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Abstract Measuring attenuation coefficients is a fun-

damental problem that can be solved with diverse tech-

niques such as X-ray or optical tomography and lidar.

We propose a novel approach based on the observation

of a sample from a few different angles. This principle

can be used in existing devices such as lidar or vari-

ous types of fluorescence microscopes. It is based on

the resolution of a nonlinear inverse problem. We pro-

pose a specific computational approach to solve it and

show the well-foundedness of the approach on simulated

data. Some of the tools developed are of independent

interest. In particular we propose an efficient method

to correct attenuation defects, new robust solvers for

the lidar equation as well as new efficient algorithms to

compute the proximal operator of the logsumexp func-

tion in dimension 2.

Keywords Non-convex optimization, Bayesian

estimation, lidar, fluorescence microscopy, multiview

estimation, Poisson noise.
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1 Introduction

The ability to analyze the composition of gases in the

atmosphere, the organization of a biological tissue, or

the state of organs in the human body has invaluable

scientific and societal repercussions. These seemingly

unrelated issues can be solved thanks to a common prin-

ciple: rays traveling through the sample are attenuated

and this attenuation provides an indirect measurement

of absorption coefficients. This is the basis of various

devices such as X-ray and optical projection tomogra-

phy [22,31,35] or lidar [36]. The aim of this paper is to

provide an alternative approach based on the observa-

tion of the sample from a few different angles.

1.1 The basic principle

Let us provide a flavor of the proposed idea in an ideal-

ized 1D system. Assume that two measured signals u1
and u2 are formed according to the following model:

u1(x) = β(x) exp

(
−
∫ x

0

α(t) dt

)
for x ∈ [0, 1] (1)

and

u2(x) = β(x) exp

(
−
∫ 1

x

α(t) dt

)
for x ∈ [0, 1]. (2)

The function β : [0, 1]→ R+ will be referred to as a den-

sity throughout the paper. It may represent different

physical quantities such as backscatter coefficients in
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lidar or fluorophore densities in microscopy. The func-

tion α : [0, 1] → R+ will be referred to as the attenua-

tion and may represent absorption or extinction coeffi-

cients. The signals u1 and u2 can be interpreted as mea-

surements of the same scene under opposite directions.

Equations (1) and (2) coincide with the Beer-Lambert

law that is a simple model to describe attenuation of

light in absorbing media. The question tackled in this

paper is: can we recover both α and β from the knowl-

edge of u1 and u2?

Under a positivity assumption β(x) > 0 for all x ∈
[0, 1], the answer is straightforwardly positive. Setting

v(x) = log
(
u2(x)
u1(x)

)
, equations (1) and (2) yield:

v(x) =

∫ x

0

α(t) dt−
∫ 1

x

α(t) dt. (3)

Therefore

α(x) =
1

2

∂

∂x
v(x) (4)

and

β(x) =
u1(x)

exp
(
−
∫ x
0
α(t) dt

) . (5)

Unfortunately, formulas (4) and (5) only have a the-

oretical interest: they cannot be used in practice since

computing the derivative of a log of a ratio is extremely

sensitive to noise and thus very unstable from a numer-

ical point of view. We will therefore design a numerical

procedure based on a Bayesian estimator to retrieve the

density β and attenuation coefficients α in a stable and

efficient manner. It is particularly relevant when the

data suffer from Poisson noise.

1.2 Contributions

This paper contains various contributions listed below.

– We show that it is possible to retrieve attenuation

coefficients from multiview measurements in differ-

ent systems such as lidar, confocal or SPIM micro-

scopes. Figure 1 summarizes the proposed idea. The

attenuation, which is usually considered as a nui-

sance in confocal microscopy is exploited to mea-

sure the absorption coefficients. The algorithm suc-

cessfully retrieves estimates of the density and at-

tenuation from two attenuated and noisy images.

Let us also mention that some researchers already

proposed to measure absorption and correct atten-

uation by combining optical projection tomography

and SPIM imaging [21]. The principle outlined here

shows that much simpler optical setups (a tradi-

tional confocal microscope) theoretically allows es-

timating the same quantities.

– We propose novel Bayesian estimators for the den-

sity α and the attenuation β based on a Poisson

noise modeling.

– The proposed estimators are solutions of a noncon-

vex problem. We show that exact solutions of the

problem can be obtained by using a trick making

the problem convex.

– The resulting convex program is challenging from a

numerical point of view and involves functions that

are uncommon in imaging. This leads us to develop

an efficient algorithm to compute the proximal op-

erator of the logsumexp function in dimension 2.

– The proposed estimators also seem to be novel for

the standard mono-view inverse problem in lidar

and for correcting attenuation defects under a Pois-

son noise assumption with multiple views.

– We perform a numerical validation of the proposed

ideas on synthetic data, showing the well-foundedness

of the approach. The validation of the method on

specific devices is left as an outlook for future works.

We found the general principle stated above inde-

pendently, but became aware of a few papers proposing

similar concepts after finishing the manuscript. In lidar,

the idea was explored in the 1980’s already [9, 15, 20].

In confocal microscopy, the recent paper [30] proposes

a setting very similar to the one proposed here. From a

practical point of view, the early papers [9,15,20] were

based on simple Wiener filtering approaches. Our tests

using these approaches on simulations led us to the con-

clusion that they were far too unstable and we will not

report these results. On the other hand, the paper [30]

presents a closely related framework: the authors use

a maximum a posteriori estimator with a total vari-

ation regularizer, leading to a variational formulation

of the problem. We will see however that its structure

seems less amenable to an efficient numerical resolution.

Our conclusion using the L-BFGS approach suggested

in [30] is that unless a very good initial guess is pro-

vided, the method is unable to retrieve the attenuation,

whereas our globally convergent approach is insensitive

to the starting point.

2 Applications

In this section, we show various applications where the

methodology proposed in this paper can be applied.

