Conjugating the inverse of a concave function.

J.-B. HIRIART-URRUTY
Université Paul Sabatier
118, route de Narbonne
31062 Toulouse cedex 4, France.
jbhu@cict.fr

Dedicated to C. LEMARECHAL on the occasion of his 60th birthday (April 1, 2004).

Abstract: This note is devoted to the clarification of the relationship between the LEGENDRE-FENCHEL conjugate of $\frac{1}{f}$ and that of $-f$ when f is a positive concave function.

Keywords: Convex functions, LEGENDRE-FENCHEL conjugate, subdifferential.

2000 Mathematics Subject Classification: 26B25, 52A41, 90C25.

1 Introduction

The LEGENDRE-FENCHEL conjugate (or transform) of a function $f : X \to \mathbb{R} \cup \{+\infty\}$ is a function defined on the topological dual space X^* of X as

$$p \in X^* \mapsto f^*(p) := \sup_{x \in X} [(p, x) - f(x)]. \quad (1)$$

In convex analysis the conjugacy operation $f \leadsto f^*$ plays a central role, therefore a large body of calculus rules have been developed for it; they can
be found in any book on the subject. There however are some particular calculus rules which have been considered only recently, see for example ([5, 3]). The present note is devoted to clarifying the calculus rule giving the conjugate of $\frac{1}{f}$ in terms of that $-f$ when f turns out to be a positive concave function. At first glance this situation can be viewed as a particular instance of a general calculus rule concerning a convex function post-composed with an increasing convex function ([2], Section 2.5 in chapter X): $x \mapsto (-f)(x)$ post-composed with $0 > y \mapsto \frac{-1}{y}$. We nevertheless provide a self-contained proof, insisting on the distinctive features of the resulting formula.

2 The conjugate of $\frac{1}{f}$.

The context of our work is the following one:

- X is a (real) Banach space; by X^* we denote the topological dual space of X, and $(p, x) \in X^* \times X \mapsto \langle p, x \rangle$ stands for the duality pairing.
- $f : X \to \mathbb{R} \cup \{-\infty\}$ is a concave upper-semicontinuous (or closed) function, strictly positive on $C := \{x \in X \mid f(x) > -\infty\}$ (assumed nonempty).

If we formulate this assumption in a way more familiar to practitioners of convex analysis or optimization, this gives: $-f : X \to \mathbb{R} \cup \{+\infty\}$ is a convex lower-semicontinuous (or closed) function, strictly negative on $\text{dom} (-f) = C$.

If C turns out to be the whole of X, then f is constant on X, so that this situation is not of much interest. In applications, C happens to be a bounded (convex) set of X, on which f is strictly positive.

The assumptions listed above are in force throughout the paper.

The inverse function of f, denoted as $\frac{1}{f}$, is defined on X as follows:

$$
(\frac{1}{f})(x) := \begin{cases}
\frac{1}{f(x)} & \text{if } x \in C \\
+\infty & \text{otherwise}
\end{cases}
$$

A classical and easily proved result is that $\frac{1}{f}$ is now convex on X, with domain C.

2
The theorem below gives the expression of \((\frac{1}{f})^\ast \) in terms of that of \((-f)^\ast\).

Theorem 1. For all \(p \in X^\ast \),

\[
(\frac{1}{f})^\ast(p) = \min \left\{ \left[\alpha(-f)^\ast(\frac{p}{\alpha}) - 2\sqrt{\alpha} \right]_{\alpha > 0}, \sigma_C(p) \right\},
\]

where \(\sigma_C \) denotes the support function of \(C \). If \(p \) belongs to the cone generated by \(\text{dom}(-f)^\ast \) (i.e. if \(p \in \mathbb{R}^\ast_+ \text{dom}(-f)^\ast \)), then

\[
(\frac{1}{f})^\ast(p) = \inf_{\alpha > 0} \left[\alpha(-f)^\ast(\frac{p}{\alpha}) - 2\sqrt{\alpha} \right].
\]

Proof. We mimic here the proof devised in [2] (p. 69 of volume II). By definition,

\[
-(\frac{1}{f})^\ast(p) = \inf_{x \in X} \left[\frac{1}{f(x)} - \langle p, x \rangle \right] = \inf_{x \in C} \left[-\frac{1}{f(x)} - \langle p, x \rangle \right]
\]

\[
= \inf_{x \in X, r > 0} \left[-\frac{1}{r} - \langle p, x \rangle \mid (-f)(x) \leq r \right]
\]

(because \(r \mapsto -\frac{1}{r} \) is increasing on \((-\infty, 0))\).

