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Abstract—Magnetic Resonance Imaging (MRI) is one of the
most dynamic and safe imaging modalities used in clinical routine
today. Yet, one major limitation to this technique resides in
its long acquisition times. Over the last decade, Compressed
Sensing (CS) has been increasingly used to address this issue
and offers to shorten MR scans by reconstructing images from
undersampled Fourier data. Nevertheless, a quantitative guide
on the degree of acceleration applicable to a given acquisition
scenario is still lacking today, leading in practice to a trial-and-
error approach in the selection of the appropriate undersampling
factor. In this study, we shortly point out the existing theoretical
sampling results in CS and their limitations which motivate
the core of this work: an empirical and quantitative analysis
of the maximum degree of acceleration in CSMRI. We make
use of a generic method based on retrospective undersampling
to quantitatively deduce the maximum acceleration factor R ax
which preserves a desired image quality as a function of the
image resolution and the available signal-to-noise ratio (SNR).
Our results quantify how larger acceleration factors can be
applied to higher resolution images as long as a minimum SNR
is guaranteed. In practice however, the maximum acceleration
factor for a given resolution appears to be constrained by
the available SNR inherent to the considered acquisition. Our
analysis enables to take this a priori knowledge into account,
allowing to derive a sequence-specific maximum acceleration
factor adapted to the intrinsic SNR of any MR pipeline. These
results are corroborated by experiments performed on a 7 Tesla
scanner.

Index Terms—Compressed Sensing, MRI, image quality, max-
imum acceleration factor.

I. INTRODUCTION

EDUCING the acquisition time in Magnetic Resonance

Imaging (MRI) has been a major direction of research in
recent years. Speeding up image acquisition while maintaining
diagnostic quality is indeed crucial in many respects. The
improvement of patient comfort together with a reduced risk
of motion artifacts are examples of consequential advantages.
Moreover, in dynamic imaging for instance, accelerated ac-
quisitions are critical to visualize rapid physiological changes.
Finally, the resulting gain in time can be invested in increasing
the spatial and temporal resolution or in supplementary scans.
In this context, considerable effort has been spent on devel-
oping methods to accelerate data acquisition while preserving
image quality. One recent and most promising strategy is the
Compressed Sensing (CS) theory which consists in reducing
the number of measurements and thus the acquisition time
(TA) by exploiting the compressibility of MR images [1],
[2]. Using CS, data can be massively undersampled by a
given acceleration factor R compared to the fully-sampled
Cartesian acquisition, while ensuring conditions for optimal
image recovery. Examples of recent successful applications of

CS in MRI are numerous [3] especially in two-dimensional
(2D) or three-dimensional (3D) dynamic MRI [4], [5]. In
cardiac imaging for instance, CS made it possible to perform
single breath-hold and even free-breathing 2D cine MRI while
including motion-correction [6], [7]. Moreover, combining CS
with golden-angle radial trajectories, the XD-GRASP method
allows free-breathing cardiac cine imaging and 3D dynamic
contrast-enhanced MRI of the liver [8], [9].

While many efforts have been made to improve the CS
methodology in MRI both on the acquisition [10]-[18] and
the reconstruction [1], [19]-[22] sides, the question on the
actual limitations to the acceleration rate in CS for a given
experimental setup has been hardly addressed. Hence, CS
could considerably benefit from a study analyzing in a quan-
titative way the major practical limitations to the degree
of acceleration in CSMRI. Such work would provide CS
users with valuable information to design their MR sequence
by selecting the appropriate acceleration factor adapted to
each scan instead of using a trial-and-error approach. This
is however a delicate question as numerous parameters affect
the quality of CS reconstructions including the image size
and the available signal-to-noise ratio (SNR) for a particular
acquisition [23]. In this work, we will offer an insight into the
following question:

In CSMRI, how should the maximum acceleration factor be
selected as a function of the image size and the available
SNR, in order to maintain a desired image quality?

One may expect that existing theoretical sampling results
would provide an analytical answer to this question. Unfor-
tunately, if the existing literature proposes a rather compre-
hensive qualitative analysis of CSMRI, the constants involved
in the theorems are often crudely estimated. The result is
that most practically implemented sampling schemes should
be considered as mere heuristics.

