estimator
by a resample and combine technique. From an original estimator, a bagged estimator is
produced by averaging several replicates trained on bootstrap samples.

A bootstrap sample (Efron & Tibshirani, 1993) is created by drawing with replacement
n examples from the training set Tn = {(xi , yi )}n

i=1. It has thus the same size as the original
sample but contains replicates of some examples, while others are not represented. In
bagging, bootstrap sampling is repeated many times (typically 25 or 50 times). Training is
then performed on each bootstrap sample, by minimization of some empirical functional.
The bagged estimate is finally obtained by averaging the resulting estimators.

In many studies, bagging decision trees, stumps, naive Bayes classifiers or neural net-
works almost systematically compares favorably with the original predictor, on artificial as
on real data (Bauer & Kohavi, 1999; Breiman, 1996a, 1996b; Dietterich, 2000; Drucker,
1997; Maclin & Opitz, 1997; Quinlan, 1996; Schapire et al., 1998). Other ensemble meth-
ods such as boosting and arcing are often more effective in reducing prediction error, but,
in situations with substantial noise, bagging performs better (Dietterich, 2000; Maclin &
Opitz, 1997). Hence, it is important to understand how bagging works.

Available explanations for bagging’s success are briefly reviewed in Section 2, where the
present explanation is also summarized. We then provide experimental results supporting the
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main point of this paper: bagging equalizes the influence of points on the predictor. In these
experiments, we characterize the influence of an example in the computation of the estimate,
and illustrate how bagging distributes influence. Section 3 describes the effects of bagging
regarding the weight given to each observation in point estimation. The transposition to
regression is given in Section 4. After these experiments supporting our answer to the “how
does bagging work?” question, we give the reason for “why does it work in this way?” in
Section 5, and we end with a summary and a discussion in Section 6.

2. How does bagging work?

2.1. Available explanations

Breiman (1996a) states that the vital element for gaining accuracy thanks to bagging is
the instability of the prediction method. A method is unstable if small perturbations of the
learning set can cause significant changes in the predictor. Bagging is presented as a variance
reduction procedure mimicking averaging over several training sets. The approximation
taking place should be kept in mind, since this explanation would be trivial and definitive
if averaging was performed on different training sets, but it acts on bootstrap replicates of a
single training set. To quote Wolpert and Macready (1996), “the bias-plus-variance argument
for bagging only suggests that bagging is worth using”. For example, the work of Buja and
Stuetzle (2000) on U-statistics (a family of estimates generalizing the concept of average)
provides examples for which bagging is proved to increase squared bias and variance. Thus,
although experimental results often show the expected variance reduction (Bauer & Kohavi,
1999; Breiman, 1996b; Schapire et al., 1998), several other stances have been explored to
explain the success of bagging.

Friedman and Hall (2000) provide a theoretical analysis based on an asymptotic truncated
Taylor series of the estimate. They conclude that, in the limit of infinite samples, bagging
reduces the variance of non-linear components in the decomposition, while leaving the
linear part unaffected. Bühlmann and Yu (2000) present another theoretical study dedicated
to non-differentiable and even discontinuous predictors, where the results of Friedman and
Hall do not apply. They focus on neighborhood of discontinuities of decision/regression
surfaces where bagging is shown to have a smoothing effect. From these two studies and the
one from Buja and Stuetzle (2000), we retain that bagging asymptotically performs some
smoothing on the estimate. The latter clearly occurs also for finite samples, but it might
not be the major effect. In particular, these asymptotic analyses did not address bagging’s
treatment of outliers, which seems to be particularly effective, as suggested by its good
performance in the presence of noise (Dietterich, 2000; Maclin & Opitz, 1997).

Schapire et al. (1998) provide non-asymptotic bounds for voting algorithms, including
bagging, relating the generalization performance of aggregated classifiers to the margin
distribution of examples. Unlike boosting, bagging does not explicitly maximize margins,
but the experiments provided by Schapire et al. suggest that bagging has a beneficial effect
on the latter. The obtained bounds are acknowledged to be loose, and Breiman (1999) even
claims they are qualitatively misleading, since for base classifiers of fixed VC-dimension,
maximizing the margin of the aggregated classifier does not yield lowest error rates.
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Domingos (1997) gives a Bayesian treatment of bagging. He performs several empirical
tests pertaining to two hypotheses: either bagging works (1) because it approximates sam-
pling from the posterior distribution or (2) because it shifts the prior to an appropriate model
space. Domingos rejects the first hypothesis and accepts the second one, by verifying that
bagged estimators are more complex than the original ones. However these conclusions
depend strongly on the base predictor, and they rely on many assumptions which could
not be verified on real data. This point of view is furthermore challenged by Rao and
Tibshirani (1997), who qualify the bootstrap distribution as a “poor man’s Bayes posterior”
stemming from an approximation of a symmetric Dirichlet non-informative prior. Bagging
is then interpreted as a Monte Carlo integration over the posterior distribution. This in-
terpretation is used by Rao and Tibshirani to propose an averaging method resembling the
Bayesian approach, but the link with a non-informative prior is of little help in understanding
the reasons of bagging’s success.

