[1] Radu Ignat, Luc Nguyen, Valeriy Slastikov, and Arghir Zarnescu. On the uniqueness of minimisers of Ginzburg-Landau functionals. accepted in Ann. Sci. Éc. Norm. Supér., 2019. [ bib | .pdf ]
[2] Radu Ignat and Felix Otto. The magnetization ripple: a nonlocal stochastic PDE perspective. accepted in J. Math. Pures Appl., 2019. [ bib | .pdf ]
[3] Radu Ignat and Antonin Monteil. A DeGiorgi type conjecture for minimal solutions to a nonlinear Stokes equation. accepted at Comm. Pure Appl. Math., 2019. [ bib | .pdf ]
[4] Radu Ignat and Xavier Lamy. Lifting of RPd-1-valued maps in BV and applications to uniaxial Q-tensors. With an appendix on an intrinsic BV-energy for manifold-valued maps. accepted at Calc. Var. Partial Differential Equations, 2019. [ bib | .pdf ]
[5] Radu Ignat, Luc Nguyen, Valeriy Slastikov, and Arghir Zarnescu. Some uniqueness results for minimisers of ginzburg-landau functionals. Oberwolfach Rep., 20, 2018. [ bib ]
[6] Matthieu Bonnivard, Antoine Lemenant, and Vincent Millot. On a phase field approximation of the planar Steiner problem: existence, regularity, and asymptotic of minimizers. Interfaces Free Bound., 20(1):69--106, 2018. [ bib | DOI | http ]
[7] Raphaël Côte and Yvan Martel. Multi-travelling waves for the nonlinear Klein-Gordon equation. Trans. Amer. Math. Soc., 370(10):7461--7487, 2018. [ bib | DOI | http ]
[8] Robert L. Jerrard and Didier Smets. Leapfrogging vortex rings for the three dimensional Gross-Pitaevskii equation. Ann. PDE, 4(1):Art. 4, 48, 2018. [ bib | DOI | http ]
[9] Vincent Millot, Yannick Sire, and Hui Yu. Minimizing fractional harmonic maps on the real line in the supercritical regime. Discrete and Continuous Dynamical Systems - A, 38:6195, 2018. [ bib | DOI | .pdf ]
[10] Radu Ignat, Luc Nguyen, Valeriy Slastikov, and Arghir Zarnescu. Uniqueness of degree-one Ginzburg-Landau vortex in the unit ball in dimensions N >=7. C. R. Math. Acad. Sci. Paris, 356(9):922--926, 2018. [ bib | .pdf ]
[11] Stefan Le Coz and Yifei Wu. Stability of multisolitons for the derivative nonlinear schrödinger equation. International Mathematics Research Notices, 2018(13):4120--4170, 2018. [ bib | DOI | arXiv | http ]
[12] Vincent Millot, Yannick Sire, and Kelei Wang. Asymptotics for the fractional allen--cahn equation and stationary nonlocal minimal surfaces. Archive for Rational Mechanics and Analysis, Aug 2018. [ bib | DOI | http ]
[13] Pierre Bochard and Radu Ignat. Kinetic formulation of vortex vector fields. Anal. PDE, 10(3):729--756, 2017. [ bib | .pdf ]
[14] Philippe Gravejat and Didier Smets. Smooth travelling-wave solutions to the inviscid surface quasi-geostrophic equation. International Mathematics Research Notices, page rnx177, 2017. [ bib | DOI | http ]
[15] Stephen Gustafson, Stefan Le Coz, and Tai-Peng Tsai. Stability of periodic waves of 1D cubic nonlinear Schrödinger equations. Appl. Math. Res. Express. AMRX, 2:431--487, 2017. [ bib | http ]
[16] Isabella Ianni, Stefan Le Coz, and Julien Royer. On the Cauchy problem and the black solitons of a singularly perturbed Gross-Pitaevskii equation. SIAM J. Math. Anal., 49(2):1060--1099, 2017. [ bib | DOI | .pdf ]
[17] Radu Ignat and Robert L. Jerrard. Interaction energy between vortices of vector fields on Riemannian surfaces. Comptes Rendus Mathematique, 355(5):515 -- 521, 2017. [ bib | DOI | http ]
[18] Radu Ignat and Roger Moser. Néel walls with prescribed winding number and how a nonlocal term can change the energy landscape. J. Differential Equations, 263:5846--5901, 2017. [ bib | .pdf ]
[19] Delphine Côte and Raphaël Côte. Limiting motion for the parabolic Ginzburg-Landau equation with infinite energy data. Comm. Math. Phys., to appear, 2016. [ bib | .pdf ]
[20] Fanny Delebecque, Stefan Le Coz, and Rada Maria Weishäupl. Multi-speed solitary waves of nonlinear Schrödinger systems: theoretical and numerical analysis. Comm. Math. Sci., 14(6):1599–1624, 2016. [ bib | .pdf ]
[21] Lukas Döring and Radu Ignat. Asymmetric domain walls of small angle in soft ferromagnetic films. Arch. Rational Mech. Anal., 220:889--936, 2016. [ bib | .pdf ]
[22] Radu Ignat. Interaction energy of domain walls of logarithmically decaying tails in a nonlocal variational model. Oberwolfach Reports, Volume XX/2016 (Calculus of Variations: S. Brendle, A. Figalli, R. Jerrard, N. Wickramasekera)., 2016. [ bib | .pdf ]
[23] Radu Ignat and Roger Moser. Interaction energy of domain walls in a nonlocal Ginzburg-Landau type model from micromagnetics. Arch. Rational Mech. Anal., 221:419--485, 2016. [ bib | .pdf ]
[24] Radu Ignat, Luc Nguyen, Valeriy Slastikov, and Arghir Zarnescu. Stability of point defects of degree ±1/2 in a two-dimensional nematic liquid crystal model. Calc. Var. Partial Differential Equations, to appear, 2016. [ bib | .pdf ]
[25] Stefan Le Coz, Yvan Martel, and Pierre Raphaël. Minimal mass blow up solutions for a double power nonlinear Schrödinger equation. Rev. Mat. Iberoam., 32(3):795–833, 2016. [ bib | .pdf ]
[26] Camillo De Lellis and Radu Ignat. A regularizing property of the 2D-eikonal equation. Comm. Partial Differential Equations, 40:1543--1557, 2015. [ bib | .pdf ]
[27] Radu Ignat, Luc Nguyen, Valeriy Slastikov, and Arghir Zarnescu. Instability of point defects in a two-dimensional nematic liquid crystal model. Ann. Inst. H. Poincaré Anal. Non Linéaire, 33:1131–1152, 2015. [ bib | .pdf ]
[28] Mihai Maris. On some minimization problems in R^N. Proceedings of the 8th Congress of Romanian Mathematicians, pages 216--231, 2015. [ bib | www: ]