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Abstract We consider the problem of restoring im-

ages impaired by noise that is simultaneaously struc-

tured and multiplicative. Our primary motivation for

this setting is the Selective Plane Illumination Micro-

scope (SPIM) which often suffers from severe inhomo-

geneities due to light absorption and scattering. This

type of degradation arises in other imaging devices such

as ultrasonic imaging. We model the multiplicative noise

as a stationary process with known distribution. This

leads to a novel convex image restoration model based

on a maximum a posteriori estimator. After establishing

some analytical properties of the minimizers, we finally

propose a fast optimization method on GPU. Numeri-

cal experiments on 2D fluorescence microscopy images

demonstrate the usefulness of the proposed models in

practical applications.
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1 Introduction

Noise reduction is a long-standing problem which plays

a fundamental role to simplify image analysis. Denois-

ing algorithms should be designed by accounting care-

fully for the noise properties. Many works focus on ad-

ditive white noise (i.e. noise that is independent pixel-

wise). This problem is arguably close to have reached

a mature state, at least in the case of white Gaussian

noise [22]. In this paper, we consider a setting where the

noise is made of spatially correlated patterns that affect

the image multiplicatively. To the best of our knowl-

edge, this problem is left unexplored until now.

Our initial motivation is an instance of fluorescence

microscopy called Selective Plane Illumination Micros-

copy (SPIM) [19]. In this modality, samples are excited
by a light sheet that coincides with the focal plane of

a camera. While passing through the sample, the light

sheet is diffracted and absorbed. As a result, images

suffer from stripes parallel to the direction of light prop-

agation. A typical image obtained with a SPIM is dis-

played in Figure 1. As can be seen, large stripes make

automatic image analysis difficult. The proposed ideas,

though initially developed for the SPIM, are likely to be

useful for other imaging devices such as confocal micro-

scopes, ultrasound imaging (speckle noise) [26], hyper-

spectral remote sensing imaging (waterfall effects) [16,

19] or nanotomography and synchrotron based X-ray

microtomography (“ripple” effect) [4, 17,21,24,25,33].

1.1 Related works

In this section, we provide a brief and incomplete review

of existing methods to treat multiplicative noise and

additive structured noise.
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Fig. 1: SPIM acquisition of a HCT116 tumor spheroid.

Large stripes strongly impair image quality.

1.1.1 Multiplicative noise

Probably the simplest way to treat multiplicative noise

simply consists of applying a logarithm to the image

and then use standard techniques for additive white

noise. This however introduces a bias that needs to be

corrected with dedicated methods [12]. The first varia-

tional methods that attempted to take the multiplica-

tive nature of noise into account more finely are prob-

ably due to Rudin, Lions, Osher in [28] and later by

Shi and Osher [30]. These methods were however not

based on a clear statistical framework. Roughly at the

same time, Aubert and Aujol [3] proposed a nonconvex

variational model based on a Maximum A Posteriori

(MAP) estimator. The nonconvexity usually makes it

impossible to find global minimizers. This motivated

Teuber and Steidl [31] to develop convex variational

methods based on I-divergences. More recently, some

authors extended the ideas from patch-based and dic-

tionary learning restoration to the multiplicative case

[10, 18], with significant improvements. It is however

unclear how to apply patch-based restoration with cor-

related noise. Finally, let us mention that a few authors

also studied deconvolution problems with multiplica-

tive noise [11, 28, 35]. These models are closely related

to the proposed approach, since deconvolution can be

seen as a denoising problem with structured noise after

a direct deconvolution. The main difference is that the

noise structure is completely different in the proposed

approach, since its Fourier transform does not blow up

in high frequencies.

1.1.2 Structured noise

In recent years, treating structured noise gained im-

portance in fields such as life sciences, astronomy or

seismology. Many works are dedicated to a particular

imaging modality, since noise structure is highly depen-

dent on the physical acquisition principle. To name a

few, Münch et al [24] devised a wavelet-Fourier based

filter for removing stripe and ring artifacts in ion beam

nanotomography and computed tomography (CT) X-

Ray microtomography. Aizenberg and Butakoff [1] pro-

posed to use median filters in the Fourier domain to

reduce quasi-periodic noise. Boas and Fleischmann [4]

