Galois group of *q*-difference equations

Anton ELOY University of Toulouse

Algebraic Methods on Dynamical Systems Barranquilla - October 5-11

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

1 Galois group of pure difference modules

2 General Galois group

q-difference modules |

- Let K := C({z}) be the field of convergent Laurent series. We take a complex number q such that |q| > 1 and define the operator σ_q on K by σ_q(f)(z) = f(qz).
- A q-difference module on K is a pair (V, φ) where V is a K-vector space of finite dimension and φ is a σ_q-linear automorphism on V.

ション ふゆ アメリア メリア しょうくしゃ

q-difference modules ||

- To each q-difference module we can associate a Newton polygon whose lower boundary is made of k vector (r_i, n_i). We call slopes of the q-difference module the rational numbers n_i/r_i.
- A module with one slope is said to be pure isoclinic and a module which is a direct sum of pure isoclinic modules is said to be pure.

ション ふゆ く 山 マ チャット しょうくしゃ

Tannakian formalism l

Used categories :

- \mathcal{E}_p the category of pure q-difference modules over K
- \$\mathcal{E}_{p,0}\$ the category of fuchsian modules over \$K\$, i.e. pure isoclinic q-difference modules of slope 0
- ► *E_{p,r}* the category of pure *q*-difference modules over *K* of slopes ^k/_r

ション ふゆ く 山 マ チャット しょうくしゃ

Tannakian formalism II

Let $z_0 \in \mathbb{C}^*$, we define the functor :

$$\begin{split} \omega_{z_0}: & \mathcal{E}_p & \longrightarrow & \mathbf{Vect}_{\mathbb{C}}^f \\ & (\mathcal{K}^n, \varphi_A) & \longmapsto & \mathbb{C}^n \\ & F & \longmapsto & F(z_0) \end{split}$$

It is a fiber functor for the now neutral tannakian category \mathcal{E}_p and we define the Galois group associated with \mathcal{E}_p by $\mathcal{G}_p := \operatorname{Aut}^{\otimes}(\omega_{z_0})$.

ション ふゆ アメリア メリア しょうくしゃ

Tannakian formalism III

 $\mathcal{E}_{p,0}$ and $\mathcal{E}_{p,r}$ are tannakian subcategories of \mathcal{E}_p and ω_{z_0} can be restricted to these categories. We define then their Galois groups by

$$G_{p,0} := \operatorname{Aut}^{\otimes}(\omega_{z_0}|_{\mathcal{E}_{p,0}})$$

and

$$G_{p,r} := \operatorname{Aut}^{\otimes}(\omega_{z_0}|_{\mathcal{E}_{p,r}})$$

Galois group for modules with integral slopes

Theorem (Baranovsky-Ginzburg)

$$\mathcal{G}_{p,0} = \mathsf{Hom}_{\mathbf{Grp}}\left(rac{\mathbb{C}^*}{q^{\mathbb{Z}}}, \mathbb{C}^*
ight) imes \mathbb{C}^*$$

Galois group for modules with integral slopes

Theorem (Baranovsky-Ginzburg)

$$\mathcal{G}_{p,0} = \mathsf{Hom}_{\mathbf{Grp}}\left(rac{\mathbb{C}^*}{q^{\mathbb{Z}}}, \mathbb{C}^*
ight) imes \mathbb{C}^*$$

Theorem (Ramis, Sauloy)

$${\mathcal G}_{
ho,1}={\mathbb C}^* imes {\mathsf{Hom}}_{{\mathbf{Grp}}}\left(rac{{\mathbb C}^*}{q^{\mathbb Z}},{\mathbb C}^*
ight) imes {\mathbb C}^*$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Action of
$$G_{p,1}$$

Given a pure isoclinic module of integral slope μ $M = (K^n, \phi_{z^{-\mu}A})$ with $A \in GL_n(\mathbb{C})$, an element $\phi = (t, \gamma, \lambda)$ acts on M by :

$$\varphi(A) = t^{\mu} \gamma(A_s) A_{\mu}^{\lambda}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Galois group for pure modules with slopes with fixed denominator

