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Abstract

This work investigates the role of the filters implemented
on modern ADCs for the reconstruction of magnetic res-
onance images. We analyze both from a theoretical and
experimental point of view the effects of these filters and
demonstrate how it may lead to severe degradation of the
reconstructed images when using modern sampling pat-
terns. Based on these findings, we propose a mathemati-
cal model and a numerical algorithm that allow to mitigate
such filtering effects. Experiments on simulated and real
data on a 7 Tesla scanner show that the proposed ideas
allow to drastically improve the overall image quality.

1 Introduction

The standard acquisition model in MRI states that the con-
tinuous Fourier transform of an image u : 2 — C is sam-
pled on a set of discrete points in what is commonly called
the k-space. The space  C R? is the field of view, with
d = 2 or d = 3 denoting the space dimension. The par-
ticularity of MRI is that these samples are measured along
several parametrized curves A : [0,7] — R<, called k-
space trajectories or shots. According to this model, given
a sampling period At and letting @ denote the Fourier
transform of the image u, the measured samples are mod-
eled as [12]:

y; = WA AY)), (1)

where j € N denotes the index of the measurement. Most
commonly, these points lie on a grid, which is filled by
parallel Cartesian lines [18], but non-Cartesian sampling
such as spiral trajectories [24] may also be used for their
greater sampling efficiency and are becoming increasingly
popular with the advent of compressed sensing [21].
Nevertheless, the model expressed in equation (1) does
not account for the analog-to-digital converter (ADC),
which converts the continuous signal f(¢) = 4(A(t)) into
discrete values. The model that will be used to describe

this effect is a linear time invariant filter of the type:

y; = (hx f)(jAL), (@)

where * denotes a convolution operator and h is a filter
that depends on the ADC technology. The main point of
this article is to show that neglecting the filtering effect in
model (2) can have a dramatic impact on the reconstruc-
tion quality and to propose numerical algorithms to handle
it. We will give a particular attention to two typical situ-
ations: a simple integrator ADC and more advanced ban-
dlimiting filters which are typically used in modern MRI
scanners.

o Integration effect. The earliest ADCs were simply
integrating ADCs, meaning that the ADC simply in-
tegrates the Fourier transform 4 over a the k-space
path. This model reads as y; = (J].Afl)m a(A(t)) dt

and can be cast into equation (2) by choosing h =

Ljo,aq- The interest of choosing a large sampling

period At is that the signal-to-noise ratio (SNR) in-

creases since more signal is averaged over time [15],

which is a typical reasoning in MRI physics. We will

see later that this improvement might not compensate
the downsides that come along with it.

¢ Bandlimiting filtering. On most MR scanners,
the ADC bandwidth is fixed and much higher than
the desired receiver bandwidth [2]. The ADC rate
reaches several megahertz, while the receiver band-
width usually ranges from about 5 to 100 kHz [13].
To produce the measurements at the desired sam-
pling rate, bandlimiting filtering is applied on the
digitized data before decimation. This bandlimiting
step is introduced both to avoid aliasing of the tem-
poral signal f when subsampling it and to reduce the
noise. A perfect bandlimiting filter takes the form
h(t) = sinc(t/At).

To the best of our knowledge, the effects of ADC filter-
ing on image reconstructions have not yet been described
or studied in the literature.



The higher complexity of the model may be a possible
explanation for this omission, since equation (2) no longer
represents a Fourier transform, preventing a straightfor-
ward application of standard tools such as the fast Fourier
transform. Furthermore, this effect might go unnoticed
when using standard Cartesian acquisitions which are usu-
ally oversampled by a factor of 2 in the readout direction
compared to the Nyquist rate. We will see later that the
classical model in that case is sufficient to reconstruct high
quality images. However, in situations where faster tra-
jectories are used, as is the case of spiral sampling and/or
when the use of oversampling is not possible due to low
signal-to-noise-ratio (SNR), significant artifacts may ap-
pear.