reviewed variant structured artifacts in computed to-

mography (CT) and developed an iterative reconstruc-

tion approach. Cornelis et al [9] designed double filters

(a smoothing Wiener filter and an adaptive filter) ap-

proach for digitally removing periodic canvas patterns

superimposed on painting artworks. Chen and Pellequer

[8] developed a “divide-and-conquer” approach, where

the Fourier spectrum of the image is divided into central

and off-center regions for noisy pixels detection and in-

tensity restoration, to remove heavy and fine stripes in

atomic force microscopy bio-molecular images. Anas et

al [2] provided a detailed statistical analysis including

classification, detection and correction of ring artifacts

in flat panel detectors based micro-CT images. Kim et

al [20] suggested to reduce ring artifacts in sinogram

data by calculating the line-ratio and equalizing detec-

tor element in sinogram space. Chang et al [7] developed

a variational destriping model by combining the uni-

directional total variation and framelet regularization.

Fitschen et al [15] proposed similar ideas to remove the

curtaining effect and stripes in Ion Beam nanotomogra-

phy images. Finally, Sur and Grédicac [32] proposed an

automatized algorithm based on natural image statis-

tics to remove quasi-periodic noise from strain images.

To finish, let us mention previous works by one of

the authors [13, 14] (which played a role in the emer-

gence of subsequent methods such as [7,15,32]). Therein,

a generic framework was proposed to treat additive

structured noise within a variational framework. The

noise was modeled as the convolution of a given filter

with a random vector with i.i.d. components. The mo-

tivation behind this modeling is that in many applica-

tions, the noise is stationary: its distribution should be

invariant to translations. The MAP principle then leads

to a convex restoration model solved with efficient first

order methods. The proposed methodology was proved

to be very useful in different image modalities (SPIM,

nanotomography, atomic force microscopy, bathymetry,

satellite imaging...). It is used on a daily basis in the

imaging facility of our laboratory. However, it leads to

some artifacts and the restoration is imperfect when

images suffer from with very large or dark stripes.

1.2 Our contribution

This work is built upon the previous paper [14]. The

first contribution is a phenomenological model to de-
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scribe the random patterns that appear in Figure 1.

The proposed statistical model reproduces the degrada-

tions observed in practice rather faithfully. Its second

important feature, is that the maximum a posteriori

principle leads to convex restoration models. Convex-

ity allows us determining some analytical properties of

the minimizers and to design an efficient minimization

procedure. We finally apply the proposed algorithm to

synthetic and real images, to demonstrate the interest

of the proposed approach in biological imaging. The

proposed algorithm is implemented on GPU, interfaced

with Fiji [29] and distributed freely on our webpage.

1.3 Paper structure

We first provide some background information in sec-

tion 2. In section 3, we design a first image formation

model. The MAP leads to a convex variational problem

that contains four parameters. In section 4, we analyze

the proposed model and show that it can be simpli-

fied and contain only one regularization parameter. We

then provide some analytical properties of the simplified

model minimizers and design a minimization algorithm.

Finally, we propose some numerical results on synthetic

and real images in section 6.

2 Preliminaries

2.1 Notation

Let E denote the vector space of images defined on

Ω = {1, . . . , n1} × . . . × {1, . . . , nd}. The total number

of pixels is therefore n = n1 · . . . · nd. Let E+ denote

the space of images on Ω with non-negative entries.

The pixels of the image are identified by a multi-index

i = (i1, . . . , id) ∈ Ω. For any image u ∈ E and scalar

p ∈ [1,+∞), we let ‖u‖p :=
(∑

i∈Ω |u[i]|p
)1/p

and

‖u‖∞ := maxi∈Ω |u[i]| denote the standard lp and l∞-

norm, respectively. The dot product of u1 and u2 ∈ E
is defined by 〈u1,u2〉 :=

∑
i∈Ω u1[i]u2[i]. The symbol

1 stands for the element of E with all values equal

to 1. The identity operator is denoted I. The nota-

tion diag(u) indicates a diagonal operator with diag-

onal elements equal to the entries of u. Let V = Ed

denote the space of discrete vector fields on Ω. For any

q = (q1, . . . ,qd) ∈ V , |q| denotes an element of E with

i-th entry defined by

|q|[i] :=

√√√√ d∑
l=1

ql[i]2. (1)

2.2 Convex sets and functions

For simplicity, we identify E with its dual E∗, the space

of linear forms on E. Let f : E → (−∞,+∞] be

a function. The domain of f is defined by domf :=

{x ∈ E | f(x) < +∞}. Function f is proper if it is

not identically equal to +∞. It is closed if its epigraph

epif := {(x, z) ∈ E × R | f(x) ≤ z} is closed in E × R.