2.1 Lidar

In lidar, an object (atmosphere, gas,...) is illuminated

with a laser beam. Particles within the object reflect
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(a) Density β (b) Attenuation α

(c) Image u1 (d) Image u2

(e) Estimated β

SNR=22.4dB

(f) Estimated α

SNR=9.4dB

Fig. 1: Illustration of the contribution. A sample (here

an insect) has a fluorophore density β shown in Fig. 1a

and an attenuation map α shown in Fig.1b. The two

measured images u1 and u2 are displayed in Fig. 1c

and 1d. As can be seen, they are attenuated differently

(top to bottom and bottom to top) since the optical

path is reversed. From these two images, our algorithm

provides a reliable estimate of each map in Fig. 1e and

1f despite Poisson noise.

light. The time to return of the reflected light is then

measured with a scanner. The received signal u1(x)

is the backscattered mean power at altitude x for a

specific wavelength. The density β corresponds to the

backscattered coefficient, while α is called extinction

coefficient. The equation relating u1 to α and β is:

u1(x) = P
(
C

x2
β(x) exp

(
−2

∫ x

0

α(t) dt

))
, (6)

where C is independent of x. The notation P(z) stands

for a Poisson distributed random variable of parame-

ter z. The Poisson distribution is a rather good noise

model in lidar, since measurements describe a number

of detected photons. The term C
x2 β(x) appears in the

lidar equation (6) instead of simply β. The algorithm

developed later will allow retrieving C
x2 β(x) instead of

β. This is not a problem since there is a direct known

relationship between both.

Remark 1 In Raman lidar, the coefficient β corresponds

to the molecular density of the atmosphere, while α

is the sum of extinction coefficients at different wave-

lengths. The theory developed herein also applies to

this setting.

When the backscatter coefficient β has a known an-

alytical relationship with the extinction coefficient α,

direct inversion is possible. A popular method is Klett’s

formula [18] for instance. Alternative formula exist [1]

when the backscatter coefficient is known. The recent

trend consists in using iterative methods coming from

the field of inverse problems [12, 26, 32], leading to im-

proved robustness. All these approaches crucially de-

pend on a precise knowledge of the backscatter coeffi-

cient. This is a strong hypothesis that is often rough or

unreasonable in practice.

To overcome this issue, a few authors proposed to

use two opposite lidars and to retrieve the attenuation

coefficients using equation (4) [9, 15, 20]. The stability

to noise was ensured by linear filtering of the input and

output data. Our simulations using them did not yield

satisfactory results and we will not report them.

2.2 Fluorescence microscopy

The principle proposed herein can also be applied to

some fluorescence microscopes. This idea was already

proposed in confocal microscopy [30]. Here we show

that it can be extended to other microscopes such as

4π or selective plane illumination microscopes (SPIM).

All fluorescence microscopes share a common princi-

ple: a source of illumination excites fluorophores within

the sample, which in turn emit some light. This light

is collected with a camera. Both the illumination and

emission light can be absorbed along its optical path,

which results in inhomogeneities in the image contrasts.

Depending on the imaging device, the way light ab-

sorption distorts images can be different. We illustrate

this with two synthetic examples in Fig. 3. In a confo-

cal microscope, the illumination and emission light both

travel in the same direction, creating unidirectional ab-

sorption. Two images suffering from opposite contrast

losses can be obtained by rotating the sample or by

using a 4-pi microscope [8, 13], see Fig. 3a.

In the multi-view versions of the selective plane illu-

mination microscopy SPIM (also called light sheet fluo-

rescence microscopy) [6,16,19,34], the illumination and
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emission light travel in orthogonal directions, creating

bi-directional contrast losses, see Fig. 3b.

The attenuation map α is wavelength dependent

and to be precise, we should consider two attenuation

maps αi and αe for the illumination and emission light

respectively. In this work, we simply assume that the

two are related through a linear relationship α = αe =

καi, where κ is a positive scalar. Under this assump-

tion, the microscopes provide a set of images (ui)1≤i≤m,

which can be modeled as follows:

ui = P (β exp(−Aiα)) , (7)

where Ai denotes a linear integral operator that de-

pends on the geometry of the optical setup. Figure 2

provides a description of these operators in the case of

a confocal microscope and of a multi-view SPIM micro-

scope. For a point x ∈ Rd, the expression of (Aiα)(x)

is given by:

(Aiα)(x) =

∫
S1(x)

α(y)dy + κ

∫
S2(x)

α(y)dy,

where S1(x) and S2(x) are the cones of light depicted

in Fig. 2. In our numerical experiments, we use a sim-

ple version where the operators return line integrals

(and not cone integrals). This amounts to assuming

that the light rays are infinitely thin. However, the pro-

posed approach may be extended to arbitrary geome-

tries through the use of heavier linear algebra solvers.

3 MAP estimator and numerical evaluation

In this section, we describe our numerical procedure

completely. We start by providing a discrete version of

our image formation model. Then, we design a Bayesian

estimator of the attenuation map α and of the density

β. We finally design an effective optimization algorithm

to compute our statistical estimator.

3.1 The discretized model

The discrete model we consider in this paper reads:
u1 = P (β exp(−A1α))
...

um = P (β exp(−Amα)) .

(8)

The signals ui, β and α are assumed to be nonnegative

and belong to Rn, where n = n1 . . . nd denotes the num-

ber of pixels and d is the space dimension. The value of

a vector u1 at location i = (i1, . . . , id) will be denoted

either u1[i] or u1[i1, . . . , id]. The matrices Ai in Rn×n

are discretization of linear integral operators. In our nu-

merical experiments, we use m = 2 views and the prod-

uct A1u1 simply represents the cumulative sum of u1
along one direction while the product A2u2 represents

the cumulative sum of u2 in the opposite direction. For

instance, for a 1D signal, we set:

(A1u)[i] =

i∑
j=1

u1[j].

Therefore, the matrix A1 has the following lower trian-

gular shape:

A1 =


1 0 0 0 . . . 0

1 1 0 0 . . . 0

1 1 1 0 . . . 0

. . . . . . . . .
. . . . . . 0

1 1 1 1 . . . 1

 (9)

We are now ready to design a Bayesian estimator of

α and β from model (8).

3.2 A Bayesian estimator

The Maximum A Posteriori (MAP) estimators α̂ and β̂

of α and β are defined as the maximizers of the condi-

tional probability density:

max
α∈Rn,β∈Rn

p(α, β|(ui)1≤i≤m).

By using the Bayes rule and a negative log-likelihood,

this is equivalent to finding the minimizers of:

min
α∈Rn,β∈Rn

− log(p((ui)1≤i≤m|α, β))− log(p(α, β)).

Let us evaluate p((ui)1≤i≤m|α, β). To this end, set

λj = β exp(−(Ajα)).