Let us define

\[f_1 : (x, r) \in X \times \mathbb{R} \mapsto f_1(x, r) := \begin{cases} -\langle p, x \rangle - \frac{1}{r} & \text{if } x \in X \text{ and } r < 0, \\ +\infty & \text{otherwise}; \end{cases} \]

\[f_2 := i_{\text{epi}(-f)} \] (indicator function of the epigraph of \(-f\)).

Thus, (5) can be written as

\[
-(\frac{1}{f})^\ast(p) = \inf_{(x, r) \in X \times \mathbb{R}} [f_1(x, r) + f_2(x, r)].
\]

We then have to compute the conjugate of a sum of functions, however in a favorable context since \(\text{int}(\text{dom} f_1) = X \times (-\infty, 0) \) and \(\text{dom} f_2 = \text{epi}(-f) \) overlap. According to the classical Fenchel duality theorem

\[
(\frac{1}{f})^\ast(p) = \min_{(s, \alpha) \in X^\ast \times \mathbb{R}} [f_1^\ast(-s, \alpha) + f_2^\ast(s, -\alpha)].
\]

3
The computation of the above two conjugate functions is easy and gives:

\[f_1^*(-s, \alpha) = -2\sqrt{\alpha} \text{ if } s = p \text{ and } \alpha \geq 0, \quad +\infty \text{ otherwise}; \]

\[f_2^*(s, -\alpha) = \sigma_{\text{epi}(-f)}(s, -\alpha) = \begin{cases}
\alpha(-f)^*(\frac{s}{\alpha}) & \text{if } \alpha > 0, \\
\sigma_C(s) & \text{if } \alpha = 0, \\
+\infty & \text{if } \alpha < 0.
\end{cases} \]

Plugging these results into (6) yields (3).

Observe that the function

\[\alpha \in \mathbb{R} \mapsto \Theta(\alpha) := \begin{cases}
\alpha(-f)^*(\frac{p}{\alpha}) - 2\sqrt{\alpha} & \text{if } \alpha > 0, \\
\sigma_C(p) & \text{if } \alpha = 0, \\
+\infty & \text{if } \alpha < 0
\end{cases} \]

is convex and lower-semicontinuous; its value at 0, that is \(\sigma_C(p) \), is the limit of \(\Theta(\alpha) \) when \(\alpha \in \text{dom } \Theta \to 0^+ \).

If \(p \) belongs to \(\mathbb{R}_+^* \text{dom } (-f)^* \), the domain of \(\Theta \) cannot reduce to \(\{0\} \), whence

\[\min_{\alpha \geq 0} \Theta(\alpha) = \inf_{\alpha > 0} \Theta(\alpha), \]

that is to say (4). \(\square \)

Remarks 2.

- It may happen that \(p_0 \in \text{dom } (\frac{1}{f})^* \) but \(p_0 \notin \mathbb{R}_+^* \text{dom } (-f)^* \). In that case, (4) is invalid and the minimal value in (3) is achieved "at the limit \(\alpha_0 = 0 \)"; thus \((\frac{1}{f})^*(p_0) = \sigma_C(p_0) \). See Example 5 below for an illustration of such a situation.

- According to formula (3), \(\text{dom } (\frac{1}{f})^* \) contains \(\mathbb{R}_+^* \text{dom } (-f)^* \). We will see later on that the closed (convex) cones generated by \(\text{dom } (-f)^* \) and \(\text{dom } (\frac{1}{f})^* \) are equal. Accordingly, \(p_0 \in \text{dom } (\frac{1}{f})^* \) belongs to \(\mathbb{R}_+^* \text{dom } (-f)^* \) "generically", i.e. at the exception of some "boundary-situations" such as that described above.