2.2. Present explanation

Unlike the preceding studies, the present approach does not consider the global effect of
bagging on the predictor, but focuses on the potential influence of training examples in the
estimation process. We argue that bagging systematically equalizes the potential influence
of examples. This equalizing may lead to opposite modifications in the performance of the
estimate, according to the goodness of leverage points, i.e. examples that may have a high
influence on the predictor. In this respect, bagging’s equalization can be interpreted as the
primary effect possibly causing a secondary effect on global characteristics (e.g. variance
or prediction error) of the estimator.

Leverage is illustrated in figure 1 for ordinary linear regression. A single outlier in the
explicative variables can have a drastic effect in setting the coefficients of the regression
line. According to the value of the explained variable, this effect can improve/deteriorate
the estimator accuracy (good/bad leverage).1

In most situations, leverage is badly influential, and decaying leverage reduces the vari-
ance of the estimator. If an “unstable predictor” is defined as a predictor for which there
are highly influential points, then, in most situations, our analysis is in accordance with

Figure 1. Least squares linear regression without the outlier in x (solid), with the good leverage point (dashed),
and with the bad leverage point (dotted).
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Breiman’s: bagging stabilizes estimators and reduces variance. But the present explanation,
which is not rooted in the averaging argument, also applies when bagging fails. This is
illustrated in the two forthcoming Sections in point estimation and regression.

3. Point estimation

This first experiment presents a simple point estimation problem where variance reduction
arguments do not hold. Instead, it is shown that bagging systematically balances the weights
given to each example in the computation of the estimate. Variance reduction may occur as
a consequence, but the converse may also be true.

We consider a mean estimation problem, where data are generated from a distribution
“contaminated” by a widespread component centered on the same location. This type of
mixture distribution is routinely used to illustrate the interest of robust statistics (Huber,
1981). In our experimental setting, n = 20 examples are generated by independent drawings
from the mixture distribution

p(x) = 1 − P√
2π
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2

)
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2π10
exp
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2(10)2

)
. (1)

The mean of the two normal components is zero, but the spread of the second one is ten
times larger.

Four estimates of the mean are computed: the sample average, the sample median and
their bagged estimates. The latter are obtained from 100 balanced bootstrap replications.2

In fact, the bagged average is not computed since it is identical to the sample average;
it is a linear statistics unaffected by bagging (Bühlmann & Yu, 2000; Buja & Stuetzle,
2000; Friedman & Hall, 2000).

The number of bootstrap replications is chosen arbitrarily and is unimportant for our
present purpose. The experiment is repeated 1000 times on independent samples.

Table 1 reports the variance of all mean estimates for five different values of the con-
tamination proportion P . As all estimators are unbiased in this experimental setting, their
expected squared errors are equal to their variances.

The unbagged and bagged average being identical, they have the same variance.
To summarize, we observe that:

Table 1. Variance of the unbiased mean estimates.

P Average Median Bagged median

0 0.050 ± 0.002 0.069 ± 0.003 0.061 ± 0.003

0.05 0.321 ± 0.020 0.077 ± 0.003 0.068 ± 0.003

0.2 1.062 ± 0.050 0.109 ± 0.005 0.102 ± 0.005

0.7 3.565 ± 0.148 1.121 ± 0.084 1.544 ± 0.091

1 5.020 ± 0.216 6.933 ± 0.296 6.143 ± 0.261
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Figure 2. Boxplot of the weight given to the examples xi versus the rank of xi , for original and bagged mean
estimates.

– bagging the average does not reduce variance;
– bagging the median sometimes reduces variance, sometimes not. Improvements are not

related to the variability of the original estimate.

These results are hardly compatible with variance reduction arguments, and hence require
another explanation. All previous attempts were looking at bagging’s “macroscopic” effects
on the estimate. Here, we focus on “atomic” effects, by looking at the weight given to
each example of the training sample (i.e. the coefficient attached to one observation in the
computation of the estimate).

Figure 2 summarizes the distribution, over the 1000 experiments, of the weight assigned
to each example according to its rank in the original sample. On the one hand, all points
contribute equally to the computation of the average, and bagging has no effect. On the
other hand, the point contributions to the median are unequal. Let x(1) ≤ x(2) ≤ · · · ≤ x(20)

denote the ordered values of the xi ’s, the median gives a weight of 1/2 to x(10) and x(11),
and 0 to the remaining part of the sample. Bagging balances the weights, which are spread
on the neighboring order statistics of x(10) and x(11). This effect is a direct consequence
of bootstrap sampling: for bootstrap sample b, T b

n = {xb
i }20

i=1, the median is defined as
(xb

(10) + xb
(11))/2, but xb

(10) and xb
(11) may not correspond to x(10) and x(11), which may not

occur in T b
n , or whose ranks may be shifted due to the absence or multiple occurrence of

other examples.
For all values of P , the same random draws were repeated to create bootstrap samples,

thus, figure 2 refers to any line of Table 1, and displays a systematic effect which either
improves or deteriorates the bagged median accuracy according to the parameter P .