In section 2, we first show how the classical approx-
imation in equation (1) can lead to detrimental artifacts
in the reconstructed images, even in the case of Cartesian
sampling at Nyquist rate. Depending on the trajectories,
intensity modulations, space-varying blurs and image de-
formations can be observed when ignoring ADC filtering.

In many situations, the filter & is not provided by the
manufacturer and correcting the effect hence requires its
estimation. In section 3, we propose a reverse engineering
technique based on the design of specific sequences and
numerical algorithms to estimate the applied filter h.

In section 4, we propose numerical algorithms to han-
dle the ADC filtering effect for linear and nonlinear recon-
structions methods. These are based on a combination of
numerical integration methods and of the nonuniform Fast
Fourier transform.

In section 5, the proposed algorithms are tested against
simulated and real data, showing significant improve-
ments in the reconstruction quality, especially when using
the novel trajectories designed in the framework of com-
pressed sensing.

1.1 Notation

In this paper, we assume that the image domain is {2 =
[~1/2,1/2]2. We chose to work in 2D to simplify the
exposition, but an extension to 3D is direct. Similarly,
the domain can be shifted and inflated to account for a
different field of view with straightforward scaling argu-
ments. Notice that with the choice Q@ = [-1/2,1/2]?,
Shannon’s sampling theorem [27] suggests to take sam-
ples on a Cartesian grid, with a grid size of length 1.

The space L?(f2) is defined as the set of measur-
able functions w with finite L? norm, ie. [ul7, :=
Jo lul*(z) dz < +oc. The canonical Hermitian product
on C" and L%(Q) is denoted (-,-). Letu : Q — C de-
note a magnetic resonance image in L%(§2). Its Fourier

transform is defined for all ¢ € R? by:

w(€) = /Q exp(—2um(z, &))u(z) dx.

The Dirac delta function at 0 is denoted by § and the Dirac
delta function at a position x is denoted ¢

Given two functions f and g, the tensor product of f
and g is defined by (f ® g)(z,y) = f(x)g(y) for all z,y.
We recall that the Fourier transform preserves the tensor
form: F(f @ g) = F(f) @ F(g).

2 The deleterious consequences of
filtering

The aim of this section is to explain the ADC filtering ef-
fects on the reconstruction of signals and when it is im-
portant to account for them. We start by the simple case of
Cartesian trajectories and then turn to more general sam-
pling patterns.

2.1 The case of Cartesian sampling

The filtering effect in the case of Cartesian sampling with
constant speed s can be understood by an analytical ar-
gumentation. In that case, for each sampling point, the
filtering is performed along the readout direction only. A
convenient way to formalize this observation is to intro-
duce the following tensor product filter i = g ® §, where
g(t) = h(t/s) and to observe that the acquisition model
can then be written as:

Yig = (x p)(IAE, JAL)

where (i, j) € {—n/2,n/2 — 1}? describe the set of sam-
ples indices, and n € N describes the number of samples
in each k-space direction.

Now, by not accounting for the filtering effect, the best
we can hope for is to reconstruct an image u* of the form
u* = F~ (i % fi) = u - u, where y is defined by:

3
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Depending on the filter h, different effects can be ex-
pected.

Integration In the case of an integration filter, we have
h = T1j9,a¢» where At is the sampling period. Then
g = ljo,a¢)» where A = sAt is the length of the
segment over which the Fourier transform is inte-
grated. Hence, F~1(g) is a sinc filter, and the fil-
tering effect hence produces an image modulated by



a sinc. Depending on the integration length A&, this
effect will either just lower the contrast at the image
boundaries, or create low frequency oscillations.

Sinc By using a sampling period At, the standard
Shannon-Nyquist sampling theorem states that it is
impossible to reconstruct frequencies beyond the in-

terval ] = [~k 5%;]. Hence, to avoid aliasing

effects, one may be tempted to use a perfect bandlim-
iting filter of the type h = 1. In that case, we would
get h(t) = sinc (&7 ). The filtering effect in that case
would simply crop the image in one direction on the

interval 1.