Since the distribution of a Poisson distributed random

variable with parameter λ has the following probability

mass function:

P(X = k) =
λke−λ

k!
,

we get:

− log (p((ui)1≤i≤m|α, β))

=

n∑
i=1

m∑
j=1

λj [i]− uj [i] log(λj [i]) + C,

where C is a value that does not depend on α and β.

Next, we assume that α and β are independent random

vectors with probability distribution functions of type:

p(α) ∝ exp(−Rα(α)) and p(β) ∝ exp(−Rβ(β)),
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Lens

Illumination

Emission

× x

S1(x)

S2(x)

(a) Confocal

Lens

Illumination

Emission

× x
S1(x)

S2(x)

(b) Multi-SPIM

Fig. 2: Path of the light from different microscopes.

(a) Confocal microscope (b) Multi-SPIM microscope

Fig. 3: Simulated contrast loss in a slice of mouse embryo with a confocal microscope (left) and a multi-view light

sheet fluorescence microscope (left).
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where Rα : Rn → R∪{+∞} and Rβ : Rn → R∪{+∞}
are regularizers describing properties of the density and

attenuation maps. Overall, the optimization problem

characterizing the MAP estimates reads:

min
α∈Rn,β∈Rn

F (α, β) (10)

where

F (α, β) = Rα(α) +Rβ(β)+〈
m∑
j=1

β exp (−Ajα) + uj (Ajα− log(β)) ,1

〉
(11)

and 1 stands for the vector in Rn with all components

equal to 1.

Remark 2 For m = 1 view, the problem minα F (α, β)

allows recovering the attenuation knowing the density:

this is the standard inverse problem met in lidar. To

the best of our knowledge, the proposed formulation is

novel for this problem.

Remark 3 The problem minβ F (α, β) corresponds to cor-

recting the attenuation on the density map. This is also

a frequently met problem [3, 17, 27, 28] and to the best

of our knowledge, the proposed approach - based on the

MAP principle - is original, though it bear resemblances

with [30] for instance.

3.3 Making the problem convex

Let us start by analyzing the convexity properties of the

function F . To this end, let us introduce the function

G : Rn × Rn+ → R defined by:

G(α, β) =〈
m∑
j=1

β exp (−Ajα) + uj (Ajα− log(β)) ,1

〉
.

Notice that F (α, β) = G(α, β) + Rα(α) + Rβ(β). The

following proposition provides the domain of convexity

of G.

Proposition 1 The function G

– is convex on each variable separately on Rn × Rn+.

– is non convex on Rn × Rn+.

– has a positive semidefinite Hessian on the (noncon-

vex) set:{
(α, β) ∈ Rn × Rn+,

β

m∑
j=1

exp(−Ajα) ≤
m∑
j=1

uj

}
.

(12)

This proposition is proved in the appendix 8.1. It

shows that if Rα and Rβ are convex functions, then F

is convex in each variable separately. Unfortunately, it is

nonconvex on the product space unless the regularizers

Rα and Rβ compensate for the nonconvexity. The main

observation in this paragraph is that it is possible to

find a global minimizer of F when Rα is a standard

convex regularizer and Rβ is the indicator function of

the positive orthant. This property is related to the

third item in Proposition 1.

Proposition 2 Set

Rβ(β) = ιRn+(β)

:=

{
0 if β[i] ≥ 0,∀i ∈ {1, . . . , n},
+∞ otherwise.

Then, if they exist, the solutions (α̂, β̂) of problem (10)

are given by:

α̂ ∈ argmin
α∈Rn

Rα(α) (13)

+

〈
m∑
j=1

uj

[
Ajα+ log

(
m∑
i=1

exp(−(Aiα))

)]
,1

〉

and

β̂ =

∑m
j=1 uj∑m

j=1 exp (−Ajα̂)
. (14)

In addition, Problem (13) is convex if the regularizer

Rα is convex.

The expression (14) can be seen as a simple esti-

mator of β knowing (uj)1≤j≤m and α. Notice that it

coincides exactly with the boundary of the set (12).

The existence and uniqueness of minimizers can also

be shown by adding assumptions on Rα, such as strict

convexity. We do not study this question further, since

at this point we state results for arbitrary regularizers.

The convexity of problem (13) is critical: it shows

that global minimizers of (14) can likely be computed

if the regularizer Rα is chosen wisely. This observation

motivates solving (13) to get an estimate of α̂. The only

problem is that the estimated density β̂ is regularized

mildly using the sole non-negativity assumption. Hence,

we propose an additional denoising step in the next

paragraph.

3.4 Density estimation with a fixed attenuation

In order to remove the noise from the density, we use

once again a MAP estimator with a more advanced reg-

ularizer Rβ , assuming that the true attenuation α is

actually equal to α̂.
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Following Section 3.2, we get that the estimator
ˆ̂
β

is given by:

ˆ̂
β ∈ argmin

β∈Rn+
F (α̂, β) = argmin

β∈Rn+
Rβ(β)+ (15)〈

m∑
j=1

β exp (−Ajα̂) + uj (Ajα̂− log (β)) ,1

〉
,

where we assumed that β is a random vector with prob-

ability distribution function of type:

p(β) ∝ exp (−Rβ(β)) .

Once again, the global solution of this problem can

be computed by choosing a sufficiently simple convex

regularizer Rβ .

Proposition 3 Problem (15) is convex for a convex

regularizer Rβ.

Proof The proof derives directly from Proposition 1,

first item.

4 Optimization methods

4.1 Recovering the attenuation

We now delve into the numerical resolution of (13).

First, we need to choose a convex regularizer Rα. In this

paper, we propose to simply use the total variation [29]

together with a non-negativity constraint, which is well

known to preserve sharp edges. Its expression is given

by:

Rα(α) = λα

n∑
i=1

‖(∇α)[i]‖2 + ιRn+(α),

where ∇ : Rn → Rdn is a discretization of the gradient,

λα ≥ 0 is a regularization parameter and ιRn+ is the

indicator of the nonnegative orthant. We will use the

standard discretization proposed in [4] in our numerical

experiments.

Problem (13) is convex, but rather hard to mini-

mize for various reasons listed below. First, the vectors

α and β may be very high dimensional, preventing the

use of an arbitrary black-box method. Second, the reg-

ularizer Rα is non differentiable. Third, the operators

Ai have a spectral norm depending on the dimension n,

preventing the use of gradient based methods since the

Lipschitz constant of the gradient would be too high,

see Proposition 4. Last, the proximal operator associ-

ated to the logsumexp function has no simple analytical

formula.