The indicator of a set D ⊂ E is defined by

χD(x) =

{
0 if x ∈ D,
+∞ otherwise.

(2)

The proximity operator of the proper convex function

f is defined by

proxf (x) := arg min
y∈E

{
f(y) + 1

2‖y − x‖22
}
, ∀x ∈ E.

(3)

The conjugate of f is the function f∗ : E → (−∞,+∞]

defined by

f∗(y) := sup
x∈E
{〈x,y〉 − f(x)} . (4)

Let D ⊆ E be a convex and closed subset of E. The

normal cone to D at point λλλ is denoted ND(λλλ). It is

defined for all λλλ ∈ D by:

ND(λλλ) = {ηηη ∈ E, 〈ηηη,λλλ′ − λλλ〉 ≤ 0,∀λλλ′ ∈ D}. (5)

Notice that since ND(λλλ) is a cone:

tND(λλλ) = ND(λλλ), ∀t > 0, ∀λλλ ∈ E. (6)

2.3 Discretization of differential operators

The discrete gradient of u ∈ E is defined by:

∇u = (∂1u, . . . , ∂du) ∈ V. (7)

The partial derivatives are defined as in [5] by:

(∂lu)[i] ={
u[. . . , il + 1, . . .]− u[. . . , il, . . .] if il < nl,

0 otherwise.

The adjoint operator of ∂∗l is the unique operator sat-

isfying:

〈∂lu,ql〉 = 〈u, ∂∗l ql〉, ∀u,ql ∈ E. (8)

It is easy to establish that:

(∂∗l ql)[i] =
u[. . . , il, . . .]− u[. . . , il − 1, . . .] if 1 < il < nl,

u[. . . , il, . . .] if il = 1,

−u[. . . , il − 1, . . .] if il = nl.
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The adjoint of the gradient operator is defined by:

∇∗ : V → E

q 7→
∑d
l=1 ∂

∗
l ql.

(9)

Let A : E → V denote a linear operator. Its spectral

norm is defined by

‖A‖ = sup
x∈E,‖x‖2≤1

‖Ax‖2. (10)

The point-wise product between two elements u and

v of E is denoted u� v:

(u� v)[i] = u[i]v[i]. (11)

The point-wise division between two elements u and v

of E is denoted u� v:

(u� v)[i] = u[i]/v[i]. (12)

The convolution product w = u ?v between u and v is

defined by:

w[i] =
∑
j∈Ω

u[i− j]v[j]. (13)

In this definition, we assumed periodic boundary con-

ditions. The discrete Fourier transform operator on E

is denoted F. It satisfies the fundamental relationship:

F(u ? v) = F(u)� F(v). (14)

The discrete Dirac mass is denoted δδδ. It satisfies u?δδδ =

u for all u ∈ E.

2.4 The (inverse)-gamma distribution

A random variable X that is gamma-distributed is de-

noted by X ∼ Gamma(a, b). Its probability density

function (p.d.f.) is defined by:

P(x) =
ba

Γ (a)
xa−1 exp(−bx), ∀x > 0,

where Γ (·) is the gamma function. The parameter a > 0

is called shape parameter, while b > 0 is called inverse

scale parameter. If X ∼ Gamma(a, b), then E(X) = a/b

and var(X) = a/b2. For any c > 0, if X ∼ Gamma(a, b),

then cX ∼ Gamma(a, cb). Let

Xi ∼ Gamma(ai, b), i ∈ {1, . . . , n} (15)

be independent random variables, then

n∑
i=1

Xi ∼ Gamma

(
n∑
i=1

ai, b

)
. (16)

A random variable X that is inverse-gamma distributed

is denoted by X ∼ InvGamma(a, b). Its p.d.f. is:

P(x) =
ba

Γ (a)
x−a−1 exp(−b/x), ∀x > 0.

If X ∼ Gamma(a, b) then 1/X ∼ InvGamma(a, 1/b).

Moreover, E(X) = b
a−1 for a > 1 and var(X) = β2

(α−1)2(α−2)
for α > 2.