We now propose to simulate the effect using 4 different
Cartesian sequences with A¢ € {1,1,2,4}. The value
A& = 1/2 corresponds to the most standard Cartesian tra-
jectory in MRI (oversampling factor of 2 along the readout
direction). The value A¢ = 1 corresponds exactly to the
Shannon’s limit sampling rate for an image supported on
[~1/2,1/2]2. For the simulation, our measurements are
created by incorporating the filtering effect as expressed
in equation (3). For example, in the integration case with
A¢ = 2, each sample results from the integration of two
consecutive samples acquired at A( = 1. The recon-
struction algorithm is based on a standard inverse discrete
Fourier transform (which does not account for any filtering
effects). Fig. 1 and 2 show the results for the integration
and the sinc filtering respectively as well with a cross sec-
tion of the images. The modulation due to the integration
filtering can be seen on the cross sections for all values of
A£. On the contrary, the effect of the sinc filtering can be
seen only for A¢ € {2,4}, with a dramatic effect: the disk
is cropped with an irreversible loss of information.

Overall this experiment highlights the fact that larger
distances between consecutive samples in the k-space re-
sult in a more pronounced filtering effect.

2.2 The case of arbitrary trajectories

For more general trajectories, it seems hard to give an an-
alytical description of the filtering effects. From a math-
ematical viewpoint, it amounts to studying integral oper-
ators with kernels defined as measures supported on one
dimensional curves. To the best of our knowledge, very
little is currently known for such operators. Hence we re-
strict ourselves to provide experimental simulations with
spiral trajectories, which are one of the most widespread
non-Cartesian trajectories.

Fig. 3 shows a sampling pattern made of 200 inter-
leaved spirals, which were designed using the method pro-
posed in [20]. Each spiral is depicted with a different
color going continuously from blue to green. The number
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Figure 1: The integration effect with a Cartesian sampling.
Note: the images might be complex valued, and we only
display their modulus. This explains why negative oscil-
lations are seen as positive values.
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Figure 2: The sinc filtering effect with Cartesian sampling.
Note: in that experiment, some ringing appears on the
boundaries, explaing why the cropped images are darker.

of samples is equal to 153600, while the reference image
contains 512 x 512 pixels. Hence this experiment corre-
sponds to a subsampling factor of 1.7. Notice that while
the distance between consecutive samples is about 1 pixel
in the k-space center, it reaches about 5 pixels in the outer
part, meaning that the filtering effect will have a higher im-
pact on high frequencies. Images of a brain phantom [14]
were reconstructed using a standard nonlinear reconstruc-



tion algorithm described in Section 4.3.3. Fig. 4 shows
the consequences of the integration and the sinc filtering
on the images acquired with the spiral trajectory. When
integration effects occur (Fig. 4b), the reconstructed im-
age suffers from severe artifacts including a space varying
blur, some contrast losses, a slight rotation (visible only by
switching from one image to the next) and a modulation.
In the case of bandlimiting filtering (Fig. 4c), the image
quality degrades even more: a magnified region shows the
loss of resolution as compared to the ground truth (Fig.
4a).
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Figure 3: Two zooms on a sampling pattern made of 200
interleaved spirals. Each spiral has a different color.
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Figure 4: Example of reconstruction of an image sampled
along the spirals of Fig. 3. The reconstruction algorithm
does not account for the integration effect.

3 Validation of the filtering model

To the best of our knowledge, the forward model proposed
in equation (2) has not been studied in the literature pre-
viously. The way the signal is digitized and processed de-
pends on the MR receiver hardware, with specifications
that are usually not transparent. In the following part, we
therefore design a reverse-engineering technique to esti-
mate the filter h and to validate the proposed model.