For P = 0 and P = 1, the average is the efficient mean estimate: it has minimum variance
among unbiased estimates. The median is extremely robust, but ignoring much of the
training sample decreases its efficiency. The bagged median makes a more intensive use of
the sample, which improves accuracy in low-mix settings, where only the extreme ranks
are likely to be generated from the contamination component. Conversely, for P = 0.7,
only the very middle ranks are likely to be generated from the narrow spread component.
The original median being more robust to data contamination (as measured by the smallest
proportion of contaminated data that can cause non-informative estimates (Rousseeuw,
1997)), it performs better than the bagged median.
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To summarize, this experiment illustrates that bagging distributes the influence of exam-
ples in the computation of the estimator. The same bagging atomic effects (on the weighting
of examples) can have opposite macroscopic effects (on the estimator error/variance) ac-
cording to the data distribution. Bagging’s observed effects are not in accordance with
the usual variance reduction arguments, but they are easily explained from the influence
modification viewpoint.

4. Regression

The first example showing the limits of variance reduction arguments was given by Breiman
(1996a). The original aim was to illustrate the benefits of bagging for unstable estimation
procedures such as subset selection. A surprising by-product is that bagging is harmful
for ordinary least squares linear regression involving all variables. Breiman explains the
failure of bagging by the stability of ordinary least squares: for stable procedures, averaging
predictors trained on several independent datasets is better approximated by averaging over
a single dataset drawn from the data distribution (original predictor), than by averaging
over several bootstrap samples (bagged predictor). This statement acknowledges that the
variance reduction argument reaches its limits when bagging fails. Here, we show that the
modification of influence, together with the goodness of leverage points, explains bagging’s
success and failure.

4.1. Measuring the potential influence of examples

Most regression and discrimination techniques are based on the minimization of some
criterion, where all examples are identically weighted. Bagging is however effective in these
settings. The previous experiment showed that the equalizing effect acts on the weights given
to examples in the computation of the estimator. These weights may dramatically differ.
This phenomenon is well known in the framework of linear regression, where statistics
have been devised to spot potentially highly influential examples, the so-called leverage
points.

LetTn = {(xi , yi )}n
i=1 be the training set. For a linear smoother (such as a linear regression,

a kernel estimate or a smoothing spline), the value of the prediction on the training sample
can be written as f̂ = Sy, where f̂ is the n-dimensional vector of fitted values at {xi }n

i=1
f̂ i = f̂ (xi ), y is the n-dimensional vector of response variables and S is the n×n smoothing
or hat matrix (Hastie & Tibshirani, 1990). The i th row of S represents the sequence of
weights (or equivalent kernel) given to y j , j = 1, . . . , n to define f̂ (xi ). Each element of
S is thus relevant for our analysis, but the diagonal elements Sii provide a good summary,
which is commonly used to flag leverage points, since ∂ f̂ (xi )/∂yi = Sii . As trace(S) is a
possible definition of the degrees of freedom of the smooth (Hastie & Tibshirani, 1990), Sii

can also be interpreted as the degrees of freedom spent to fit (xi , yi ). Leverage points are
thus associated with large Sii . There is no general agreement on what “large” means, but
this is not crucial for the point made here.
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The smoothing matrix of the bagged estimate Sbag is defined identically by f̂bag = Sbagy,
where f̂bag is the vector of fitted values at {xi }n

i=1. It is easily computed for any linear
smoother (see Appendix A).

4.2. Experiment

The experimental setup (see Breiman, 1996a for more details) consists in replicating 250
times:

1. Draw samples of size n = 60 from the model y = βT x + ε, where ε is drawn from
a normal distribution N (0, 1), x ∈ R

d , d = 30 is drawn from a normal distribution
N (0,Σ2), with �2

i j = ρ|i− j |, and ρ is drawn from a uniform distribution on [0, 1].
2. Compute the estimates of β for subset sizes ranging from 1 to d (subsets are determined

by forward subset selection).
3. Generate 50 bootstrap samples to compute bagged estimates.

In the example presented below, β has 27 non-zero coefficients:

βk = cαk, αk =
3∑

�=1

{(5 − |k − µ�|)+}2,

with µ = (5, 15, 25) and

c =
√

3/αT Σ2α,

so that R2 � 0.75. The results are qualitatively equivalent for the two other setups described
in (Breiman, 1996a).

Figure 3 displays the quadratic prediction error PE according to the subset size, for the
original and bagged estimates. Note that the difference in prediction error is highly in favor
of bagging for little subset sizes, and that it decreases as the subset size increases. There is
a cross-over point past which bagging is detrimental.