Following this observation which we briefly elaborate in a
first theoretical part, we propose to conduct an empirical anal-
ysis of the considered preceding question. Applying a generic
method based on retrospective undersampling, we present its
results on a 2D analytical image for two types of MR sampling
schemes and a conventional ¢!-based non-linear reconstruc-
tion. The image quality dynamics could thus be quantitatively
analyzed and threshold values were identified. The maximum
acceleration factor R, was also quantitatively determined
as a function of the image size and the available input SNR
to reach a desired image quality. Moreover, we present an
experimental validation of these results with MR acquisitions



performed on a 7 Tesla scanner on an ex vivo baboon brain.
We finally propose a method to deduce a sequence-specific
maximum undersampling factor circumscribed by the intrinsic
SNR of any given acquisition.

II. THE THEORY OF CS IN MRI AND ITS LIMITATIONS

The theory of compressed sensing is often considered a
mature field by non-specialists. While this belief proves to
be quite accurate for Gaussian measurements, many important
questions are still open when dealing with structured measure-
ments and structured signal recovery, as met in MRI. In this
section, we review a few major theoretical results and open
questions to motivate our experimental study.

A. The case of unstructured measurements

Let
min ||z — 2'||1 (1)

O'S(Z) = 2/ €C™, s-sparse

denote the ¢!-tail of a vector z € C™. This function is often
used to characterize the compressibility of a signal.

The following theorem [24, Theorem 9.13] provides an
accurate description of the recovery guarantees in the case
of unstructured Gaussian measurements.

Theorem 1. Assume that A € C™*" is a matrix with i.i.d.
random Gaussian components. There exist universal constants
C4, Cs, D1 and Do such that, for any 1 < s < n, for any
e€ (0,1), if

m > Cys(ln(n/2) + 1) + C3 In(2/¢), ()

then, with probability at least 1 — €, for all vectors z € C",
given the measurements y = Az + e € C™, where e is a
measurement error satisfying |e||3 < mo?, we get:
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The value of this theorem lies in the fact that it provides a
good understanding of the reconstruction quality with respect
to the signal’s compressibility (captured by o4(z)) and the
input SNR (captured by o). In particular, it shows that if
S — ”—(:) decreases sufficiently fast with s, a small number of
measurements will be sufficient to reconstruct the true signal,
up to an error proportional to ||e||2. The ¢!-tail o4 explains
the role of resolution in the theory of CS. Fig. 1 shows the
evolution of o4(z) with respect to the normalized sparsity
s/n for the phantom image Fig. 2A) at different resolutions
(n = 128x 128, n = 512x 512 and n = 2048 x 2048). As
can be observed on this graph, the higher the resolution, the
faster the ¢!-tail decay. Hence, CS will allow using higher
sub-sampling factors at higher resolution for an equal error.
Similar phenomena are explained in more details in [25].

Let us now describe the limitations of this theorem. First, it
does not capture the denoising capabilities of ' reconstruc-
tions. The term /mo in (3) coincides with the amount of noise

—_—n =128 x 128
=== n =512 x 512
n = 2048 x 2048

s/n
Fig. 1. Normalized ¢! -tail 05 (2) = min,/ccn | g spurse 12— 2|1 With respect
to the relative sparsity s/n for different resolutions of the brain phantom
image in Fig. 2A): n = 128 x 128, n = 512x 512 and n = 2048 x 2048.
The £!-tail decays faster at higher resolutions, thus allowing the use of larger
undersampling factors for higher resolutions in the context of CS.

in the data and increases with the number of measurements
m. In practice it is often observed that ¢! minimization not
only allows to recover missing information, but also serves as
a regularizer able to denoise the data. Second, the constants
C1, Cs, Dy and D4 are not tight and can be huge in some
variants of this theorem, meaning that the lower bound on the
number of measurements m may actually be quite large, or
equivalently that the undersampling factor R = n/m may be
close to 1 or even smaller than 1.

This last criticism has to be moderated by the theoret-
ical analysis of phase transitions in [26]. It is now well
known that in the case of noiseless measurements, perfect
recovery will occur with high probability whenever m >
2s(log(n/s) 4+ 1) + € and will fail with high probability when
m < 2s(log(n/s) + 1) — €, where ¢ is a small margin. This
shows that the minimum number of measurements for good
recovery is very well understood in this case.

B. The case of structured measurements and structured signals

In MRI, signals are highly structured: all brain images share
strong similarities and can be modeled much more precisely
than arbitrary s-sparse signals. A simple model to describe
this structure is the sparsity by levels in wavelet bases [12]:
each wavelet sub-band of the image contains a number of
nonzero coefficients bounded by a known quantity at each
scale. Moreover, the traditional way of acquiring data in
MRI is far from independent Gaussian measurements: Fourier
transform values of the image are probed along continuous
trajectories.