3.1 A filter estimation procedure

We introduce a methodology to verify model (2) and to
estimate the ADC filter. The principle reads as follows:

e Set a sampling period d¢, a downsampling factor
p € N, a number of measurements m € pN and a
trajectory \ : [0, mdt] — R2.

e Generate a first set of measurements yo € C™ by
sampling f = @ o A with the rate Jt.

e Generate a second set of measurements y; € C™/?
by sampling f with the rate pdt.

In the case of an integrating ADC for instance, the noise-
less measurements should then satisfy:

p—1
yilil = yolpi + 4. )
j=0

A convenient way to express the model isy; = hxyo |
p, where * denotes the convolution product, | p is the
downsampling by a factor p and h = [1,...,1]/pis a
constant filter of size p. One way to verify equation (4) is
then to solve the following optimization problem:

min

1 2 [ 2
heRm§||(h*YO ip)—Y1||2+§\|LhH2, (%)

where o« > 0 is a regularization parameter and L is a reg-
ularizing operator. In all our experiments we set L to be
the discrete derivative and tune o manually.

The underlying idea behind problem (5) is to find the
best linear time invariant operator that allows to match the
two sets of measurements yo and y;. The least square
in equation (5) corresponds to a deconvolution problem,
which is highly ill-posed [28]. Hence we propose to regu-
larize it by adding a Tikhonov regularization. Problem (5)
can easily be solved with an accelerated projected gradient
descent. The interested reader is refered to the first paper
on the subject [25].

Remark 1. In practice, the vector of measurements y
is itself filtered by the ADC and we can only expect this
procedure to yield an estimation of the filter valid for the
time resolution 0t instead of mét.

3.2 The experimental setup

All acquisitions were performed on a 7-Tesla MR scan-
ner (Siemens Healthineers, Erlangen, Germany) with a
1Tx/32Rx head coil (Nova Medical, Wilmington, MA,
USA). To validate our model, an ex vivo baboon brain was
imaged using a gradient recalled echo (GRE) sequence to



acquire the Cartesian and spiral data corresponding to the
experiment described in the previous section 2.1.

We validated the model both for Cartesian and spiral
sampling.

In the case of Cartesian sampling, we set 6t = 10us
with a field-of-view (FOV) of 20 x 20 cm? for a target
resolution of 256 x 256. We then designed three trajecto-
ries composed of 256 lines with different sampling periods
At € {dt,46t,166t}, i.e. in the framework of paragraph
3.1,p=1,p = 4 and p = 16. When considering a nor-
malized FOV, those downsampling factors correspond to
AE = i, A¢ = 1 and A¢ = 4 respectively. For the case
p = 4, we interleaved four sets of trajectories to fill the
whole Cartesian grid, thus measuring enough information
to reconstruct the image. Overall, the number of samples
per line reached 1024, 256 and 256 forp = 1, p = 4 and
p = 16 respectively.

In the case of spiral trajectories, we set dt = 5us with
the same field-of-view (FOV) of 20 x 20 e¢m?. Spirals
were designed using the method proposed in [20] and were
made of 20 shots for a target resolution of 512 x 512. In
that experiment, we studied the cases p = 1, p = 2 and
p = 8. For the case p = 8, we interleaved 4 spirals to
measure as much information as for p = 2. Overall, the
number of samples per line reached 6144, 3072 and 3072
forp =1, p = 2 and p = 8 respectively.

3.3 Filtering effects on experimental data

In order to validate the proposed model, we first recon-
struct the images with Cartesian and spiral sampling using
a simple conjugate gradient algorithm. The results are dis-
played in Fig. 5.

In the case of Cartesian trajectories, no filtering effects
are observed for p = 1 (Fig. 5a). For p = 4, correspond-
ing to a sampling pattern at Shannon’s rate (i.e. A = 1),
two black bands appear at the top and bottom of the im-
age (Fig. 5b). For the image on Fig. 5c corresponding to
p = 16 (i.e. A¢ = 4), four horizontal black bands can
be observed and the object is cropped along the readout
direction. This perfectly matches the effects described in
Section 2.1 (Fig. 1 and 2). These results strongly sug-
gest that the MR scanner applies a bandlimiting filter on
the temporal signal. We will give further evidence of this
observation in the next section.