Proposition 4 Matrix A1 in (9) satisfies ‖A1‖2→2 &
n, where ‖ · ‖2→2 stands for the spectral norm.

Proof

‖A1‖22→2 ≥

∥∥∥∥∥∥∥A1

1/
√
n

...

1/
√
n


∥∥∥∥∥∥∥
2

2

≥ 1

n

∥∥∥∥∥∥∥∥∥


1

2
...

n


∥∥∥∥∥∥∥∥∥

2

2

&
n3

n
= n2.

A large number of splitting methods have been de-

veloped to solve problems of type (13), and we refer

to the excellent review papers [5, 7] for an overview.

Among them, the Simultaneous Direction Method of

Multipliers (SDMM), a variant of the ADMM [11,23] is

particularily adapted to the structure of our problem.

This algorithm allows solving problems of type:

min
α∈Rn

g1(L1α) + . . .+ gm(Lmα), (16)

where functions gi : Rn → R∪{+∞} are convex closed

and the operators Li : Rn → Rmi are linear and such

thatQ =
∑n
i=1 L

T
i Li is an invertible matrix. The SDMM

then takes the algorithmic form described in Algorithm

1.

Algorithm 1 The SDMM algorithm to solve (16)

1: input: Nit, γ > 0, (yi,0)1≤i≤m, (zi,0)1≤i≤m
2: for k = 1 to Nit do

3: xk = Q−1
∑m
i=1 L

T
i (yi,k − zi,k)

4: for i = 1 to m do

5: si,k = Lixk.

6: yi,k+1 = proxγgi (si,k + zi,k)
7: zi,k+1 = zi,k + si,k − yi,k+1

8: end for

9: end for

To cast problem (13) into form (16), we use the

following choices. We set L2 = c2∇

L1 : Rn → R2n

α 7→ c1

(
A1α

A2α

)
, (17)

g1 : R2n → R ∪ {+∞}(
z1
z2

)
7→
∑n
i=1

∑2
j=1 uj [i]

(
zj [i]/c1

+ log
(∑2

j=1 exp (−zj [i]/c1)
))

,

and

g2

z1...
zd

 =
λ

c2

n∑
i=1

√
z21 [i] + . . .+ zd[i]2,
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L3 = c3In and g3(z) = ιRn+(z).

The numbers c1, c2, c3 are positive constants allowing to

accelerate the algorithm’s convergence by balancing the

relative importance of each term. This can also be seen

as a simple diagonal preconditioner. In our numerical

experiments, we set c1 = 1 and tune c2 and c3 manually

to accelerate convergence.

In order to apply Algorithm 1, we need to compute

the proximal operators of each function gi, defined by:

proxγgi(z0) = argmin
z∈Rmi

γgi(z) +
1

2
‖z − z0‖22.

The proximal operators of g2 and g3 have closed form

solutions found in nearly all recent total variation mini-

mization solvers. We refer to [23] for instance. Unfortu-

nately, the proximal operator of g1 has no closed-form

expression. In order to compute it, we propose using a

non trivial Newton-based algorithm described in section

8.3. Finally, we need to evaluate matrix-vector prod-

ucts with Q−1. This can be achieved using either a LU

factorization or a conjugate gradient. The LU factor-

ization is feasible if the operator acts independently on

each column of the image, since the matrix then has a

moderate size. It is not feasible in general for arbitrary

integral operators due to the large image size. Hence, in

our numerical experiments, we simply use a conjugate

gradient (CG) algorithm. The precision of the resolu-

tion is fixed and the CG algorithm is initialized with the

result at the previous iteration. In practice, we observe

that 10 iterations are enough for the overall algorithm

to converge.

To conclude this paragraph, we illustrate the results

obtained by the described procedure in Fig. 4.

4.2 Recovering the density

In this paragraph, we focus on the resolution of prob-

lem (15). This amounts to simultaneously correcting the

attenuation and denoising the resulting image. This is

a rather simple inverse problem, but it seems original

due to the noise statistics. A Poisson distributed vari-

able multiplied by a positive constant different from 1

is not Poisson anymore. This makes the proposed al-

gorithm similar, but different from existing approaches

developed for Poisson noise in [10,33] for instance.

A simple idea to regularize the problem is to use the

total variation again, i.e. to set

Rβ(β) = λβ

n∑
i=1

‖(∇β)[i]‖2.

Once again the resulting problem can be solved with

the SDMM. Let us detail this procedure. Define

a[i] =

2∑
j=1

exp(−(Ajα)[i]) and u[i] =

2∑
j=1

uj [i].

The problem then reads:

min
β∈Rn+

n∑
i=1

a[i]β[i]− u[i] log(β[i]) + λβ

n∑
i=1

‖(∇β)[i]‖2

= min
β∈Rn

f1(L1β) + f2(L2β),

with L1 = c1In,

f1 : Rn → R ∪ {+∞}
z 7→ ιRn+(z) + 1

c1

∑n
i=1 a[i]z[i]− u[i] log(z[i]),

L2 = c2∇ and

f2 : R2n → R(
z1
z2

)
7→ λβ

c2

∑n
i=1

√
z1[i]2 + z2[i]2.

The proximal operators of f2 is standard and we

do not detail it here. The proximal operator of f1 is

provided below:

Proposition 5 We have:

proxγf1(z0) = (18)

−(γ/c1a− z0) +
√

(γ/c1a− z0)2 + 4γu

2
.

Proof It suffices to write the first order optimality con-

ditions of minz≥0 1/2‖z−z0‖22+a/c1z−u log(z/c1). This

shows that z is the root of a second order polynomial.

Its only positive root is given in (18).

We show a typical result of total variation minimiza-

tion in Fig. 5. Pamareter λβ was chosen manually so as

to maximize the SNR of the result.

5 Additional comments

5.1 Parameter selection

Data terms The two data term parameters are λα and

λβ . They specify the regularity of the attenuation and

the density respectively. In all our experiments, we op-

timized them by trial and error. We observed experi-

mentally, that similar results are obtained within a rel-

atively large range, making a manual optimization quite

easy. In addition, for a given measurement device, the

same parameter is likely to be always the same, de-

creasing the interest of an automatized procedure such

as SURE.