The current sampling theory in this challenging setting can
safely be described as significantly less comprehensive than
the case of Gaussian measurements. Let us however remark
that significant advances were proposed recently [12], [15],
[25], [27], [28]. Without introducing the theorems, let us detail
the main conclusions and limitations of these studies. One
important result argues that low frequencies should be probed
more often than high frequencies. The reason is subtle and
not just due to the fact that there is more information in the
low frequencies (as is often claimed in papers). To understand



the reconstruction limits, one needs to precisely describe the
links between wavelet bases, Fourier bases and sparse by levels
signals. Regarding the current major limitations, they can be
listed as follow:

o The constants appearing in the theorems are usually far
too large to be of any practical use. This is due to inac-
curate proof techniques, but it is currently unknown how
much the constants can be lowered. Establishing phase
transition results as in the case of Gaussian measurements
still requires significant mathematical advances.

o Designing optimal sampling densities is still an open
problem. Theorems provide quantitative upper-bounds
on the number of measurements necessary for perfect
reconstruction, which allows designing decent densities.
However, proving optimality results requires to establish
tight lower bounds. In practice the design of good sam-
pling densities is therefore heuristic.

o The noise is not correctly handled. The stability to noise
and compressibility is established, but the dependencies
are far less optimistic than those in Theorem 1.

o Most results are only available for orthogonal wavelet
transforms and 0'-reconstructions. It is now admitted
that much better reconstruction results can be obtained
in practice by using redundant transforms, learned dic-
tionaries or non-convex regularizers. The understanding
of CS in this setting is still very partial.

o In the case of measurements collected along curves, very
little is known. Let us mention that the case of parallel
lines as proposed in [1] was analyzed completely in [28].

Overall, we see that existing theoretical results provide a

good qualitative analysis of CS, allowing to guide the design
of sampling and reconstruction schemes. However, to date,
theorems are unable to provide quantitative conclusions on
the number of needed measurements in CSMRI.

III. AN EMPIRICAL AND QUANTITATIVE STUDY

While being theoretically inextricable, the proposed ques-
tion can be empirically addressed and provide valuable prac-
tical and quantitative information to CSMRI.

A. A generic method

In order to empirically quantify the effects of the image size
and input SNR on the reconstructed image quality from under-
sampled data, we propose the following generic framework.

First, a database of 2D reconstructions is constituted for a
large range of image sizes, input SNR and acceleration factors.
Square images are considered and characterized by their image
size, denoted by N € N, which refers to the dimension of the
corresponding N x IV square matrix. An image of size N € N,
where N is the studied range of sizes, is therefore composed
of N? pixels. Images of different input SNR (XZSVNR') were
obtained by adding complex-valued zero-mean white Gaussian
noise of varying standard deviation o € X to the full complex
k-space data of a noiseless image (x%7), where ¥ is the studied
range of noise levels. Each noise level (¢ € ) was then
expressed as its corresponding input SN R € SN'R, a quantity
more commonly used in the MRI community, where SN'R

denotes the studied range of SNR. The input SNR is computed
over the FFT-reconstructed fully sampled magnitude image by
taking the ratio of the mean signal in a region-of-interest (ROI)
in the white matter (smaller orange circle in Fig. 2A)) over
the standard deviation in the background signal (larger yellow
circle in Fig. 2A)). ! Finally, a set of undersampling schemes
and image reconstruction is specified as input of the proposed
pipeline 1. The undersampling or acceleration factor R € R is
given by R = N2 /m, where m is the number of measurements
and R the studied range of undersampling factors.

Pipeline 1 Find R,,.x(Qo, N,SNR)

Input: An undersampling method undersample and the as-
sociated reconstruction reconstruct.
Input: Image quality metric @ and a threshold Qg
1: for N in A/ do
2:  Take an image x§7 of size N

3 for ¢ in X do

4 PR FFTH(FFT(xR) + N(0,0)).
5 for R in R do

6: data <+ undersample(x3N%, R)

7 XR + reconstruct(data)

8 end for

9: end for

10: end for

Output: Ry (Qo, N,SNR) VN € N,SNR € SAN'R

Once the database is complete, it is possible to introduce the
concept of a maximum acceleration factor R, (Qo, IV, SNR)
as the function of (i) the targeted image quality expressed in
terms of a quality threshold @y for a given image quality
metric @, (ii) the image size IV and (iii) the image input SNR:

Rmax(Qo, N,SNR) = arg max {Q(iR,X%,NR) > QO}
R
where x3NR is the reference image with given image size N
and SNR and Xy the corresponding reconstruction retrospec-
tively undersampled by a factor R. Similar image quality score
threshold for diagnostic utility was already used in [29].

Finally, to study separately the effect of either the image size
or the noise level, one of these parameters was kept constant
while the other was varied.