In the case of spiral sampling, the image correspond-
ing to p = 1 on Fig. 5d is near perfectly resolved. For
p = 2, the image gets slightly more blurry and the con-
trast is slightly deteriorated. For p = 8, the effect gets
disastrous, with some parts of the image disappearing and
strong rotational blurs.
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Figure 5: Direct reconstruction results of real data for the
Cartesian trajectories (top) and spiral trajectories (bottom)
with different sampling periods. Here we used a change
of contrast to better highlight the effect.

3.4 Estimation of the filter

Problem (5) was solved to estimate the filter h by using
both Cartesian and spiral data. We solved the problem for
each shot and channel independently and then averaged
the result to reduce the noise. Fig. 6 shows the mean filter
h (red line) for the Cartesian and spiral experiments re-
spectively. In both experiments, a sinc-like function can
be identified, which supports that a near perfect bandlim-
iting filter is used on the ADC.

4 Handling the filtering effects in re-
construction algorithms

4.1 Discretizing the image

Let n € 2N denote a resolution parameter. In this paper,
we assume that the true magnetization » can be written as:

(6)

U= Ug * 1P,

>

—n/2<i,5<n/2

where

Ug = u[la]]éz/n,j/n (7)

is an atomic discretization of the image with u € C™*"
and ¢ : [—¢,€]> — R is a compactly supported interpo-
lation kernel. The interest of this decomposition lies in
the fact that it will allow using nonuniform fast Fourier
transforms.



Figure 6: Mean and standard deviation for the estimated
filters using the Cartesian data (top) and spiral data (bot-
tom). For the Cartesian data, we used p = 4 and p = 16.
For the spiral data, we used p = 2 and p = 8.

The simplest interpolation kernel ¢ is the spline of or-
der 0:

1 if —1/(2n) <z,y <1/(2n),
0 otherwise.

Y(x,y) = {

It will be used in all the experiments of this paper.

Remark 2. Notice that the model (7) does not allow
to reproduce any function u. An additional error term
Au : Q — C should be added for completeness. We
can however show that this term can be bounded in LP
under regularity assumptions on u. We refer the interested
reader to the following book for more details [10].

4.2 Fast implementation of the forward
model

In order to reconstruct the image, nearly any reconstruc-
tion algorithm requires an implementation of the forward
operator and its adjoint. In this section, we therefore pro-
pose a numerical algorithm to evaluate integrals of the
form:

yi = /]R h(iAt — t)a(A(t)) dt. (8)

It is based on a combination of numerical integration and
of the nonuniform Fast Fourier transform.

4.2.1 The NFFT

The atomic structure in (7) allows using the non uni-
form Fast Fourier Transform (NFFT or NUFFT) [11, 16]
to get a numerical expression of @ at a set of locations
k = (k[0],...,k[m — 1]) € R™*? in the k-space. We let
k; and k, denote the two spatial components of k. The
NFFT allows evaluating rapidly with a high precision, all
components of 44(k), defined by:

D

—n/2<i<n/2
—n/2<j<n/2

ufi, j] exp(—2um (ikq [[|+7k2[l]))-

)
While a naive implementation of the sum would require
O(mn*) operations, the NFFT reduces the complexity to
O(n?log(n) + m|log(e)|?), where € is the desired pre-

| cision. The constants involved in the O depend on the

locations of the sampling points k.
By using matrix-vector product notations, this can be
rewritten as:
ﬂd(k) = Nl*(u7

where Nj € C™*"” is the NFFT matrix. Then, to get
the values of @, we simply use the formula: @ = Gy © 1.
Overall, the mapping (u, k) — (k) = i is given by:

a = 9(k) © Nyu.