In view of the formulas (3) and (4) on \((\frac{1}{f})^*(p) \), on may ask the following questions:
Could we delineate those p for which the infimum in (4) is achieved for some $\alpha > 0$?
If so, is there any way of determining such α in terms of the given p?
Before tackling these questions, it is worthwhile to consider the next simple examples in order to grasp what can be expected and what not.

Example 3. Let $C = [-1, +1]$ and

$$f : x \in \mathbb{R} \mapsto f(x) := \begin{cases} 2 - |x| & \text{if } x \in C, \\ -\infty & \text{otherwise}. \end{cases}$$

Then, $(-f)^*$ and $(\frac{1}{f})^*$ are even functions with:

$$(-f)^*(p) = \begin{cases} 2 & \text{if } 0 \leq p \leq 1, \\ p + 1 & \text{if } p \geq 1; \end{cases}$$

$$(\frac{1}{f})^*(p) = \begin{cases} -1/2 & \text{if } 0 \leq p \leq 1/4, \\ 2(p - \sqrt{p}) & \text{if } 1/4 \leq p \leq 1, \\ p - 1 & \text{if } p \geq 1. \end{cases}$$

Let, for instance, $\frac{1}{4} \leq p_0 \leq 1$. The minimum value in the right-hand side of the formula

$$(\frac{1}{f})^*(p_0) = \min \left\{ \alpha(-f)^*(\frac{p_0}{\alpha}) - 2\sqrt{\alpha}, \ p_0 \right\}$$

5
is achieved for $\alpha_0 = p_0$.

Example 4. Let $C = [0, +\infty)$ and

$$f : x \in \mathbb{R} \mapsto f(x) := \begin{cases} 2 - e^{-x} & \text{if } x \geq 0, \\ -\infty & \text{otherwise.} \end{cases}$$

Then, an easy calculation leads to

$$(-f)^*(p) = \begin{cases} 1 & \text{if } p \leq 1, \\ -p \log(-p) + p + 2 & \text{if } -1 \leq p \leq 0, \\ +\infty & \text{if } p \geq 0; \end{cases}$$

while the explicit expression of $\left(\frac{1}{f}\right)^*(p)$ is fairly complicated (see however Figure 2 for a sketch of its graph). Let $p_0 = 0$. Then the minimum value in the right-hand side of the formula

$$\left(\frac{1}{f}\right)^*(0) = \min \left\{ [2\alpha - 2\sqrt{\alpha}]_\alpha > 0, 0 \right\}$$

is achieved for $\alpha_0 = \frac{1}{4}$.
This is a general rule. Suppose $M := \sup_{x \in C} f(x) < +\infty$ (as it is the case in Example 3 and the present one). Then the minimum value in the right-hand side of the formula expressing $\left(\frac{1}{f}\right)^*(0)$ is achieved at $\alpha_0 = \frac{1}{M^2}$; the corresponding value is $-\frac{1}{M}$, as expected.

Example 5. Let $C = [0, +\infty)$ and

$$f : x \in \mathbb{R} \mapsto f(x) := \begin{cases} x + 1 & \text{if } x \geq 0, \\ -\infty & \text{otherwise}. \end{cases}$$

Then:

$$(-f)^*(p) = \begin{cases} 1 & \text{if } p \leq -1, \\ +\infty & \text{if } p > -1; \end{cases}$$

$$\left(\frac{1}{f}\right)^*(p) = \begin{cases} -1 & \text{if } p \leq -1, \\ -p - 2\sqrt{-p} & \text{if } -1 \leq p \leq 0, \\ +\infty & \text{if } p > 0. \end{cases}$$

Let $p_0 = 0$. Here $p_0 \in \text{dom} \left(\frac{1}{f}\right)^*$ but $p_0 \notin \mathbb{R}^+_* \text{dom} (-f)^*$. This is an example where

$$\alpha(-f)^*(\frac{p_0}{\alpha}) - 2\sqrt{\alpha} = +\infty \text{ for all } \alpha > 0,$$

whence the minimum value in the formula (3) yielding $\left(\frac{1}{f}\right)^*(p_0)$ is achieved "at the limit $\alpha_0 = 0" \text{ and has the value } \sigma_C(p_0) = 0.
To answer the questions posed as an introduction to the examples listed above, we need to explore furthermore the relationship between \(\text{dom} \left(\frac{1}{f} \right)^* \) and \(\text{dom} \left(-f \right)^* \) by establishing a link between the subdifferential of \(\frac{1}{f} \) that of \(-f\). The connecting formula, as expected, is the one given in the statement below.