B. The studied pipeline

1) 2D images: The studied images shown in Fig. 2A) are
derived from the analytical brain phantom with a contrast
similar to T5-weighting, which was introduced by Guerquin-
Kern et al [30]. Considered image sizes belonged to the set
N = {128,256,512,1024, 2048} .

2) Input SNR: We studied a set of input SNR ranging from
3 to 110. Resulting noisy images are displayed in Fig. 2A)-B)
for the most extreme SNR values.

In the context of fully sampled data, owing to Parseval’s theorem, this
SNR definition is equivalent to its counterpart in the k-space (usually defined
as 10log; ||%||2/0? where % denotes the Fourier transform of the image
x), which is more natural for signal processors. The MR physicist definition
is convenient as far as the object and noise are well separated in the image
domain as shown in Fig. 2A).



Fig. 2. Guerquin-Kern analytical phantom of a brain image [30] for an image
size of N = 512 with highest studied SNR of 110 (A) and lowest input SNR
of 3 (B). The smaller orange and larger yellow circles respectively represent
the ROI in the white matter and the area in the background signal used to
calculate the input SNR. Examples of iid sampling schemes of Fourier space
along the chosen variable density is displayed for N = 512 and R = 10
in (C) and golden-angle radial trajectory for N = 1024 and R = 15 in (D).

3) Undersampling schemes: Two undersampling schemes
were considered in this work: identically and independently
distributed (iid) and radial samplings. On the one hand, non-
Cartesian samples were iid randomly drawn according to
polynomially decaying distribution of degree 2, with a plateau
in the low frequencies, which provided good reconstruction
performance across the different image sizes [31]. An example
of the resulting sampling schemes is depicted in Fig. 2C), for
an image size N = 512 and a acceleration factor of R = 10.
Acceleration factors from 2 up to 30 were considered.

On the other hand, we also propose to evaluate the perfor-
mance of golden-angle radial readouts, which is widely used
in dynamic MRI. This radial k-space trajectory is composed
of diametrical spokes spaced by the golden angle increment
of 111.246° [32]. Fig. 2D) shows the golden-angle radial
trajectory for the studied image size of N = 1024 and R = 15,
which results in 68 spokes composed of 1024 samples.

Both sampling schemes are implementable in practice in
MRI when used to encode so called partition, the 3rd dimen-
sion of a 3D acquisition [2]. For the sake of simplicity, only
reconstructions orthogonal to this direction are considered in
this work.

4) Reconstructions: Non-linear non-Cartesian reconstruc-
tions were implemented to reconstruct the images by solving
the ¢1-¢% penalized synthesis formulation of the CS recon-
struction problem:

~ 1
Z = arg min §||FQ‘IIZ —ylI3 + Azl

2eCN?xq

®)

where y € C™ is the measured Fourier data, x = ¥z € CV :
is the image and z € CV *X4 jts wavelet decomposition over
a redundant wavelet basis on L. = 4 levels (¢ = 3L + 1),
A = FqVW is the sensing matrix over the support 2 C
{1,...,N?} with F the discrete Fourier transform and )
the regularization parameter. The Non-equispaced Fast Fourier
Transform (NFFT) [33] was used to handle non-Cartesian
Fourier data and an undecimated wavelet transform was taken
from the Rice Wavelet Toolbox (RWT version 3.0 available
on github.com/ricedsp/rwt). A proximal accelerated gradient
method (Fast Iterative Soft Thresholding Algorithm [34])
was implemented to solve the minimization problem (5).
Finally, the regularization parameter was tuned over a range of
[1076;1072] so as to select the reconstruction of best quality
according to the criterion introduced below.

5) Image quality metrics: To quantitatively assess the
image quality, we chose to work with two reference-based
image quality metrics: the structural similarity (SSIM) index
introduced in [35] and the Normalized Root Mean Square
Error (NRMSE in %). On the one hand, the SSIM attempts
to model the human visual system (HVS) and is increasingly
employed in the MRI community to assess image quality [36]—
[38], and on the other hand the NRMSE is a commonly used
intensity-based metric calculated as follows (Eq. 6):

NRMSE(X, x) = |X|;II):”2

where X is the reconstructed image from Eq. (5) and x the
reference. While the SSIM index, SSIM(X, x), varies between
0 (null correspondence with the reference) and 1 (perfect
match with the reference), the NRMSE is comprised between
a 0% and 100% error. For each image size, the corresponding
reference was chosen as the fully sampled Cartesian image
of same size presenting a SNR of 110, which is the highest
studied SNR in this work. Moreover, these indexes were
computed over cropped images deprived of their background
with a binary mask. Since both metrics presented very similar
tendencies, NRMSE performance was only shown in the first
part of the results and the SSIM index was used for the rest
of the study.