Remark 3. When introducing the interpolating kernel
1, we need to take special care of boundary conditions.
The NFFT assumes periodic boundary conditions. In this
work, we simply work with images surrounded by black,
as is common in MRI, to avoid creating discontinuities on
the boundaries.

4.2.2 Integration along the curve

In order to compute the integrals (8), we propose to use
simple numerical integration procedures. Letting p € N
denote an upsampling parameter, we shall use the follow-
ing approximation:

yi = (hx [)(iAt) = > " hy - a(A(iAt - jot),  (10)

JEZ

where 0t = At/p and where the weights h; can be chosen
either by using the estimation procedure proposed in Sec-
tion 3.4 or taken equal to h(jdt) if an analytical version
of h is available. More advanced Newton-Cotes formula
[26] could also be used. The values G(A(iAt — jot)) can
be evaluated efficiently with the NFFT, and the weights
h; only need to be computed once at the start of the al-
gorithm. In practice, we typically use values of p in the
range {1,...,8}.



The forward model A can now be completely de-
scribed. Letting k denote the vector of discrete locations
with components k[i] = A(idt) for 0 < i < mp — 1, it
takes the following form:

Au=HX,;N;u,

where H is the operator that computes the sums in equa-

tion (10) and where X, : z ~ (k) ® z. The adjoint
operator is given by:

A* =N, I H".

Remark 4. In the case of multiple coils, the forward
model can be written as:

}I§Dquislll
Au = :

)

HY,N;S, u

where Sy, = diag(sg) is the diagonal matrix associated
to the k-th sensitivity profile and n.. is the total number of
receiver coils.

4.3 Reconstruction algorithms

Once the forward operator and its adjoint are properly de-
scribed, most existing algorithms can be used out of the
box. In this work, we implemented simple linear recon-
structions based on the linear conjugate gradient method
and more advanced nonlinear approaches. Other meth-
ods such as GRAPPA, SMASH, SENSE or ESPIRIT [17],
could be easily modified to account for the integration too.

4.3.1 Estimating the sensitivities

In all the experiments performed in this paper, we first
acquire a reference image with a standard Cartesian tra-
jectory sampled at twice Shannon’s rate along the readout
direction. This allows to simply estimate the sensitivities
by using the sum-of-square approach [23].

4.3.2 Linear reconstructions

One of the simplest ways to reconstruct an image is to
solve the following Tikhonov-regularized least squares
problem:

1 Q
in ~|Au—y|3+ <[l
Iin SflAu —yll3 + 7 lull;

The optimality conditions for this problem read
(A*A + al)u = A"y,

which can be solved with an iterative solver. In this paper,
we simply use a linear conjugate gradient method [26].

4.3.3 Nonlinear reconstructions

Nonlinear reconstructions are known to yield better re-
sults than linear ones, especially in the regime of subsam-
pled data. The whole field of compressed sensing [21, 4],
which under certain assumptions guarantees exact recon-
structions, is based on ¢!-regularized problems. In this
paper, our nonlinear reconstructions are based on the re-
solution of the following problem:

min
ueR”

1
sllAu=yl3 + aR(uw), (11)

where R : C*° — R U {400} is a regularization term
describing some prior information on the image that is
sought for. This type of problem can be solved effi-
ciently by using a Douglas-Rachford algorithm [8]. Let-

ting f(u) = %[|Au — y||3, it reads as follows:

1. Input: initial guess vy € C"’ and parameter y > 0.
2. uy = Prox,f(vg).
3. V41 = Vi — U, + Proxyar(2u; — vi).

The proximal operators Prox., s and Prox..r are defined
by:

1
Prox, (z) = arg min ~||Au — y||2 + = [u — z[3 (12)
ueCn? 2 2

and by

1
Prox,qr(z) = arg min yaR(u) + iHu —z||3. (13)
ueCn?

The step 2. above can be interpreted as the resolution of
the inverse problem using Tikhonov regularization. It can
be solved using a linear conjugate gradient algorithm. The
step 3. can be interpreted as a denoising step. Depend-
ing on the prior R, different algorithms can be used. The
sequence (ug)ren can be proved to converge to a global
minimizer of (11) if R is a convex closed function with
nonempty interior. In this work, we define R as the total
variation of the image [5] and solve the proximal step (13)
with the method proposed in [31].