The difference in prediction error for ordinary least squares (with all the variables entering
the subset) could seem to be an artifact, since it contradicts the analysis of Friedman and
Hall (2000), by which linear predictors are not affected by bagging. However, this analysis
does not apply here, as the OLS estimate is only linear in y = (y1, . . . , yi , . . . , yn)T , and not
in zi = (xi , yi ). In the regression framework, linear predictors in the sense of Friedman and
Hall can be obtained if xi are fixed, in which case bootstrap sampling consists in resampling
residuals yi − f̂ (xi ) instead of resampling the training pairs (xi , yi ).

4.3. Bagging’s effect on bias and variance

First, we stress that the failure of bagging in ordinary least squares regression can be proved
to be due to an increase of variance. Let X denotes the (n × d) matrix of explicative variables
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Figure 3. Prediction error (averaged over 250 experiments) for forward subset selection (dashed) and bagged
forward subset selection (solid) vs. subset size.

in the training sample. The bagged estimate of the regression coefficient β is derived from
the general form of smoothing matrices for bagged estimates provided in Appendix A:

β̂
bag = 1

B

B∑
b=1

(XT WbX)−1XT Wby, (2)

where B is the number of bootstrap samples and Wb is the diagonal matrix whose i th
element counts the number of occurrence of point i in bootstrap sample b.

Let Y denote the n×1 random variable of explained variables, Y = Xβ+ ε. As E(ε) = 0,
we have

E(β̂
bag|X) = 1

B

B∑
b=1

(XT WbX)−1XT Wb
E(Y | X)

= 1

B

B∑
b=1

(XT WbX)−1XT WbXβ

= β. (3)

As the ordinary least squares estimate and the bagged estimate are unbiased, an increase
of variance is the only possible explanation for the increase in prediction error observed
in the experiments. Furthermore, noting that Eq. (2) shows that β̂

bag
is a linear transfor-

mation of y, the increase of variance can also be explained by the Gauss-Markov theorem



BAGGING EQUALIZES INFLUENCE 259

(Saporta, 1990). In the current experimental setup, the latter states that the ordinary least
squares estimate is, among all unbiased estimates which are linear in y, the one with mini-
mum variance.

Theoretical analysis does not provide an analytic expression for the bias and variance of
the subset selection model. Their plug-in estimates show however that prediction error is
dominated by bias. Bagging hardly affects the latter (the squared bias is 1.4 with bagging
compared to 1.5 without), but is effective at reducing variance (the variance is 0.2 with
bagging compared to 0.7 without).

4.4. Potential influence equalization

The Sii statistics are computed for ordinary least squares. Subset selection is not a linear
predictor, since the observations yi take part in the subset choice. Influence is thus measured
by a generalized leverage statistic S̃i i , which is based on the data perturbation approach
described in Appendix B.

Figure 4 compares the histograms of Sii and Sbag
i i computed for all 250 training sam-

ples. The histogram obtained for ordinary least squares (left) shows that the distribution
is unimodal (there are no gross outliers), centered on 0.5 (30 free parameters are to be set
by 60 points). Bagging yields also a unimodal distribution, centered on 0.5, which ren-
ders that complexity is not modified by bagging. The spread is however sensibly reduced
(the standard deviation is divided by two): the influence of each point on the estimator is
equalized.

The histograms are more complex for subset selection (right). First, note that a log-scale
is used to highlight that the distribution for subset selection is bimodal (on a linear scale,
the high spread of the minor mode makes it hardly visible). The main mode contains about
90% of points with small S̃i i values (mean slightly less than 1/60); it gathers points with
little influence on the choice of the element entering the subset, but which intervene in
the tuning of the single regression coefficient. The other mode contains highly influential

Figure 4. Left: histograms of Sii (up, light grey) and Sbag
i i (down, dark grey) for ordinary least squares (all

variables); right: histograms of log10(S̃i i ) (up, light grey) and log10(S̃bag
i i ) (down, dark grey) for subset selection

(one variable).
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points, with a mean S̃i i value of about 0.6. These points play a leading part in choosing
the variable entering the subset. Only one variable is selected, but it brings an average of
4.6 degrees of freedom: this inflation in degrees of freedom is due to the subset choice, as
discussed in detail in Tibshirani and Knight (1999). The distribution for the bagged subset
selection estimate is unimodal, centered on 0.1, with an average 5.9 degrees of freedom.
Thus, bagging increases slightly the complexity of the predictor (an average of nine different
variables enter the subset, but the regression coefficients are not computed by least squares).
The spread of S̃bag

i i is also halved: leverage statistics are equalized. We now verify that, in
the present setting, influence equalizing happens to be beneficial for subset selection and
detrimental for ordinary least squares.