Furthermore, to quantitatively represent the targeted image
quality, we selected an arbitrary SSIM threshold denoted by
Qo whose value was set to 0.9 as this is considered to
convey a fair image quality [39]. A correspondence between
SSIM scores and Mean Opinion Scores (MOS) is displayed
in Table I.

(6)

TABLE I
CORRESPONDENCE BETWEEN SSIM SCORES AND MEAN OPINION
SCORES (MOS) BETWEEN AN IMAGE AND A REFERENCE [39].

SSIM MOS Quality Impairement

> 0.99 5 Excellent Imperceptible
[0.95,0.99) 4 Good Perceptible but not annoying
[0.88,0.95) 3 Fair Slightly annoying
[0.5,0.88) 2 Poor Annoying

<0.5 1 Bad Very annoying




C. Experimental validation with MRI acquisitions

MR acquisitions were performed on a 7 Tesla Siemens
scanner (Siemens Healthineers, Erlangen, Germany), with a
1-channel transmit and 1-channel receive coil (InVivo Corp.,
Gainesville, FL, USA) to provide experimental noisy data
for retrospective undersampling. An ex vivo baboon brain
conserved in a fluorinert solution was imaged with a 2D T5-
weighted Gradient Recalled Echo (GRE) sequence. All animal
studies were conducted in accordance with the European
convention for animal care and the NIHs Guide for the Care
and Use of Laboratory Animals. The acquisition was fully-
sampled on the Cartesian grid for image sizes of N = 512
and NV = 1024 and consisted of NV lines collecting N Fourier
samples (no oversampling). Parameters of the sequence are
summarized in Table II. To get a wide range of input SNR,
data averaging over several measurements was performed in
the Fourier domain. To reach an input SNR of 110, image
sizes N = 512 and N = 1024 needed respectively a number
of 15 and 82 averages, referred as to NEX (Number of
EXcitations) hereafter. The resulting magnitude images of
various input SNR were then retrospectively undersampled
with the presented iid and radial sampling schemes.

TABLE 11
PARAMETERS OF TQ*-WEIGHTED GRE SEQUENCE USED FOR
EXPERIMENTS.
Parameters Values
Repetition time (TR) 60 ms
Echo time (TE) 30 ms

Flip angle (FA) 10°

Slice thickness (SL) 5 mm

Field of view (FOV) 205 mm
Total NEX for N = 512 15
Total NEX for N = 1024 82

IV. RESULTS
A. Influence of SNR

Fig. 3A)-B) respectively show the SSIM and NRMSE scores
as a function of the input SNR for four increasing undersam-
pling factors, under a constant image size of N = 1024. For
a given acceleration factor, as the input SNR gets larger the
SSIM increases to an asymptotic value corresponding to the
maximum score denoted by SSIMy;,,, (N, R) (Fig. 3A). More
precisely, the image quality reaches a plateau, as soon as
the input SNR is sufficiently high. Hence, the concept of a
minimum input SNR required to attain the asymptotic image
quality score can be defined as the necessary SNR to be close
to the best score by less than 1 %. This quantity denoted by
SNR,,in (IV, R) depends on the studied image size N as well
as the acceleration factor R. For the presented case N = 1024
and R € {5, 10, 20, 30}, its values are reported in Table III. As
the undersampling factor grows, the corresponding asymptotic
SSIM value drops whilst the minimum input SNR required
to be close to this limit by 1 % increases affinely with the
undersampling factor.
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Fig. 3. For a constant image size N = 1024, evolution of A) SSIM scores
and B) NRMSE scores as a function of input SNR, for different acceleration
factors of 5, 10, 20 and 30, in the case of analytical images reconstructed from
iid-undersampled data. For both metrics, as the input SNR increases, the image
quality improves and approaches its limit. A stationary regime is reached for
high input SNR, where SSIM and NRMSE scores are approximately equal
to their maximum and minimum values respectively for a given acceleration
factor.

A similar but reversed trend can be observed on Fig. 3B)
for the NRMSE index where a plateau is visible as well.

TABLE IIT
ASYMPTOTICAL SSIM VALUES, SSIMy;,,, (N = 1024, R), AND MINIMUM
INPUT SNR, SNR i (N = 1024, R), REQUIRED TO BE CLOSE TO
SSIM;;,, (N = 1024, R) BY 1%, FOR R € {5, 10, 20,30}.