Remark 5. Notice that total variation regularization is a
simple prior leading to decent results, but suffering from
some defects such as staircasing effect. More advanced
denoising methods such as BM3D [9] image can be used
instance, as was proposed in the plug-and-play-prior al-
gorithm [29].



5 Reconstruction results

In this section, we will demonstrate how the proposed re-
construction algorithms perform on simulated and experi-
mental data compared to traditional approaches.

5.1 Simulated data

We first consider the experiment of Section 2.2, in which
the spiral sampling pattern of Fig. 3 was used to simu-
late measurements of a brain phantom incorporating the
bandlimiting filtering with p = 2. Fig. 7b displays the
brain phantom image reconstructed with the nonlinear al-
gorithm of Section 4.3.3 that does not include the filtering
in the forward model. Note that this corresponds to the
standard MR reconstruction. We reconstructed the same
data with the method proposed in Section 4, which ac-
counts for the filtering effect. The result is displayed in
Figure 7c. By looking at the magnified regions, we notice
that the proposed reconstruction was able to recover the
fine structural details present in the ground truth image
(Fig. 7a), which had disappeared in the standard recon-
struction (Fig. 7b).

Remark 6. In all experiments, the regularization param-
eter a of equation (11) was manually tuned so as to pro-
duce the best possible result. We had to take it larger for
the standard model, otherwise, strong oscillations would
have appeared in the reconstructed image, with no signif-
icant increase in the level of details.

To further highlight the gain of resolution offered by
the proposed approach, we repeated the same experiment
with a synthetic image displayed in Figure 8. Here, we
used another four-interleaved spiral which samples the k-
space with a variable density decaying as the frequencies
get higher. Images reconstructed with the standard method
and the proposed approach are displayed in Figure 8a and
8b respectively. Notice how the resolution is enhanced by
including the filtering effect in the forward model.

5.2 Experimental data

The proposed acquisition model and reconstruction
schemes were tested on experimental data acquired from
both spiral [20] and sparkling [3, 7, 19] sampling patterns.

5.2.1 Spiral sampling

The spiral trajectory used for the acquisition was the same
as in Section 3.3 for p = 8. The reconstruction results
are displayed in Fig. 10. In this example, we simply used
a linear reconstruction algorithm based on the conjugate

gradient since the subsampling factor was not large and
32 receiver channels were used. Even though the recon-
struction accounting for the filtering effect is not perfect it
is clearly far superior to a standard reconstruction.

5.2.2 Sparkling sampling

The recently introduced Sparkling trajectories are novel
non-Cartesian trajectories that produce optimal sampling
patterns by taking full advantage of the hardware abilities
[3,7,19].

Remark 7. This project actually began thanks to these
new trajectories. Our first attempts to use those trajecto-
ries led to unsatisfactory reconstruction results. We un-
derstood after long investigations that the main problem
was related to the ADC filtering, which motivated us to
write this paper. While the results presented for the spiral
trajectory were mainly of tutorial value, since we artifi-
cially increased the sampling period At, the results pre-
sented in this paragraph are based on completely realistic
data.

The trajectory used in our experiments consisted of 128
shots composed of 512 samples each for a target resolu-
tion of 512 x 512, corresponding to a subsampling factor
of 4. A typical trajectory is displayed in Fig. 9. Mag-
nified regions of its center and periphery are displayed in
Fig. 9b and 9c respectively. As can be seen, the distance
between consecutive samples is larger than a pixel, be it in
the central region or at the k-space boundary. These large
gaps are related to the fact that the trajectory \ goes at the
maximal speed offered by the hardware.