3 Noise model

3.1 Modeling the noise

Designing a precise image formation model in the ex-

amples given in Figure 1 is a hard task. Many differ-

ent physical phenomena such as diffraction, absorption

and scattering with unknown physical quantities are

involved. It is in fact likely that good forward models

of light propagation are too complicated to use in the

frame of inverse problems. This observation leads us

to develop a simple phenomenological model. From a

practical point of view, a good model should:

i) Reproduce approximately what is observed in real

experiments.

ii) Lead to optimization problems that can be solved

with a reasonable complexity. In this paper, we will

be particularly interested in designing convex prob-

lems.

Let u denote the ideal image we wish to recover and

u0 denote the degraded image. The first observation is

that the noise is multiplicative since it is due to atten-

uation of the excitation light through the sample: the

light emitted by a fluorescent sample is approximately

proportional to the excitation intensity. The standard

modeling of such noise consists of writing u0 = u � ξξξ,
where ξξξ is some random vector. This equation however

leads to serious numerical troubles since the maximum

a posteriori principle leads to problems of the form:

min
(u,ξξξ)∈E+×E+, u0=u�ξξξ

f(u) + g(ξξξ), (17)

where functions f and g are priors on the image and the

noise respectively. The constraint set {(u, ξξξ) ∈ E+ ×
E+, u0 = u� ξξξ} is nonconvex and - except for specific

f and g - finding the global minimizer of problem (17)

is therefore out of reach.

To avoid this pitfall, we instead write that:

u0 = u� ηηη, (18)

where ηηη is the realization of some random vector. The

constraint set obtained by using a division instead of
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a multiplication becomes the linear subspace {(u, ηηη) ∈
E+×E+, ηηη�u0 = u}. The whole minimization problem

min
(u,ηηη)∈E+×E+, ηηη�u0=u

f(u) + g(ηηη), (19)

therefore becomes convex as soon as f and g are convex.

The main difficulty is now to construct a probabil-

ity distribution function for the random vector ηηη. Simi-

larly to [13,14], we assume that the noise is stationary,

meaning that all translated versions of ηηη have the same

likelihood as ηηη. A simple way to generate a stationary

random vector consists of writing

ηηη = ψψψ ? λλλ, (20)

where ψψψ is a convolution filter that depends on the noise

structure and λλλ is the realization of a random vector in

E with independent entries.

In order to specify our model completely, we still

need to define a distribution for λλλ. Since fluorescence

images have nonnegative values, all components of ηηη

need to be positive. A simple way to ensure this is to set

a convolution filter ψψψ 6= 0 with nonnegative entries and

to define λλλ as a positive random vector. By doing so, the

event ηηη[i] = 0 occurs with null probability. Among the

positive, log-concave distributions, the gamma distribu-

tion has two parameters, allowing to control its mean

and variance. This is important to be able varying the

attenuation amplitude.

We now specified every piece of our image formation

model. Let us recollect everything below.

Proposed image formation model.

We assume that:

u0 = u� (ψψψ ? λλλ), where: (21)

– u0 ∈ E+ is the observed, noisy image.

– u ∈ E+ is the clean image we wish to recover.

– ψψψ ∈ E+ is a convolution filter.

– λλλ ∈ E+ is the realization of a random

vector with i.i.d. components following a

Gamma(a, b) distribution.

3.2 A few noise properties

3.2.1 The case ψψψ = δδδ.

In the specific case ψψψ = δδδ, our model is adapted to i.i.d.

multiplicative noise. The generative model (21) can be

rewritten as

u0 = u� %%%, (22)

where %%% follows an inverse-gamma distribution of pa-

rameters a and b−1. If we follow a Bayesian point of

view, our model is therefore well suited to multiplicative

inverse-gamma noise. This departs from the usual mod-

eling used in SAR imaging [3]. However, we will see that

this model also performs well in the case u0 = u � ηηη,

where ηηη is a white gamma noise.

3.2.2 Indicator functions

Let ω ⊆ Ω denote a subset of cardinality |ω|. Set

ψψψ[i] =

{
1/|ω| if i ∈ ω,
0 otherwise.

(23)

Then, a marginal ηηη[i] is just a sum of i.i.d. random

variables with distribution Gamma(a, b/|ω|). Therefore

ηηη[i] ∼ Gamma(|ω|a, b/|ω|) and

1/ηηη[i] ∼ InvGamma(|ω|a, |ω|/b). (24)

This simple observation allows to evaluate the mean

and variance of the marginals. We get:

E
(

1

ηηη[i]

)
=

|ω|
b(|ω|a− 1)

(25)

and

var

(
1

ηηη[i]

)
=

|ω|2

b2(|ω|a− 1)2(|ω|a− 2)
. (26)

Since we have to set a > 1 in order to preserve con-

vexity, we get that for large |ω|, E
(

1
ηηη[i]

)
' 1

ba and

var
(

1
ηηη[i]

)
' 0. As a conclusion, the proposed model

cannot reproduce large attenuation dynamics, when-

ever the patterns have a large support. This is a limi-

tation of the model.