R 5 10 | 20 | 30
SSIMy;,m | 097 | 0.93 | 0.89 | 0.85
SNRyin | 23 | 29 | 41 | 51

B. Influence of image size

Fig. 4 shows the SSIM scores as a function of the image size
for four undersampling factors, under a constant intermediate
input SNR of 81. For a given acceleration factor, as the image
size gets larger the SSIM index increases in a concave manner.
Moreover, two regimes can be identified in the dynamics of



image quality scores: a high-resolution regime corresponding
to large image sizes and a low-resolution regime corresponding
to small image sizes (the FOV is kept constant). On the one
hand, for large image sizes above N = 512 the image quality
scores are quasi invariant by change in image size and are
close to their maximum value for each acceleration factor. On
the other hand, for small image sizes the image quality rapidly
drops to severely low scores.
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Fig. 4. For a constant input SNR of 81, evolution of SSIM scores as a
function of image size, for different acceleration factors of 5, 10, 15 and 30,
in the case of analytical images reconstructed from iid-undersampled data.
SSIM scores increase in a concave manner as the image size gets larger. Two
dynamics can be distinguished: a low-resolution regime where image quality
rapidly diminishes as the image size decreases and a high resolution regime
where image quality remains stable as the image size gets more important.
The dashed black line represented the chosen quality threshold Q¢ = 0.9
and highlights the combinations (N,R) of image sizes and acceleration factors
which allow to maintain the targeted image quality.

Furthermore, Fig. 4 allows to determine the combinations
of image size and acceleration factor (IV, R) guaranteeing a
SSIM threshold of Qg = 0.9 (dashed line) at the studied input
SNR. While any undersampling factor up to R = 30 can
be applied to an image of size N = 2048 and still ensure
SSIM scores above 0.9, an image size of N = 256 cannot be
accelerated more than 5 times in order to meet Qg = 0.9.

C. Maximum acceleration factor

The previous results on image size and SNR influences can
be combined to determine the maximum acceleration factor
allowed in a given situation, Ry,.x(Qo, N, SNR).

A 3D map of the maximum undersampling factor allowing
SSIM scores higher than Qg = 0.9 is shown in Fig. 5A) for
the analytical phantom, as a function of image size N and
input SNR. The flat aspect of the surface along the input SNR
direction conveys the image quality reaching the previously
observed stationary state once a specific minimum SNR has
been attained. In contrast, as can be seen on the 2D projection
of the surface on Fig. 5B), the maximum acceleration factor
keeps growing as the image size increases, reaching values of
5, 8, 16 and 30 for images sizes of 256, 512, 1024 and 2048
respectively. Moreover, the natural logarithmic scale on the
image size direction used on this view indicates a super-linear
growth rate of Ry, as a function of image size.
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Fig. 5. Analytical phantom Ry, ax results in the case of iid undersampling. A)
3D view of the maximum undersampling factors allowing SSIM scores above
Qo = 0.9 as a function of image size N and input SNR. B) Its 2D projection
on the (Rmax, N) plane. Knowing the image size and the available input
SNR of any acquisition, the corresponding maximum undersampling factor
allowing to reach the targeted image quality Qo = 0.9 can thus be derived.
The experimental N — SN R level line (orange line) of the presented 75 -
weighted GRE acquisition (see section III.C) was added on both graphs. It
represents the projection onto the Rmax surface of the relationship between
the intrinsic SNR available in practice for this particular acquisition and the
image size. For the considered sequence, only acceleration factors below the
N-SNR level line will thus meet or exceed the targeted image quality (see B).

D. Acquisition intrinsic SNR and R, .x

We propose to further specify the aforementioned functional
Ryax defined on all the possible combinations of studied input
SNR and image sizes, by taking into account the acquisition
intrinsic SNR available in practice which depends on the
image resolution and the considered MR sequence. Indeed,
any acquisition is characterized by its sequence relaxation