Virginie Bugeaud said in her thesis that an element $\varphi \in G_{p,r}$ can be seen as a triple $(t, \gamma, \lambda) \in \mathbb{C}^* \times \operatorname{Hom}_{\operatorname{\mathbf{Grp}}}\left(\frac{\mathbb{C}^*}{q^{\mathbb{Z}}}, \mathbb{C}^*\right) \times \mathbb{C}$. Furthermore she showed that $G_{p,r} = H_r \times \mathbb{C}$ as a group where

ション ふゆ く 山 マ チャット しょうくしゃ

is a central extension

Universal Galois group for pure q-difference modules l

If r|s then E_{p,r} is a full subcategory of E_{p,s} and we have a group morphism which is onto :

$$\begin{array}{rccc} \varphi_{r,s}: & \mathcal{G}_{p,s} & \longrightarrow & \mathcal{G}_{p,r} \\ & (t,\gamma,\lambda) & \longmapsto & (t^{\frac{s}{r}},\gamma,\lambda) \end{array}$$

• $(G_{p,r}, \varphi_{r,s})_{r|s}$ is a projective system and

$$G_p = \varprojlim_{\substack{r|s}} G_{p,r}$$

Universal Galois group for pure q-difference modules II

Let
$$H = \varprojlim H_r$$
, then $G_p = H \times \mathbb{C}$ and
 $1 \rightarrow \operatorname{Hom}_{\mathbf{Grp}}(\mathbb{Q}, \mathbb{C}^*) \rightarrow H \rightarrow \operatorname{Hom}_{\mathbf{Grp}}\left(\frac{\mathbb{C}^*}{q^{\mathbb{Z}}}, \mathbb{C}^*\right) \rightarrow 1$
 $\alpha \mapsto (\alpha, 1)$
 $(\alpha, \gamma) \mapsto \gamma$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

is a central extension.

Galois group of q-difference equations |

Let \mathcal{E} be the category of all q-difference modules over K. To each of these modules we can associate a unique graded module which will be a pure module : this defines a functor $gr: \mathcal{E} \to \mathcal{E}_p$. The functor $\hat{\omega}_{z_0} := \omega_{z_0} \circ gr$ is a fiber functor for \mathcal{E} and we denote by G the Galois group associated. If we denote by *i* the inclusion of \mathcal{E}_p in \mathcal{E} by tannakian duality we have

 $G \stackrel{i^*}{}_{gr^*} G_p$

ション ふゆ く 山 マ チャット しょうくしゃ

with $i^* \circ gr^* = id_{G_p}$.

Galois group of q-difference equations ||

Let $S := \ker i^*$ be the Stokes group. We have a split exact sequence

1 S G
$$G_p$$
 1

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We deduce that $G = S \rtimes G_p$ where G_p acts on S by conjugation.

Density in G_1

Let \mathcal{E}_r be the category of *q*-difference modules of slopes $\frac{k}{r}$, and G_r be the Galois group associated. We might want to add some explicit elements to $G_{p,r}$ in order to create a Zariski-dense subgroup of G_r .

In the case r = 1 Ramis and Sauloy has constructed *q*-alien derivations with the Stokes operators which generate the Lie algebra of *S* (the wild monodromy group) which led to a density theorem :

Theorem (Ramis, Sauloy)

 $G_{p,1}$ and the group associated with the wild monodromy group generate a Zariski-dense subgroup of G_1 .

Density in G_r

In her thesis Bugeaud generalized this theorem by creating an analogous to the q-alien derivation and associating a group.

Theorem (Bugeaud)

This group and $G_{p,r}$ generate a Zariski-dense subgroup of G_r .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

- The Stokes group of a module is known in the case of two slopes but not in the case of arbitrary number of slopes.
- For a module with three arbitrary slopes we don't know any explicit member of the Stokes group.
- ► Thus we cannot describe well G or the Galois group associated to a module with arbitrary slopes.

ション ふゆ く 山 マ チャット しょうくしゃ

Thanks for your attention !