4.5. From influence equalization to prediction error

For ordinary least squares, the expected difference in prediction error between the ordinary
and the bagged estimate is a quadratic function in smoothing matrices S and Sbag. In the
present setup, it is however difficult to exhibit a clear-cut relationship between Sii equal-
ization and the actual changes in prediction error. Bagging’s action on potential influence
may have some outcome on the effective influence, which may in turn have positive or
negative consequences on prediction error according to the goodness/badness of leverage.
Furthermore, goodness/badness does not describe an intrinsic quality of a single point with
respect to a predictor. It is defined relatively to a learning set and is subject to interactions:
two leverage points may be badly influential separately and beneficial jointly.3 The relation-
ship between influence equalization and prediction error is shown here in a setup where the
relationships in the chain linking potential influence to goodness/badness are controlled.

Figure 5 displays maps of differences in prediction error PE − PEbag according to po-
tential influence Sii and badness of examples. Positive values thus correspond to bagging’s
improvements and negative ones to failures. To control goodness and avoid interactions, we
first set yi = βT xi , i = 1, . . . , n which is the ultimate goodness for all examples. The bad-
ness for example i is then controlled by adding a perturbation to yi while y j = βT x j , j �= i .
The magnitude of this perturbation is reported on the badness axis. The maps are produced

Figure 5. Maps of difference in prediction error PE − PEbag vs. badness and leverage statistics, left: for ordinary
least squares (all variables); right: for subset selection (one variable).
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by curves detailing the effects of influence equalization according to the influence statistic
of the contaminated point at the given badness level. These curves are obtained by a local
line smoother on the 60 × 250 points (on the 250 experiments one example is perturbated
at a time). They are faithful summaries: they explain most of total variance (R2 � 70%).

The OLS predictors being linear, Sii and Sbag
i i are not affected by badness. Hence, for

each badness value, the marginalized influence histogram of Sii and Sbag
i i is identical to the

one displayed in figure 4. Furthermore, the same trend is obtained for all badness levels,
which have only a multiplicative impact on the difference in prediction error. For one
level, the difference in prediction error varies almost linearly with the Sii statistics. When
perturbations are applied to the most influential point, bagging is highly beneficial, when
they are applied to the less influential ones, it is highly detrimental. When all examples are
corrupted identically, the overall result is slightly negative.

For subset selection, S̃i i and S̃bag
i i are affected by badness, but influence equalization

is similar for all badness values (not shown here). Here, we observe slight differences in
trend according to badness, with a saturation effect for highly perturbated influential points.
Bagging is highly beneficial when the most influential points are perturbated, and slightly
detrimental in the opposite situation. Overall, when all examples are corrupted identically,
the outcome is beneficial.

To summarize this section, we illustrated that bagging has an equalizing effect on leverage
statistics which improves or deteriorates estimation in the presence of respectively bad or
good leverage points. For ordinary least squares, bagging increased variance. This negative
effect is explained by the experimental setting in which the original predictor is optimal
within a set including bagged ordinary least squares. In setups including bad leverage
points, ordinary least squares benefits from bagging. For subset selection, the fact that more
variables are used in the bagged estimate is not essential to bagging improvements, as bias
is not affected in the process. The important point is that one point cannot be influential
in all bootstrap samples; hence, more points intervene in the subset choice and variance is
reduced.

5. A paradox explained

In bagging, all examples being represented the same number of times in bootstrap samples
as a whole, it may seem paradoxical that their influence is modified. The distribution of
influence in bootstrap samples provides an explanation for this phenomenon. It furthermore
indicates that bootstrap sampling, which is a key element according to the “reduce variance
by averaging” argument, is not essential to the algorithm effectiveness.

5.1. Distribution of influence in bootstrap samples

The distribution of influence in bootstrap samples is illustrated here in smoothing spline
regression. This experiment enables to display two types of leverage, without interaction.
Furthermore, the effects can be visualized and leverage statistics are rapidly computed (see
Section 4.1).



262 Y. GRANDVALET

Figure 6. Left: cubic regression spline (dashed line) and bagged estimate (solid line); right: diagonal elements
of the bagged smoothing matrix Sbag versus diagonal elements of the smoothing matrix S.

We chose a large number of bootstrap replications (1000) to depict the distributions
of bootstrap statistics. Other details of the experimental setup are omitted as they are not
important for interpretation. Figure 6 displays the effects of bagging on a cubic regression
spline.

The right hand side of figure 6 displays the diagonal elements of the bagged smoothing
matrix. For the three leverage points (at the boundary) marked 1–3, Sbag

i i is smaller than
Sii , while the changes are minor for the other points. As a result, the bagged fit is hardly
changed for internal values of x and clearly looser for the boundary points.

For a smoothing spline, Sbag
i i is the average of Sb

ii (see Appendix A), thus, the distribution
of leverage statistics on bootstrap samples details how bagging affects influence. Figure 7
displays the cumulative distributions of Sb

ii for the three leverage points. The step at zero
gathers the bootstrap samples where the considered point is absent, resulting in a null

Figure 7. Cumulative distribution function of bootstrap leverage statistics Sb
ii for point 1 (solid), 2 (dashed), 3

(dashdot) and for the sum Sb
22 + Sb

33 (dotted).