parameters (I'R, TE, F'A), resolution parameters (N, FOV,
SL), the MR scanner itself and its transmitting/receiving chain
including the coils, and the imaged object relaxation properties
(Th, T5). Hence, for a particular acquisition and fixed FOV,
there exists a unique relationship between the image size N
and the input SNR. Graphically, this N-SNR relation can
be projected onto the R,,.x surface to delineate where the
maximum undersampling factor of the sequence of interest
lives in practice. Fig. 5 shows this experimental N-SNR level
line (in orange) in the case of the presented GRE sequence
(see Table II) which was projected on the studied domain.
The 2D view of this line is depicted in Fig. 5B) and illustrates
where the maximum acceleration factor for each image size is
located in practice for this particular sequence to reach the
targeted image quality Q9 = 0.9. This N-SNR level line
interestingly presents a maximum of 8 reached for an image
size of N = 512. More precisely, between N = 256 and
N = 512, we observe that the IN-SNR level line deviates
from the envelope of the R,.,.x projection, which represents
the point at which the acceleration starts to be limited by the
available SNR. Hence, given the intrinsic SNR of the studied
acquisition for one NEX, an 8-fold accelerated reconstruction
of an image size N = 512 should maintain a SSIM score
above 0.9 which is verified experimentally in Fig. 6E), whereas
this is no longer ensured for a 16-fold undersampled image of
size N = 1024 as can be seen in Fig. 6F). Nevertheless, if the
input SNR is important enough (e.g., SNR = 110 as this was
experimentally obtained by computing multiple averages), an
acceleration factor of 16 would be feasible for an image size of
N = 1024 and the same threshold @) (Fig. 6D)). The increase
of the input SNR to 110 for the image size of N = 512
expectedly increases the SSIM score up to 0.95 (Fig. 6C)).

E. 2D radial sampling schemes

Finally, we present the performance of conventional golden-
angle radial trajectories [32] for an image size of N = 1024
and an undersampling factor of R = 15. SSIM scores are
reported in Fig. 7 for both iid (red) and golden-angle radial
sampling (yellow) schemes, in the case of the analytical
phantom (continuous line) and of the experimental data of the
baboon brain image (discrete symbols). Experimental scores
are in good agreement with the simulated results. As expected,
radial trajectories are performing significantly worse than
iid sampling, with a difference of more than 0.15 in the
asymptotic SSIM scores for both experimental and simulated
results. Nevertheless, as the input SNR falls to lowest values,
the gap between the two different sampling schemes shrinks
to zero.

Theses results illustrate how iid sampling schemes can
produce near upper bounds to other 2D MR-feasible sampling
trajectories such as radial readouts.

V. DISCUSSION

In this empirical study, we showed how to quantitatively
derive the maximum undersampling factor preserving a tar-
geted image quality as a function of the image size and the
input SNR. These findings could be of major interest for

practical CSMRI users and provide quantitative guidelines to
their choice of acceleration factors and resolution. On the
one hand, our analysis quantitatively confirmed the benefits
of going higher in resolution and is therefore in agreement
with the presented theoretical results of CS (Section II -
Fig. 1). By increasing the image size, larger acceleration
factors can indeed be used while allowing to recover high-
resolution details. Nevertheless, this enhanced performance at
high resolution is in practice limited by the available SNR
of the considered acquisition. We thus showed the existence
of a minimum SNR that has to be reached in order to meet
the expected image quality, a key feature which was lacking
in previous studies in CSMRI. This minimum SNR appeared
to be an affine function of the acceleration factor. This R,
function is theoretically defined over all possible combinations
of image sizes and SNRs in the studied domain, but in
practice remains confined to a more restricted area owing to
the intrinsic SNR limitations of a particular MR acquisition.
We introduced this constraint by means of a characteristic
relationship between image size and SNR. In situations where
the intrinsic SNR is limiting, it may be more favorable to use
a smaller accelerating factor on a lower resolution scan for
optimal results.

Regarding the practical utilization of this work, our ex-
perimental results appeared to be in good agreement with
simulations performed on the analytical brain phantom, which
corroborates the validity of our approach to derive a maximum
undersampling factor for a given acquisition-reconstruction
setup. Our work may thus aid the design of undersampled 3D
acquisitions using CS and even 4D MRI, even though prospec-
tive performance of compressed MR acquisitions may be
slightly lower than predicted due to unconsidered MR system
imperfections (e.g. eddy currents). Moreover, our comparison
with golden-angle radial sampling performance suggests that
our results may be extended to 2D acquisitions insofar as they
provide upper bounds on the maximum undersampling factor
which may be approached with spiral readouts or random-like
2D sampling trajectories [18], [40]. Although in practice it
is not always possible to acquire the fully-sampled Cartesian
image to compute the available input SNR, MR physicists
could estimate their acquisition intrinsic SNR by probing the
noise and signal strength in the k-space directly.