9

(a) Density β ∈ [0, 100]n (b) Attenuation α ∈ [0, 0.03]n

(c) Image u1 (d) Image u2

(e) (14): SNR=-53.1dB (f) TV: SNR=11.9dB

Fig. 4: Illustration of the limits of a direct estimate of the attenuation coefficients and output of a warm start

initialization. (4a) and (4b) are the original density and attenuation. (4c) and (4d) are the observed signals. (4e)

is the direct density estimate (4). As can be seen, the formula yields useless results since it is completely unstable

to noise. (4f) is the density estimate using the total variation solver. It allows recovering the main details of the

cameraman, despite a significant amount of noise.
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(a) Density β ∈ [0, 100]n (b) Attenuation α ∈ [0, 0.03]n

(c) Image u1 (d) Image u2

(e) (14): SNR=12.9dB (f) TV: SNR=21.9dB

Fig. 5: Recovering the density knowing the exact attenuation, with a non regularized estimator or a total variation

solver. (5a) and (5b) are the original density and attenuation. (5c) and (5d) are the observed signals. (5e) is the

direct density estimate (14). (5f) is the density estimate using a total variation solver.
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Fig. 6: Time needed to compute the warm start es-

timate and correct the attenuation with respect to the

number n of pixels (in log-log scale). A linear regression

indicates that the slope is roughly equal to 1, showing a

linear dependency with respect to the number of pixels.

Algorithms parameters The optimization algorithms are

based on the SDMM and their convergence rates de-

pend a lot on the paramaters γ, c1, c2, c3 and c4. They

may converge to a satisfactory solution rapidly (about

50 iterations) or slowly (more than 10000 iterations)

depending on these choices. Unfortunately, we found

no systematic method to choose them and also used a

trial and error strategy in our numerical experiments.

Our numerical experiments suggest that these param-

eters are suitable for a wide range of data (image size,

maximum attenuation, image dynamics), so that the

tedious tuning can be done once and for all for a given

application.

5.2 Computing times

All the experiments of the paper were performed on

a laptop with an Intel i7 processor with 4-cores. The

codes were written mostly in Matlab (natively parallel),

with some parts written in C with OpenMP support.

The complexity of the proposed algorithms scale

roughly linearly with the number of pixels n, as shown

in Fig. 6. We observed that the number of iterations of

the SDMM to reach a given relative accuracy remains

the same whatever the size n, while the cost per itera-

tion scales linearly with it (at least for the cumulative

sum integral operators considered herein).

As can be seen on Fig. 6 the algorithm takes around

48 seconds for a 256× 256 image. Out of these, 45 sec-

onds are spent to recover the attenuation, while the 3

remaining are dedicated to correct the density.

All codes can be easily parallelized on a GPU. A

speed-up of 100 can be expected on such an architec-

ture, making the proposed methods suitable for large

2D or 3D images.

5.3 Influence of attenuation and signal-to-noise ratio

Two parameters strongly influence the ability to recover

the attenuation and density: the signals dynamics (or

signal-to-noise ratio) and the attenuation dynamics.

As the signal-to-noise ratio decreases, it becomes

impossible to recover fine details. For instance, the fine

stripes are not recovered in Fig. 1e, but they are recov-

ered for signals with a much higher amplitude. In Fig.

7, it can indeed be verified that a high dynamics of 105

allows recovering most of the stripes. This experiment

shows that highly sensitive EMCCD cameras should be

preferred over more standard devices for this specific

application.

The attenuation amplitude also plays a key role:

if it is too low, then no attenuation can be detected.

On the contrary, if it is too high, then the signals u1
and u2 will vanish too rapidly, making it impossible to

evaluate the attenuation. This is illustrated in Fig. 7. It

is remarkable that the algorithm manages to recover the

attenuation partially for very low signal-to-noise ratio.

In Fig. 7c, we observe that the attenuation is partially

recovered with no more than 30 expected photons per

pixel!

5.4 Toolbox

A Matlab toolbox containing all the main algorithms

described in the paper is provided on the website of the

authors https://www.math.univ-toulouse.fr/~weiss/

and on GitHub https://github.com/pierre-weiss/

MAEC. The Lambert W function and the proximal oper-

ator of logsumexp have been implemented with C-mex

files with OpenMP support for multicore acceleration.

Demonstration scripts are available for testing.

6 Comparison with the approach [30]

In this section, we propose to compare our results with

the approach suggested in [30]. In this paper, the au-

thors concentrate on the case of confocal microscopy

(i.e. two opposite views). They consider cone integrals

to better model the light path. This is also possible

with our approach, though we have not explored it yet.

Following a maximum a posteriori principle, and using

the notation of our paper, they propose to minimize the

https://www.math.univ-toulouse.fr/~weiss/
https://github.com/pierre-weiss/MAEC
https://github.com/pierre-weiss/MAEC
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(a) ‖β‖∞ = 30 (b) ‖α‖∞ = 0.01 (c) SNR: 3.3dB (d) SNR: 15.1dB

(e) ‖β‖∞ = 104 (f) ‖α‖∞ = 0.01 (g) SNR: 9.2dB (h) SNR: 21.2dB

(i) ‖β‖∞ = 30 (j) ‖α‖∞ = 0.15 (k) SNR: 6.0dB (l) SNR: 9.7dB

(m) ‖β‖∞ = 104 (n) ‖α‖∞ = 0.15 (o) SNR: 11.2dB (p) SNR: 21.1dB

(q) ‖β‖∞ = 105 (r) ‖α‖∞ = 0.1 (s) SNR: 13.5 (t) SNR: 44.3

Fig. 7: Ability to recover the attenuation and density depending on the density and attenuation amplitude.
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following functional:

min
α∈Rn+,β∈Rn

2∑
j=1

∥∥∥∥∥uj − β exp(−Ajα)√
γ2uj + σ2

∥∥∥∥∥
2

2

+Rα(α) + µ‖α‖1.

(19)

In this equation, λ ≥ 0 and µ ≥ 0 are regularization pa-

rameters and γ > 0 and σ > 0 are parameters allowing

to deal with a mixture of Poisson and Gaussian noise

(in fact this energy is only an approximation of the

MAP). In comparison with our work, the term µ‖α‖1
is proposed to favor a black background.

The problem (19) is nonconvex and non differen-

tiable. In order to minimize it, the authors propose

to use smooth approximations of the functions Rα(α)

and ‖α‖1, and to use a limited-BFGS-B approach [37],

which allows to deal with bound constraints (the non-

negativity assumption). We reimplemented this algo-

rithm with the line integrals used in the previous section

and provide comparisons in Fig. 8. Since the problem

is nonconvex the result depends on the initialization.