An ex vivo human brain was imaged and reconstructed
with a standard nonlinear reconstruction algorithm and
with the proposed method. The results are displayed in
Fig. 11. Once again, the improvement of quality allowed
by the proposed approach is striking, especially in the tem-
poral lobes of the brain.

6 Discussion and Conclusion

In this work, we illustrated how the anti-aliasing filters im-
plemented in analog-to-digital converters could be detri-
mental to the good reconstruction of MRI images. De-
pending on the speed of the trajectory and on the sam-
pling period, these filters can have dramatic effects, with
irreversible loss of information. To the best of our knowl-
edge, these effects were ignored until now in the litera-
ture. We proposed novel numerical algorithms to mitigate
them, yielding far superior reconstruction results than cur-
rent approaches for some modern trajectories. This en-



(a) Ground Truth

(b) Standard reconstruction

(c) Proposed reconstruction

Figure 7: Reconstructions of the brain phantom image sampled along the spirals of Fig. 3 without (b) and with (a)

accounting for the bandlimiting filtering effects.

(a) Standard

(b) Proposed

Figure 8: Reconstruction with and without the bandlimit-
ing filtering accounted for.

hanced quality comes at the expense of a higher numeri-
cal complexity, with computing times typically multiplied
by factors ranging from 2 to 4 compared to standard ap-
proaches.

At this point, the reader may wonder why such anti-
aliasing filters are actually implemented in practice. While
they make perfect sense when the aim is to sample a purely
temporal signal f(¢) = 4(A(¢)) using Shannon’s theory,
their pertinence becomes less obvious when it comes to
the reconstruction of spatial MR images u, especially with
modern nonlinear reconstruction algorithms.

Let us consider their pros and cons. On the posi-
tive side, filtering allows to reduce noise and increase
the signal-to-noise-ratio, which may sometimes be criti-
cal when little signal is available. In addition, it allows
to reduce the number of measurements and hence leads
to faster reconstruction algorithms. Those two arguments
are probably the main ones explaining the very existence

of these filters. In addition, it is physically impossible to
measure pointwise values of f, and the filtering is an ef-
fect that cannot be avoided, up to the temporal resolution
of the ADC. On the negative side, applying filters trades
temporal resolution for signal-to-noise-ratio. It is how-
ever well known in the field of inverse problems that it is
much harder to gain resolution than signal-to-noise-ratio.
State-of-the-art denoisers are close to being unbeatable
[6], while blurring induces an irreversible loss of infor-
mation.

Overall, we believe that the increase of computational
power using massively parallel architectures, makes the
arguments supporting the filtering partly irrelevant. We
hope that the current manuscript may motivate manufac-
turers to use or design different ADCs. For instance, a
striking side-result of this work is that the older technol-
ogy of integrating ADC is somewhat preferable to more
complex bandlimiting ADCs, since the integrating filters
do not cause an irreversible loss of information (compare
Fig. 1 and Fig. 2). In addition, our analysis suggests to
use time-varying sampling periods. In the center of the k-
space, a lot of signal is usually available, allowing to use
very short sampling periods. On the contrary, as the sam-
pling trajectory gets more distant to the center, the sam-
pling period should increase to account for the signal de-
cay.

The key factor to know whether a trajectory is accept-
able or not for standard reconstruction methods is the max-
imal distance between consecutive samples. Nearly no
effect should be observed below half a pixel, slight ef-
fects will be observed between half a pixel and 1.5 pixels,
and significant problems should appear beyond. The re-
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Figure 9: Sparkling trajectory and magnified regions of
central and peripheral parts.

cent advances in sampling theory advocate the use of more
complex trajectories with high speeds [30, 22, 1, 19] that
may cross the critical regime of sampling distances. All
those arguments make us believe that the proposed analy-
sis and algorithmic framework may play an important role
in the future.
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