Proposition 6. For all \(x \in C \),

\[
\partial \left(\frac{1}{f} \right)(x) = \frac{\partial (-f)(x)}{[f(x)]^2}.
\]

Proof. We proceed to compare the directional derivates \(\left(\frac{1}{f} \right)'(x, d) \) and \((-f)'(x, d) \) for all \(d \in X \).

First case \(x + td \notin C \) for all \(t > 0 \).

In that case, both \(\left(\frac{1}{f} \right)'(x, d) \) and \((f)'(x, d) \) equal \(+\infty\).

Second case \(x + td \in C \) for some \(t > 0 \).

Thus, the line-segment \([x, x + td]\) is entirely contained in \(C \); therefore it comes from the assumption made on \(f \) (an upper-semicontinuous concave function) that the function (of the real variable) \(t \mapsto f(x + td) \) is continuous on \([0, t]\). We infer from that,

\[
\frac{1}{f(x + td)} - \frac{1}{f(x)} = \frac{(-f)(x + td) - (-f)(x)}{t} \frac{t}{f(x + td)f(x)} \rightarrow \lim_{t \to 0^+} \frac{(-f)(x + td) - (-f)(x)}{t},
\]

whence

\[
\left(\frac{1}{f} \right)'(x, d) = \frac{(-f)'(x, d)}{[f(x)]^2}.
\]

In summary, the equality (8) holds for all \(d \in X \). Since we have for any convex function \(\varphi \) on \(X \)

\[
\partial \varphi(x) = \left\{ p \in X^* \mid \langle p, d \rangle \leq \varphi'(x, d) \text{ for all } d \in X \right\},
\]

the announced relationship (7) readily follows from (8). \(\square\)
Not all the \(p \) in \(\text{dom} \left(\frac{1}{f} \right)^* \) are in \(\text{Im} \partial \left(\frac{1}{f} \right) \); however we have

\[
\text{Im} \partial \left(\frac{1}{f} \right) \subset \text{dom} \left(\frac{1}{f} \right)^* \subset \text{Im} \partial \left(\frac{1}{f} \right)
\]

(9)

(the second inclusion follows from the approximation theorem of BRØNDSTED-ROCKAFELLAR (1965)). For those \(p \) which are in \(\text{Im} \partial \left(\frac{1}{f} \right) \), we are able to provide \(\alpha > 0 \) at which the infimum is achieved in the formula (4).

Theorem 7. Let \(p_0 \in \text{Im} \partial \left(\frac{1}{f} \right) \), and consider \(x_0 \) such that \(p_0 \in \partial \left(\frac{1}{f} \right)(x_0) \). Then,

\[
\left(\frac{1}{f} \right)^*(p_0) = \frac{(-f)^* \{ \langle f(x_0) \rangle^2 p_0 \}}{|f(x_0)|^2} - \frac{2}{f(x_0)}. \tag{10}
\]

In other words: we are in a situation where \(p_0 \) belongs to the convex cone \(\mathbb{R}_+^* \text{dom} \left(f \right)^* \), and the minimizer in the right-hand side of (4) is \(\alpha_0 = \frac{1}{|f(x_0)|^2} \).

Proof. We have \(p_0 \in \partial \left(\frac{1}{f} \right)(x_0) \) and, according to (7), \(|f(x_0)|^2 p_0 \in \partial (-f)(x_0) \). Using the characterization of the subdifferential of \(\varphi \) in terms of its conjugate \((s_0 \in \partial \varphi(x_0) \text{ if and only if } \varphi^*(s_0) + \varphi(x_0) - \langle s_0, x_0 \rangle = 0) \), we have:

\[
(-f)^* \{ \langle f(x_0) \rangle^2 p_0 \} - f(x_0) + \langle f(x_0), p_0, x_0 \rangle = 0, \tag{11}
\]

\[
\left(\frac{1}{f} \right)^*(p_0) + \frac{1}{f(x_0)} - \langle p_0, x_0 \rangle = 0. \tag{12}
\]

Dividing (11) by \(|f(x_0)|^2 \) and comparing the resulting equality to (12), we derive (10).