BAGGING EQUALIZES INFLUENCE 263

influence. Its height is close to the probability (with respect to random bootstrap sampling)
of this event ((1 − 1/n)n � 0.37).

For the isolated outlier 1, the function shows a second step about the leverage statistic of
the unbagged smooth S11 = 0.97. This second mode of the distribution gathers all bootstrap
samples where point 1 is present: the number of replications of the example plays a minor
role in the computation of Sb

11.
For the grouped outliers 2–3, the distribution has numerous modes, as shown by all the

small steps of the cumulative distribution. They correspond to constant ratio of wb
2/(wb

2 +
wb

3), where wb
i denotes the number of replications of example i in bootstrap sample b.

However, regarding prediction, the influences of points 2 and 3 should not be differentiated,
since they have nearly identical x-values, and thus correspond to a single influential cluster
whose influence is quantified by the sum Sb

22 + Sb
33. The distribution of Sb

22 + Sb
33 is bimodal.

The prior probability of the first mode is sensibly lower than for single points, since it
corresponds to the probability of absence of the whole cluster in a bootstrap sample ((1 −
2/n)n � 0.14).

Points 2–3 illustrate a masking effect: bagging down-weights more efficiently a single
leverage point than a cluster thereof. The distribution of Sb

ii explains that this masking
stems from the proportion of bootstrap samples not containing a cluster: the probability for
m given points not to be in one bootstrap sample is 1 − (1 − m/n)n � 1 − exp(−m), hence
Sbag

11 � 0.63 × S11, and (Sbag
22 + Sbag

33 ) � 0.86(S22 + S33). The other influence statistics are
hardly affected by bagging, since a typical inner point belongs to a large cluster for which
1 − (1 − m/n)n � 1.

The effectiveness of bagging is more tightly related to the probability of absence/presence
of examples than to their multiple occurrences because replicates have usually little effect on
predictors compared to absence/presence. This argument is trivially exact for interpolation,
where having several copies of one point does not change the solution, while deleting one
point has important consequences. A similar behavior can be expected for the complex
predictors which are recommended in bagging (Taniguchi & Tresp, 1997). The question
thus arises whether bootstrap sampling is really a key ingredient of the procedure.

5.2. Is bootstrap sampling a key ingredient of bagging?

Regarding the probability of absence/presence of clusters, sampling with replacement a
proportion P of the original dataset is asymptotically equivalent to sampling without re-
placement a proportion 1 − exp(−P). This is illustrated in figure 8 where the probabilities
of absence are reported for a sample size of 50.

We provide here an additional clue supporting that the main effect of bagging stems from
the presence/absence of points in bootstrap samples. A predictor trained on a bootstrap
sample can be viewed as the original predictor contaminated by case-weight perturbation.
Case-weight is the multiplicative coefficient weighting each example in the criterion used
to define the predictor; it may be not related to influence.

In bootstrap sample b, the case-weight for example i is its number of occurrence wb
i . We

test two alternative case-weights:
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Figure 8. Probability of absence of a cluster vs. cluster size for subsampling with (◦) and without (×) replacement
for a training sample size of n = 50. From top to bottom, subsample size is n′ = 10, 20, 30, 40, 50 with
replacement, and 9, 16, 23, 28, 32 � n(1 − exp(−n′/n)) without replacement.

1.

wb
i
′ = wb

i + I[wb
i =0]∑n

i=1 I[wb
i =0]

,

where I[wb
i =0] is one iff example i does not appear in bootstrap sample b, does not affect

the number of replicates, except that absence is replaced by presence with a small case-
weight (here, this average case-weight is below 0.1); for any �p norm, ‖wb ′ − wb‖p ≤ 1.

2. wb
i
′′ = I[wb

i >0] does not modify absence/presence, but transforms all multiple occurrences
in a single one; for any �p norm, ‖wb ′′ − wb‖p > 1.

Figure 9 shows how the aggregated predictors are affected by these choices. The com-
parison with figure 6 clearly shows that the solution obtained with wb ′′

is nearly identical to

Figure 9. Left: pseudo-bagged cubic regression spline estimates for wb ′
(dashed line) and wb ′′

(solid line); right:
diagonal elements of the respective pseudo-bagged smoothing matrices Sbag ′

(+) and Sbag ′′
(×) versus diagonal

elements of the smoothing matrix S.
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the solution obtained with bagging (wb), while wb ′
yields a solution which is closer to the

original predictor than to its bagged version. As wb is closer to wb ′
than to wb ′′

for any �p

norm, the importance of absence/presence relative to number of replicates is demonstrated.
The interpretation of bootstrap sampling as a case-weight perturbation technique suggests

another interpretation of bagging. Suppose we want an estimator to be robust to some
predefined perturbations of the dataset. This goal can be reached either by modifying the
training criterion, or by constructing a predictor with in-built invariance properties which
automatically fulfills these constraints. A very simple means to create in-built invariance
is to define the predictor as the expectation of predictors trained on perturbed data. This
expectation can be approximated by the average on many surrogate samples, made of
perturbed replications of the examples. This heuristic has been successfully applied to
robustness constraints regarding input perturbations (Raviv & Intrator, 1996), and output
perturbations (Breiman, 1996b, 1998). Bagging can be interpreted as another variation on
the same theme, connected to robustness regarding case-weight perturbations. Bootstrap
sampling then appears as one possibility among others (e.g. leave-one-out or K -fold cross-
validation) to provide balanced case-weight perturbations.4