It takes around 30 seconds to run the limited-BFGS-

B to solve the problem (19) on 256×256 images, which

is on a par with the computing times required by our

approach. The main differences with our approach are:

Parameters the energy (19) requires tuning 4 inter-

dependent parameters: γ, σ, µ and the regulariza-

tion parameter associated to the total variation. In

comparison, our algorithm only requires tuning two

independent parameters λα and λβ , which is ar-

guably much easier. That being said, we observed

in our simulations that µ could be safely set to 0.

A possible reason might be that the nonnegativity

constraint already favors the background to be 0 [2].

In addition, we expect that the parameters might be

tuned once and for all for a given device, limiting the

importance of this drawback. In our experiments, we

discretized the parameter space finely, and kept the

parameters leading to the highest SNR. This is of

course feasible only when dealing with simulations.

Initialization we observed that the most important

difference between the two approaches comes from

the initialization. Problem (19) is nonconvex and

the iterative descent algorithms may hence converge

to different points depending on the starting point

(α0, β0). In practice, we observed that this was a

serious limitation of the approach in [30]. Figure 8

illustrates this point. We reproduce the experiment

of Fig. 7, fourth line, corresponding to the favorable

case ‖β‖∞ = 104 and ‖α‖∞ = 0.15. On the left,

we initialize the algorithm with the true attenua-

tion and density maps, i.e. α0 = α and β0 = β. The

(a) Good initialization

SNR:13.4dB.

(b) Poor initialization

SNR:-0.5dB.

(c) Good initialization
SNR: 141.2dB.

(d) Poor initialization
SNR:2.8dB.

Fig. 8: Example of results obtained with the approach

in [30]. Parameters selected to give the highest SNR.

Top: estimate of the attenuation map. Bottom: estimate

of the density map. The good initialization corresponds

to the exact (unknown) maps that we would like to re-

cover. The poor initialization corresponds to a realistic

initialization that could be achieved in practice.

algorithm converges to a satisfactory estimate of the
attenuation map. On the right, we initialized the al-

gorithm with α0 = mean(α) and β0 = 1
2 (u1 + u2),

which looks quite natural, since in practice, nearly

no information on the actual solution is available.

As can be seen, the L-BFGS-B algorithm yields a

very poor estimate of the true attenuation map. In

comparison, the convex formulation proposed in this

paper will converge to the same minimizer whatever

the initialization. We believe that this is a distinc-

tive trait and a real strength of the proposed ap-

proach.

7 Conclusion & outlook

We proposed a robust and efficient approach based on

a Bayesian estimator to recover attenuation and cor-

rect density from multiview measurements. This prin-

ciple was already known in the field of lidar and solved

with simple filtering approaches, while the algorithms
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proposed herein are based on a clear and versatile sta-

tistical framework. In confocal microscopy, Schmidt et

al. [30] recently proposed a Bayesian formulation that

shares many similarities with the proposed approach

and applied it to real 3D data. The proposed approach

differs in two regards: i) we consider a Poisson model

for the noise, while [30] only uses an approximation of it

and ii) we develop an algorithm that provably converges

to the global minimizer of the cost function, while [30]

is based on a nonlinear programming approach which

leads to different results depending on the initialization.

In practice, this distinctive feature seems to be of high

importance, since good initial guesses are unavailable

in the considered applications.

The approach seems promising for various devices

such as lidar or some fluorescence microscopes. It is

likely that its scope is much wider and we therefore

provide a free Matlab toolbox on GitHub https://

github.com/pierre-weiss/MAEC.

As a prospective, we plan to confront our algorithms

with real data coming from lidar and microscopy. The

total variation based algorithm to correct attenuation

defects is somewhat disappointing since it is unable to

recover fine textures. A promising step would be to use

more advanced nonlocal denoisers such as convolutional

neural networks. To conclude, let us mention a seri-

ous limitation of the proposed approach: it is not so

common to find a couple optical system-sample, where

attenuation dominates scattering. We do not know at

the present time how many applications can reasonably

be modeled by equation (7). This question is central

to precisely understand the strengths and limits of the

proposed approach.

8 Appendices

8.1 Proof Proposition 1

Proof The first item is obtained by direct inspection:

– for β fixed, α 7→ 〈exp(−Ajα),1〉 is the composition

of a linear operator with a convex function, hence

it is convex. In addition α 7→ 〈Ajα,1〉 is a linear

mapping.

– for α fixed, the first term in β is linear and β 7→
〈− log(β),1〉 is convex.

Let us now focus on the second and third points.

The function G can be rewritten as a sum of functions:

G(α, β) =

n∑
i=1

gi ((Ajα[i])1≤j≤m, β[i]) ,

where gi : Rm × R+ → R is defined as follows:

(x, y) 7→ gi(x, y) =

m∑
j=1

exp(−x[j])y

+ uj [i] (x[j]− log(y)) .

To prove the convexity of G, it suffices to study the

convexity of each function gi. From now on, we skip

the indices i to lighten the notation.

Let us analyze the eigenvalues of the Hessian Hg:

Hg(x, y) =

(
diag(y exp(−x)) − exp(−x)

− exp(−x)T
∑m
j=1 uj/y

2

)
.

To study the positive semidefiniteness, let (v, w) ∈ Rm+1,

denote an arbitrary vector. We have:〈(
v

w

)
, Hg(x, y)

(
v

w

)〉
=

m∑
j=1

v[j] exp(−x[j]) (yv[j]− 2w) + w2

∑m
j=1 uj

y2
.

In the case y >
∑m
j=1 uj∑m

j=1 exp(−x[j]) and w 6= 0, we get

that:〈(
v

w

)
, Hg(x, y)

(
v

w

)〉
<

m∑
j=1

v[j] exp(−x[j]) (yv[j]− 2w)

+ w2

∑m
j=1 exp(−x[j])

y

=

m∑
j=1

exp(−x[j])

(
yv[j]2 − 2wv[j] +

w2

y

)

=

m∑
j=1

exp(−x[j])

(
v[j]
√
y − w
√
y

)2

where the last expression is equal to 0 for the particu-

lar choice v[j]y = w, for all 1 ≤ j ≤ m. This implies〈(
v

w

)
, Hg

(
v

w

)〉
< 0, which shows that function g is

not convex in Rn × Rn+ and proves the second item.