When \(p_0 \in \text{Im} \partial \left(\frac{1}{f} \right) \), we clearly are in a situation where \(p_0 \in \mathbb{R}_+^* \text{dom} \left(-f \right)^* \) since (according to (7)) \(p_0 \in \mathbb{R}_+^* \text{Im} \partial (-f) \subset \mathbb{R}_+^* \text{dom} \left(-f \right)^* \). Then the (strictly) convex function

\[
\alpha > 0 \mapsto \alpha (-f)^* \left(\frac{p_0}{\alpha} \right) - 2 \sqrt{\alpha}
\]
is minimized at \(\alpha_0 = \frac{1}{[f(x_0)]^2} \).

\[
\square
\]

Remarks 8. - Even if \(p_0 \notin \operatorname{Im} \partial \left(\frac{1}{f} \right) \), it may happen that the infimum in the right-hand side of (4) is achieved at some \(\alpha_0 > 0 \), but such \(\alpha_0 \) is not necessarily \(\frac{1}{[f(x_0)]^2} \) for some \(x_0 \in C \). Indeed, consider again Example 4 and \(p_0 = 0 \). We note that

\[
p_0 \notin \operatorname{Im} \partial \left(\frac{1}{f} \right), \quad p_0 \in \mathbb{R}^*_+ \operatorname{dom} (-f)^*,
\]

\[
(\frac{1}{f})^*(p_0) = \inf_{\alpha > 0} [\alpha(-f)^* \left(\frac{p_0}{\alpha} \right) - 2\sqrt{\alpha}]
\]

\[
= [\alpha(-f)^* \left(\frac{p_0}{\alpha_0} \right) - 2\sqrt{\alpha_0}] \quad \text{for} \quad \alpha_0 = \frac{1}{4},
\]

but there is no \(x_0 \in C \) such that \(\frac{1}{4} = \frac{1}{[f(x_0)]^2} \) (such an \(x_0 \) is "rejected at the infinity on \(C'' \)).

- We have:

\[
\operatorname{dom} \left(\frac{1}{f} \right)^* = \operatorname{Im} \partial \left(\frac{1}{f} \right), \quad \operatorname{dom} (-f)^* = \operatorname{Im} \partial (-f)
\]

(see the comments about (9));

\[
\mathbb{R}^*_+ \operatorname{Im} \partial (-f) = \mathbb{R}^*_+ \operatorname{Im} \partial \left(\frac{1}{f} \right)
\]

(this results from (7)).

Combining (13) and (14) gives rise to the following relationship between \(\operatorname{dom} \left(\frac{1}{f} \right)^* \) and \(\operatorname{dom} (-f)^* \):

\[
\mathbb{R}^*_+ \operatorname{dom} \left(\frac{1}{f} \right)^* = \mathbb{R}^*_+ \operatorname{dom} (-f)^*
\]

- There are several possible situations where \(\operatorname{Im} \partial \left(\frac{1}{f} \right) = \operatorname{dom} \left(\frac{1}{f} \right)^* \); one of them is when \(X \) is reflexive and \(C \) is bounded. Indeed, in that case, \(\left(\frac{1}{f} \right)^* \)
is continuous throughout X^* and $Im \partial \left(\frac{1}{f} \right) = dom \left(\frac{1}{f} \right)^* = X^*$ ([4], Corollary 7G); thus formula (10) holds true at any $p_0 \in X^*$.

The expression (10) for \(\left(\frac{1}{f} \right)^*(p) \), more comfortable and easier to handle than (3) (provided one can solve the equation $p \in \partial \left(\frac{1}{f} \right)(x)$), would then allow us to pursue further the study of possible relations between the mathematical objects (from the viewpoint of convex analysis) associated with the convex functions $-f$ and $\frac{1}{f}$.

References