3.2.3 The generic case.

When ψψψ is an arbitrary nonnegative filter, studying the

statistical properties of 1�ηηη is significantly more com-

plicated. Let ηηη[i] =
∑

j∈Ω λλλ[j]ψψψ[i− j] be a sum of inde-

pendent random variables. Each term λλλ[j]ψψψ[i− j] in the

sum follows a Gamma(a, b ψψψ[i− j]) distribution. There

is no simple analytical expression for such a sum, see

e.g. [23]. We therefore do not investigate further the

statistical properties of our model in the general case.
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Fig. 2: Examples of a random process of type 1� (ψψψ ?

λλλ), where λλλ[i] ∼ Gamma(a, a) are independent random

variables. First column: filter ψψψ. From the second to the

last column: realizations with different values of a : 0.2,

1.1 and 2.

3.3 Noise simulations

Figure 2 illustrates some realizations of a random vec-

tor of type 1 � (ψψψ ? λλλ) for various ψψψ and various a

with b = a. As can be seen, the noise amplitude can-

not vary too much for a > 1, when the filter size is

large. This property was explained in the previous sec-

tion. For 0 < a < 1, the variance of the inverse-gamma

distribution is undefined: the stochastic process λλλ can

take isolated high values that dominate all the others.

For instance, the top left realization took a single huge

value exceeding the largest value tolerated by the com-

puter. This explains why it looks completely gray.

Figure 3 illustrates different examples of noisy im-

ages that can be generated by model (18) for a > 1.

As can be seen, various degradations resembling what

is observed in SPIM imaging can be reproduced.

Fig. 3: Examples of noisy images generated by model

(18). For all images, λλλ[i] ∼ Gamma(a, a). Top-Left:

original image. Top-Right: ψψψ = δδδ and a = 2. Bottom-

Left: ψψψ is a segment and a = 1.1. Bottom-Right: ψψψ is

an indicator function of a 4× 4 square and a = 1.1.

4 Restoration model

4.1 MAP based restoration models

In this paragraph, we propose a MAP restoration model.

We aim at solving:

max
u,λλλ

P(u,λλλ|u0). (27)

By using Bayes rule, this amounts to:

max
u,λλλ

P(u0|u,λλλ)P(u,λλλ)

P(u0)
. (28)

Assuming that u and λλλ are independent, we get that

P(u,λλλ) = P(u)P(λλλ). Moreover, by setting

Ξ = {(u,λλλ) ∈ E+ × E+, (ψψψ ? λλλ)� u0 = u} , (29)

we get

P(u0|u,λλλ) =

{
0 if (u,λλλ) /∈ Ξ,
1 otherwise.

(30)

By taking the negative log in (28), we therefore get that

the maximizers of (28) coincide with the minimizers of:

min
(u,λλλ)∈Ξ

− log(P(u))− log(P(λλλ)). (31)

In this paper, we use the standard hypothesis that im-

ages have a low total variation, which can be expressed

as:

P(u) ∝ exp (−c‖|∇u|‖1) , (32)
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for some c > 0. Since λλλ follows a gamma distribution,

the variational problem we end with reads:

min
(u,λλλ)∈Ξ

c‖|∇u|‖1 + 〈bλλλ− (a− 1) logλλλ,1〉 . (33)

Finally, by expressing u in terms of λλλ, we obtain:

min
λλλ∈E+

c‖|∇(u0�(ψψψ?λλλ))|‖1+〈bλλλ− (a− 1) logλλλ,1〉 . (34)

This functional is convex for b > 0 and a ≥ 1.

4.2 Simplifying the model

Model (34) contains three explicit parameters (a, b, c)

and one implicit parameter ‖ψψψ‖1: the `1-norm of ψψψ.

Tuning four parameters is very hard in practice and we

propose to simplify parameter estimation in this sec-

tion.

Proposition 1 Problem (34) admits a unique mini-

mizer if c ≥ 0, a > 1 and b > 0.