The same argument with y ≤
∑m
j=1 uj∑m

j=1 exp(−x[j]) proves

the third item.

8.2 Proof Proposition 2

Proof With this specific choice, it is easy to check that

the optimality conditions of problem (10) with respect

to variable β yield (14). By replacing this expression

in (11), we obtain the optimization problem shown in

equation (13).

https://github.com/pierre-weiss/MAEC
https://github.com/pierre-weiss/MAEC
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Checking convexity of this problem can be done

by simple inspection. The term 〈uj(Ajα),1〉 is linear,

hence convex. The term log
(∑m

j=1 exp(−(Ajα)[i])
)

is

the composition of the convex logsumexp function with

a linear operator, hence it is convex.

8.3 Proximal operator of logsumexp in dimension 2

In this section, we propose a fast and accurate numer-

ical algorithm based on Newton’s method to solve the

following problem:

w = proxγg1(z)

= argmin
x∈R2n

1

2
‖x− z‖22+

γ

n∑
i=1

2∑
j=1

uj [i]

xj [i] + log

 2∑
j=1

exp(−xj [i])

 ,
where z =

(
z1
z2

)
and x =

(
x1
x2

)
are vectors in R2n. This

problem may seem innocuous at first sight, but turns

out to be quite a numerical challenge. The first obser-

vation is that it can be decomposed as n independent

problems of dimension 2 since:

w[i] = argmin
(x1,x2)∈R2

1

2
(xj − zj [i])22 (20)

+ γ

2∑
j=1

uj [i]

xj + log

 2∑
j=1

exp(−xj)

 .
To simplify the notation, we will skip the index i in

what follows. The following proposition shows that our

problem is equivalent to finding the proximal operator

associated to the “logsumexp” function.

Proposition 6 Define the logsumexp function lse(x1, x2) =

log
(∑2

j=1 exp(xj)
)

. The solution of problem (20) co-

incides with the opposite of the proximal operator of lse:

w[i] = − argmin
(x1,x2)∈R2

alse(x1, x2) +
1

2
((x1 − y1)2 + (x2 − y2)2)

(21)

= −proxalse(y1, y2), (22)

where a = γ(u1 + u2) and yj = γuj − zj.

Proof The first order optimality conditions for problem

(20) read{
γu1 − γ(u1+u2) exp(−x1)

exp(−x1)+exp(−x2)
+ x1 − z1 = 0

γu2 − γ(u1+u2) exp(−x2)
exp(−x1)+exp(−x2)

+ x2 − z2 = 0.
(23)

By letting a = γ(u1 + u2) and yj = γuj − zj , this

equation becomes{
− a exp(−x1)

exp(−x1)+exp(−x2)
+ x1 + y1 = 0

− a exp(−x2)
exp(−x1)+exp(−x2)

+ x2 + y2 = 0.
(24)

It now suffices to make the change of variable x′i = −xi
to retrieve the optimality conditions of problem (22){

a exp(x′1)
exp(x′1)+exp(x′2)

+ x′1 − y1 = 0
a exp(x′2)

exp(x′1)+exp(x′2)
+ x′2 − y2 = 0.

(25)

Remark 4 To the best of our knowledge, this is the first

attempt to find a fast algorithm to evaluate the prox of

logsumexp. This function is important in many regards.

In particular, it is a C∞ approximation of the maximum

value of a vector. In addition, its Fenchel conjugate co-

incides with the Shannon entropy restricted to the unit

simplex. We refer to [14, §3.2] for some details. The al-

gorithm that follows has potential applications outside

the scope of this paper.

We now design a fast and accurate minimization al-

gorithm for problem (22) or equivalently, a root finding

algorithm for problem (25). This algorithm differs de-

pending on whether y1 ≥ y2 or y2 ≥ y1. We focus on

the case y1 ≥ y2. The case y2 ≥ y1 can be handled by

symmetry.

Let λ =
exp(x′1)

exp(x′1)+exp(x′2)
and notice that

exp(x′2)

exp(x′1) + exp(x′2)
= 1− λ.

Therefore (25) becomes:{
x′1 = y1 − aλ
x′2 = y2 − a(1− λ).

(26)

Hence

1− λ
λ

= exp(x′2−x′1) = exp(y2−y1−a) exp(2aλ). (27)

Taking the logarithm on each side yields 1:

log(1− λ)− log(λ) = y2 − y1 − a+ 2aλ. (28)

We are now facing the problem of finding the root λ∗

of the following function:

f(λ) = y2 − y1 − a+ 2aλ− log(1− λ) + log(λ). (29)

There are two important advantages for this approach

compared to the direct resolution of (25). First, we have

to solve a 1D problem instead of a 2D problem. More

1 Applying the logarithm is important for numerical purposes.
When y2 − y1 − a is very small, the exponential cannot be com-

puted accurately in double precision.
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importantly, we directly constrain x′ to be of form x′ =

y − aδ, where δ lives on the 2D simplex.

Let us collect a few properties of function f . First,

we have:

f ′(λ) = 2a+
1

1− λ
+

1

λ
> 0,∀λ ∈ (0, 1). (30)

Therefore, f is increasing on (0, 1). To use convergence

results of Newton’s algorithm, we need to compute f ′′

as well:

f ′′(λ) = − 1

λ2
+

1

(1− λ)2
. (31)

Proposition 7 If y1 ≥ y2, then x′1 ≥ x′2 and

max

(
1

2
,

1

1 + exp(y2 − y1 + a)

)
≤ λ∗

≤ 1

1 + exp(y2 − y1)
.

(32)

Proof The first statement can be proven by contradic-

tion. Assume that x′2 > x′1, then equation (25) indicates

that y2 > y1.

For the second statement, it suffices to evaluate f

at the extremities of the interval since f ′ > 0. We get

f(1/2) = y2 − y1 ≤ 0 and f
(

1
1+exp(y2−y1)

)
= −a +

2a
1+exp(y2−y1) ≥ 0.

Proposition 8 Set λ0 = 1
1+exp(y2−y1) . Then, the fol-

lowing Newton’s method

λk+1 = λk −
f(λk)

f ′(λk)
(33)

converges to the root λ∗ of f , with a locally quadratic

rate.

Proof First notice that f ′′(λ) ≥ 0 on the interval [1/2, 1).