5.3. Relation to previous work

Friedman and Hall (2000) already proposed to replace bootstrap sampling by half sam-
pling. Their analysis, confirmed by Buja and Stuetzle (2000), show the equivalence (in
terms of asymptotical bias, variance and expected quadratic error) between sampling with
replacement a proportion P and sampling without replacement a proportion P/(P +1). For
P < 1, the present proposal 1−exp(−P) is slightly larger than P/(P +1), with differences
increasing with P .

A comparison was conducted in the regression example of Section 4, where the estimation
of β was stabilized by a ridge penalizer in order to avoid singular or numerically ill-
conditioned design matrices. The number of bootstrap samples was increased to 1000 to
approach more closely the idealized bagging studied in theoretical analyses.

Figure 10 reports the differences in prediction error between bagging with replacement
a proportion P (for P = 0.2 and P = 1) and sampling without replacement a proportion
P/(P + 1) or sampling without replacement a proportion 1 − exp(−P). Regarding mean
prediction error, the solutions provided by the three resampling schemes are rather close
to each other, but the approximation preserving the probability of absence is slightly more
accurate than the one derived from asymptotical analyses.

The relative failure of the theoretically motivated P/(P + 1) can be explained by two
deviations from its application domain. First, the number of free parameters of the predictor
is not overwhelmed by the number of examples: we are far from asymptotics. Second, up to
now, no theory applies to subset selection which is an instable estimate with a multimodal
distribution; only the OLS predictor is continuous (and linear in response variables).5

Note that the experimental comparison of Friedman and Hall (2000) between resampling
with and without replacement in non-linear CART regression is also out of the scope of their
theoretical analysis. Some of the curves they displayed might be explained by the absence
of the examples in 37% of bootstrap samples.
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Figure 10. Average difference in prediction error between bagged regressors obtained by sampling with and
without replacement vs. number of selected variables. A proportion P is sampled with replacement, and a proportion
P/(P + 1) (thin line), or 1 − exp(−P) (bold line) is sampled without replacement. The bars cover 90% of the
distributions of differences. Left: P = 0.2, right: P = 1.

6. Discussion

The experiments provided in this paper illustrated that bagging equalizes the influence
of examples in setting a predictor: fewer points have a small influence, while the highly
influential ones are down-weighted. Hence, bagging is useless when all examples have
the same influence on the original estimate, is harmful when high impact points improve
accuracy, and is otherwise beneficial.

Our analysis supports one of Breiman’s (1996a) early statements: the vital element for
gaining accuracy thanks to bagging is the instability of the prediction method. However,
instability is no more related to the intrinsic variability of the predictor, but to the presence
of influential examples in a dataset for a given prediction method. In many situations,
highly influential points are outliers, and their down-weighting reduces the variance of the
estimator. But our explanation, which is not rooted in an averaging argument, also applies
when bagging fails: the stabilization effect of bagging is harmful when estimation accuracy
benefits from influential points (the so-called “good” leverage points).

With the influence equalization viewpoint, bagging is interpreted as a perturbation tech-
nique aiming at improving the robustness against outliers. Indeed, averaging predictors
trained on perturbed training samples is a means to favor invariance to these perturbations.
Bagging applies this heuristic to case-weight perturbations. Bootstrap sampling is a central
element of bagging according to the “reduce variance by averaging” argument, but influ-
ence equalization is mainly due to the absence of influential examples in 37% of bootstrap
samples. Nearly identical results are obtained by replacing bootstrap sampling by resam-
pling without replacement 63% of the training set. The effectiveness of other resample and
combine schemes (Friedman & Hall, 2000; Buja & Stuetzle, 2000; Bühlmann & Yu, 2000)
can be understood within this perspective.

It should be however stressed that highly influential examples are down-weighted but
not suppressed: a single influence point can still have a high impact on a bagged esti-
mate. Furthermore, clusters of leverage points are not efficiently down-weighted. Finally,
the influence increase of inactive points induces a decrease of robustness regarding the
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number of contaminated examples which is tolerated by the predictor. The question thus
arises whether bagging should be a recommended alternative to robust estimation in noisy
settings. For linear predictors, standard robust estimation is well developed and should
be preferred. On the other hand, for non-linear predictors, bagging is an appealing proce-
dure, as it proceeds automatically without requiring to flag influential points by intensive
computation.