Proof Set

g(λλλ) = c‖|∇(u0 � (ψψψ ? λλλ))|‖1 + 〈bλλλ− (a− 1) logλλλ,1〉 .
(35)

First notice that the set E+ is convex closed. Moreover,

g(λλλ) is strictly convex and closed. Indeed, for a > 1,

the function defined on E+ by λλλ 7→ −(a−1)〈logλλλ,1〉 is

strictly convex since its Hessian (a− 1)diag
(
1� (λλλ2)

)
is positive definite for all λ ∈ E+. Problem (34) con-

sists of minimizing a strictly convex function over a con-

vex closed set. This is sufficient to ensure uniqueness of

a minimizer if it exists. The existence of a solution is

granted by noticing that g(λλλ) is continuous on the in-

terior of its domain since it is convex. Moreover, it is

coercive since the 1D function t 7→ −(a− 1) log(t) + bt

goes to +∞ as t→ +∞.

In order to reduce the number of parameters, it is

possible to divide the cost function in (34) by c‖ψψψ‖1. By

doing so, it is straightforward to see that the minimizer

of (34) is equal to the minimizer of:

min
λλλ∈E+

‖|∇(u0 � (ψ̃ψψ ? λλλ))|‖1 + 〈βλλλ− α logλλλ,1〉 . (36)

where ψ̃ψψ = ψψψ
‖ψψψ‖1 , α = (a−1)/(c‖ψψψ‖1) and β = b/c‖ψψψ‖1.

Model (36) still contains two parameters. The following

proposition shows that it can be further reduced to one

parameter.

Proposition 2 Let λλλ(α, β) denote the minimizer of (36).

Then, for all t > 0

λλλ(tα, β) = tλλλ(α, β). (37)

Proof Let λ̃λλ = tλλλ(α, β). The minimizer λλλ(α, β) of (36)

satisfies:

0 ∈ Ã∗∂‖|·|‖1(Ãλλλ(α, β)) + β1− α1�λλλ+NE+
(λλλ), (38)

where Ã is the linear operator defined for all λλλ ∈ E by

Ãλλλ = ∇(u0 � (ψ̃ψψ ? λλλ)). (39)

Therefore λ̃λλ obeys:

0 ∈ Ã∗∂‖|·|‖1(Ãλ̃λλ/t) + β1− αt1� λ̃λλ+NE+
(λ̃λλ). (40)

Since ∂‖|·|‖1(Ãλ̃λλ/t) = ∂‖|·|‖1(Ãλ̃λλ), this is still equivalent

to:

0 ∈ Ã∗∂‖|·|‖1(Ãλ̃λλ) + β1− αt1� λ̃λλ+NE+(λ̃λλ). (41)

This inclusion characterizes the minimizer of problem

(36), where α is replaced by tα.

Proposition 2 indicates that only β really matters. The

value α only allows to set the amplitude of the solution.

In fluorescence microscopy, this amplitude depends on

the excitation intensity which is usually unknown. Flu-

orescence images are therefore not used for quantita-

tive measures, and only contrasts matter. As a con-

clusion, the model could be further simplified by set-

ting α = 1. We will see in Proposition 3 that setting

β = α allows preserving the harmonic mean of u0 and

this choice therefore seems more natural. The following

model summarizes the simplifications we have proposed

in this section.

Proposed variational formulation.

The variational problem we study in this paper

reads:

min
λλλ∈E+

‖|∇(u0 � (ψψψ ? λλλ))|‖1 + α 〈λλλ− log(λλλ),1〉 ,

(42)

where ψψψ ∈ E+, ‖ψψψ‖1 = 1 and α > 0.

4.3 Duality and mean preservation

In this paragraph, we prove that model (42) preserves

the harmonic mean of the input image u0 in the spe-

cific case ψψψ = δδδ. In the generic case, we prove that the

weighted harmonic mean of λλλ is constant.