Hence f ′′ is also positive on I = [λ∗, λ0]. This ensures

that

λ0 ≥ λ1 ≥ . . . ≥ λ∗. (34)

We prove this assertion by recurrence. Notice that λ0 ≥
λ∗ by Proposition 7. Now, assume that λk ≥ λ∗, then

f(λk) = f(λ∗) +

∫ λk

λ∗
f ′(t) dt ≤ f ′(λk)(λk − λ∗). (35)

Hence, λk − λ∗ ≥ f(λk)
f ′(λk)

and λk+1 ≥ λ∗. In addition
f(λk)
f ′(λk)

≥ 0 on I, so that λk+1 ≥ λk.

The sequence (λk)k∈N is monotonically decreasing

and bounded below, therefore it converges to some value

λ′ ≥ λ∗. Necessarily λ′ = λ∗, since for λ′ > λ∗, f(λ′)
f ′(λ′) >

0.

To prove the locally quadratic convergence rate, we

just invoke the celebrated Newton-Kantorovich’s theo-

rem [24,25], that ensures local quadratic convergence if

f ′′ is bounded in a neighborhood of the minimizer.

Finally, let us mention that computing λ0 on a com-

puter is a tricky due to underflow problems: in dou-

ble precision the command 1 + exp(y2 − y1) will re-

turn 1 for y2 − y1 < −37 ' log(10−16). This may

cause the algorithm to fail since f and its derivatives

are undefined at λ = 1. In practice we therefore set

λ0 = 1/(1 + exp(y2 − y1))− 10−16. Similarly, by bound

(32), we get λ∗ = 1 up to machine precision whenever

y2 − y2 − a < log(10−16). Algorithm 2 summarizes all

the ideas described in this paragraph.

An attentive reader may have remarked that the

convergence of Newton’s algorithm depends only on the

difference y(1) − y(2) and a. A shift of y(1) and y(2)

by the same value does not change Newton’s iteration.

In Fig. 9, we show that the algorithm behaves very

well for a wide range of parameters. For y(1) − y(2)

and a varying in the interval [2−10, 220], the algorithm

never requires more than 18 iterations to reach machine

precision and needs 2.8 iterations in average.

Algorithm 2 An algorithm to compute proxalse(y1, y2)

with machine precision

1: Input: (y1, y2) ∈ R2, a ∈ R+.

2: Output: (x1, x2) = proxalse(y1,y2).

3: Set ε = 10−16.

4: if y1 ≥ y2 then

5: if y2 − y1 + a < log(ε) then
6: Set λ = 1.

7: else

8: Set λ = 1
1+exp(y2−y1)

− ε.

9: Define d(λ) =
y2−y1−a+2aλ+log(λ/(1−λ))

2a+ 1
λ(1−λ)

.

10: while |d(λ)| > ε do

11: Set λ = λ− d(λ).
12: end while
13: end if
14: Set [x1, x2] = [y(1)− aλ, y(2)− a(1− λ)].
15: else if y1 < y2 then

16: if y1 − y2 + a < log(ε) then
17: Set λ = 1.

18: else
19: Set λ = 1

1+exp(y1−y2)
− ε.

20: Define d =
y1−y2−a+2aλ+log(λ/(1−λ))

2a+ 1
λ(1−λ)

.

21: while |d| > ε do

22: Set λ = λ− d(λ).
23: end while

24: end if

25: Set [x1, x2] = [y(1)− a(1− λ), y(2)− aλ].
26: end if
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Fig. 9: Performance evaluation for Newton’s algorithm.

Left: λ∗ depending on a and y1 − y2. Right: number of

iterations of Newton’s method to reach machine preci-

sion.
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Höckendorf, William C Lemon, and Philipp J Keller. Whole-
animal functional and developmental imaging with isotropic

spatial resolution. Nature methods, 2015.

7. Patrick L Combettes and Jean-Christophe Pesquet. Proxi-
mal splitting methods in signal processing. In Fixed-point

algorithms for inverse problems in science and engineering,

pages 185–212. Springer, 2011.
8. Christoph Cremer and Thomas Cremer. Considerations on

a laser-scanning-microscope with high resolution and depth

of field. Microscopica acta, pages 31–44, 1974.
9. Juan Cuesta and Pierre H Flamant. Lidar beams in opposite

directions for quality assessment of Cloud-Aerosol Lidar with

Orthogonal Polarization spaceborne measurements. Applied
optics, 49(12):2232–2243, 2010.
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Blein, Klaus Palme, and Olaf Ronneberger. Variational at-
tenuation correction in two-view confocal microscopy. BMC

bioinformatics, 14(1):366, 2013.

31. James Sharpe, Ulf Ahlgren, Paul Perry, Bill Hill, Allyson
Ross, Jacob Hecksher-Sørensen, Richard Baldock, and Dun-

can Davidson. Optical projection tomography as a tool
for 3D microscopy and gene expression studies. Science,

296(5567):541–545, 2002.

32. Valery Shcherbakov. Regularized algorithm for Raman lidar
data processing. Applied optics, 46(22):4879–4889, 2007.

33. Gabriele Steidl and Tanja Teuber. Removing multiplicative

noise by Douglas-Rachford splitting methods. Journal of
Mathematical Imaging and Vision, 36(2):168–184, 2010.

34. Raju Tomer, Khaled Khairy, Fernando Amat, and Philipp J

Keller. Quantitative high-speed imaging of entire developing
embryos with simultaneous multiview light-sheet microscopy.

Nature methods, 9(7):755–763, 2012.

35. KA Vermeer, J Mo, JJA Weda, HG Lemij, and JF de Boer.
Depth-resolved model-based reconstruction of attenuation

coefficients in optical coherence tomography. Biomedical op-
tics express, 5(1):322–337, 2014.

36. Claus Weitkamp. Lidar: range-resolved optical remote sens-

ing of the atmosphere, volume 102. Springer Science & Busi-
ness, 2006.

37. Ciyou Zhu, Richard H Byrd, Peihuang Lu, and Jorge No-

cedal. Algorithm 778: L-bfgs-b: Fortran subroutines for large-
scale bound-constrained optimization. ACM Transactions on

Mathematical Software (TOMS), 23(4):550–560, 1997.


	Introduction
	Applications
	MAP estimator and numerical evaluation
	Optimization methods
	Additional comments
	Comparison with the approach schmidt2013variational
	Conclusion & outlook
	Appendices