Appendix

A. Smoothing matrix for bagged predictors

The smoothing matrix of a bagged estimator is easily computed from the smoothing matrix
of the original estimate. All smoothing matrices have the same general structure, since
linear smoothers explicitly or implicitly minimize a penalized weighted residual sum of
squares

n∑
i=1

vi

(
m∑

j=1

c j g j (xi ) − yi

)2

+ λ

m∑
j=1

m∑
k=1


 jkc j ck, (4)

where vi are positive real coefficients, {g j }m
j=1 is a set of functions whose choice is inde-

pendent of the training set Tn = {xi , yi }n
i=1, λ is a positive coefficient or hyper-parameter,

and 
 jk are the coefficients of a positive definite matrix Ω.
The n-dimensional vector of fitted values at {xi }n

i=1 is given by:

f̂ = Gĉ

= G(GT VG + λΩ)−1GT Vy

= Sy, (5)

where Gi j = g j (xi ) and Vi j = viδi j . Hence the smoothing matrix is S = G(GT VG +
λΩ)−1GT V.

Identically, the smoothing matrix Sb of the estimator on a bootstrap sample T b
n is

Sb = G(GT VWbG + λΩ)−1GT VWb, where Wb is a diagonal matrix whose i th element
counts the number of occurrence of point i in T b

n . As bagging performs an average of
predictors trained on bootstrap samples, its smoothing matrix Sbag is the average of the
smoothing matrices Sb obtained on these samples:

Sbag = G
1

B

B∑
b=1

(GT VWbG + λΩ)−1GT VWb. (6)

Formulae for S, Sb, and Sbag explicitly state that for linear smoother, the original, boot-
strapped and bagged estimates all map y to the space spanned by G, but differ in how y is
projected onto G.
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For the smoothing spline experiment of Section 5, g j was chosen to be the j th element
of the natural spline basis, V is the identity matrix, and Ω is the penalizer of second-order
derivatives.

B. A generalized leverage statistic

The Sii statistics can be only computed for linear smoothers. Related statistics can be
computed by a data perturbation approach (Burgess, 1997): as in the linear case Sii is equal
to ∂ f̂ (xi )/∂yi , � f̂ (xi )/�yi can generalize Sii to non-linear smoothers. However the result
depends on the sign and magnitude of perturbations (� f̂ (xi ) is a non-linear function of
�yi ). A possible choice for the latter can be derived from another property. For linear

smoothers, Sii can also be computed from the so-called jackknife estimates f̂
−i

(xi ):

Sii = ( f̂ (xi ) − f̂
−i

(xi ))/(yi − f̂
−i

(xi )), (7)

where f̂
−i

is the predictor obtained from the training sample T −i
n = {x j , y j } j �=i .

Equation (7) defines a particular perturbation: when yi is replaced by f̂
−i

(xi )

(�yi = yi − f̂
−i

(xi )) then the predictor evaluated at xi is f̂
−i

(xi ) (� f̂ (xi ) = f̂ (xi ) −
f̂

−i
(xi )). This relationship is easily obtained from the general form (4) of the criteria min-

imized by linear smoothers. It suggests a generalized leverage statistic, based on the data

perturbation approach where �yi = yi − f̂
−i

(xi ). The algorithm is as follows:

1. Compute the jackknife estimate f̂
−i

(xi );

2. Create the perturbed training sample {(x j , y j )} j �=i ∪ (xi , f̂
−i

(xi )), from which the per-
turbed solution f̃ −i is computed;

3. Compute the generalized leverage statistic S̃i i as ( f̂ (xi ) − f̃ −i (xi ))/(yi − f̂
−i

(xi )).

For a linear smoother S̃i i is equal to Sii . Note that many estimates (including subset
selection but generally excluding bagged estimates) are invariant to the addition of new
examples lying on the regression surface. In this case, step 2 can be avoided as f̃ −i is

identical to f̂
−i

.

Notes

1. For a deterministic estimation procedure, the prediction error PE is a function of the training set Tn . Formally,
example i is a good leverage point if PE(T −i

n−1) 
 PE(Tn), where T −i
n−1 is the training set Tn deprived of example

i ; example i is a bad leverage point if PE(T −i
n−1) � PE(Tn).

2. Balanced bootstrap (Efron & Tibshirani, 1993), which is used throughout this paper, ensures that all observations
appear exactly the same number of times over all bootstrap samples. The usual bootstrap sampling is only
approximately balanced and may introduce artificial bias in our influence estimates.

3. For example, consider two leverage points such that xi = −x j , yi = βT xi + ε, y j = βT x j + ε. If ε is large,
each one of these two examples is badly influential for OLS, but jointly they have a good influence on the
predictor.
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4. This point of view suggests that input, output and case-weight perturbations could be applied together, but this
is not tested in this paper.

5. The P/(P + 1) approximation is poorer for OLS than for subset selection predictors, but this may be due to
the increase in degrees of freedom which moves the setup further away from asymptotics.
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