Since this study assumes a particular acquisition and recon-
struction pipeline, SSIM scores generated with another setup
may lead to slightly different quality scores. However, we
expect the observed tendencies and dynamics to remain similar
with other methods (e.g. changes in sparsifying dictionary or
algorithm), with possibly minor up- or down-shifts of the
SSIM curves. If the arbitrary choice of the SSIM quality
threshold is not an issue itself since any user should be able
to determine the image quality of interest against a chosen
reference, some limitations of the SSIM index should be
pointed out. First, the comparison of scores between different
image sizes should be done carefully since the SSIM metric
is not resolution-invariant: an image of size N = 1024
presenting a SSIM of 0.92 may look better than an image
of size N = 512 presenting a SSIM of 0.95, as can be
observed on Fig. 6B)-C). The explanation lies in the fact



that matching a reference of higher resolution is inherently
more demanding. This issue can be bypassed by adjusting the
desired image quality (i.e. the threshold) to the resolution via
a threshold function Qo (V). Furthermore, the influence of the
reference should also be mentioned as SSIM scores are likely
to change with the input SNR of the reference notably. We
evaluated the impact of this parameter in Appendix A, and
showed that this effect is of minor concern for the considered
SNR. The structural characteristics of different images are also
expected to influence the SSIM scores since this metric was
designed to be sensitive to structural features. Nevertheless,
our experimental results on a brain baboon showed SSIM
scores very close to those of the analytical brain phantom
despite significant structural differences between these two
types of images (Fig. 6 and 7), which supports the consistency
of the presented study.

VI. CONCLUSION

Our study empirically and quantitatively showed how the
image quality measured with the SSIM index is affected by
both input SNR and image size when Compressed Sensing
alone is used to speed up MRI acquisition and how this
information can be used to determine a maximum acceleration
factor depending on the targeted image quality. On the one
hand, our results confirmed the benefits of going higher in
resolution since increasing the image size allows the use
of larger acceleration factors. Nevertheless, this enhanced
performance at high resolution is in practice limited by the
available SNR in the considered acquisition. We showed the
existence of a minimum SNR required to meet the expected
image quality. This threshold value is affinely growing with
the acceleration factor. Most interestingly, we showed how
to quantitatively derive the maximum undersampling factor
R.ax preserving a targeted image quality as a function of the
image size and the input SNR. When the input SNR is high
enough, typical R,,x values were found to be 5, 8, 16 and
30 for image sizes 256, 512, 1024 and 2048 respectively for
the considered ¢'-based reconstruction. In practice, this R ax
function is however constrained by SNR limitations inherent
to a particular MR acquisition and we demonstrated how our
results enable to take this a priori knowledge into account.
These results were corroborated by experiments performed on
a 7 Tesla scanner, and illustrate how the use of CS in 2D
acquisitions can be virtually limited by the available SNR
when exploring very high resolution. Finally, our proposed
SSIM-based method to determine the maximum acceleration
factor for a particular acquisition can easily be adapted to any
acquisition-reconstruction pipeline and may thus be of interest
to other techniques such as parallel imaging.
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APPENDIX A
INFLUENCE OF REFERENCE SNR ON SSIM SCORES

To evaluate the influence of the input SNR of the reference
x on the scores SSIM(X,x) scores, the reference SNR was
varied in the computation of the SSIM for a fixed recon-
struction X of the analytical brain phantom with iid sampling
schemes. Two cases were tested and are presented in Fig. 8 for
(i) N =512, R =5 and an input SNR of 46 (black line) and
(i) N = 1024, R = 10 and an input SNR of 110 (orange line).
Both curves present a stationary value as the input SNR of the
reference increases. This graph shows that above an input SNR
of approximately 100, the SNR of the reference no longer
influences the value of SSIM scores. Noisier references do
not match as well the reconstructed images probably because
of the denoising effect of the non-linear reconstructions. This
result supports the use of a reference presenting an input SNR
of 110 for the calculation of SSIM scores.
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Fig. 6. Results of retrospective iid-undersampling performed on experimental data acquired with a T’y -weighted GRE sequence (see sections II1.C). Fully-
sampled Cartesian reference images presenting an input SNR of 110 for N = 512 (A) and N = 1024 (B). A 2x-zoom displaying a folded pattern in the
baboon cortex of visual interest has been added in the bottom left-hand corner for each image. For the intrinsic SNR of the considered acquisition (no average),
reconstructions for images sizes N = 512 (E) and N = 1024 (F), which were undersampled respectively by a factor R = 8 and R = 16, are shown together
with their SSIM scores calculated against their respective reference. In the case of an increased input SNR of 110 which was obtained by multiple averaging
(82 and 15 NEX for N = 1024 and N = 512 respectively), reconstructions for images sizes N = 512 (C) and N = 1024 (D), accelerated respectively by
a factor R = 8 and R = 16 are displayed likewise.
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Fig. 8. Influence of input SNR of the reference on the SSIM scores calculated
for fixed reconstructions in the case of a 5-fold undersampled image size of
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