Proposition 3 Assume that u0 > 0 and let λ̄λλ be any

vector such that ψψψ ? λ̄λλ = 1� u0
1. Then∑

i∈Ω

λ̄λλ[i]

λλλ[i]
=
∑
i∈Ω

λ̄λλ[i], (43)

1 A sufficient condition for existence of such a λ̄λλ is that the
Fourier transform ψ̂ψψ does not vanish.
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In the particular case ψψψ = δδδ, this yields:

∑
i∈Ω

1

u[i]
=
∑
i∈Ω

1

u0[i]
. (44)

Proof Let us first use Fenchel-Rockafellar duality [27],

in order to derive the dual problem of (42). Let A be

the linear operator defined, for all λλλ ∈ E, by Aλλλ =

∇(u0 � (ψψψ ? λλλ)). We have:

min
λλλ∈E+

‖|Aλλλ|‖1 + α 〈λλλ− log(λλλ),1〉

= min
λλλ∈E+

sup
q∈V,‖|q|‖∞≤1

〈Aλλλ,q〉+ α 〈λλλ− log(λλλ),1〉

= sup
q∈V,‖|q|‖∞≤1

inf
λλλ∈E+

〈Aλλλ,q〉+ α 〈λλλ− log(λλλ),1〉 .

The minimizer of the inner-problem satisfies:

A∗q + α1− α1� λλλ+NE+
(λλλ) 3 0. (45)

Since the logarithm is a barrier function for the set E+,

the minimizer belongs to the interior of E+ and the

optimality conditions simplify to:

A∗q + α1− α1� λλλ = 0. (46)

Therefore, the primal-dual pair (λλλ,q) satisfies:

λλλ = α1� (A∗q + α1). (47)

By injecting this result in the inner-problem, we obtain

the dual problem:

sup
‖|q|‖∞≤1

〈log (α1 + A∗q) ,1〉 . (48)

Then, remark that:

1� λλλ =
A∗q

α
+ 1. (49)

By construction, λ̄λλ ∈ Ker(A). Since Ker(A) = Im(A∗)⊥,

we get that 〈A∗q, λ̄λλ〉 = 0 for all q ∈ V . Therefore:

〈
1� λλλ, λ̄λλ

〉
=
〈
1, λ̄λλ

〉
. (50)

If ψψψ = δδδ, then λ̄λλ = 1 � u0 and λλλ = u � u0. This

yields (44).

4.4 Relationships to other models in the white noise

regime

When ψψψ = δδδ is a Dirac mass, our model is adapted to

white noise denoising. Problem (42) can be rephrased

in terms of u as:

min
u∈E+

‖|∇u|‖1 + α 〈u� u0 − log(u� u0),1〉 . (51)

Comparatively, the convex Shi-Osher or Teuber-Steidl

model proposed in [30,31] is:

min
u∈E+

‖|∇u|‖1 + α (〈u,1〉 − 〈u0, log(u)〉) . (52)

The nonconvex Aubert-Aujol model proposed in [3] is:

min
u∈E+

‖|∇u|‖1 + α 〈u0 � u + log(u),1〉 . (53)

All models are proved to preserve the geometric mean,

while our preserves the harmonic mean. It is unclear to

us what property is better. We will however see in the

numerical experiments that our model better preserves

contrasts.

5 Solvers for the proposed model (42)

In this section we provide an algorithm to solve problem

(42). A large amount of numerical approaches were de-

veloped recently to solve non-smooth convex problems

of that type. Problem (42) can be rewritten as:

min
λλλ∈E

J(λλλ) = F (Aλλλ) +G(λλλ), (54)

where A : E → V defined by Aλλλ = ∇(u0 � (ψψψ ? λλλ)),

F : V → R is defined as F (q) = ‖|q|‖1 and G : E → R∪
{+∞} is defined as G(λλλ) = α 〈λλλ− logλλλ,1〉 + χE+

(λλλ).

This reformulation perfectly fits the framework of the

first-order primal-dual algorithm proposed in [6]. It is

described in Algorithm 1.

Algorithm 1: First order primal-dual algorithm

[6]

Input : ε : the desired precision,
(x0,y0) ∈ E+ × V : a starting point.

Output: an approximate solution of problem (54).
Init. : Choose τ , σ > 0 such that στ‖A‖2 < 1,

set θ = 1, k = 0 and x̄0 = x0.
1 while Convergence criterion > ε do
2 yk+1 = proxσF∗(yk + σAx̄k)
3 xk+1 = proxτG(xk − τA∗yk+1)
4 x̄k+1 = xk+1 + θ(xk+1 − xk)
5 k = k + 1

6 end
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Algorithm 1 generates a feasible sequence of iterates

(xk)k∈N that converges to the minimizer x∗ of (54).

Moreover the iterates satisfy J(xk) − J(x∗) = O
(
1
k

)
which is arguably optimal. The proximity operators of

F ∗ and G have a simple closed form expression:

proxσF∗(q)[i] =
q[i]

max(1, |q|[i])
(55)

and

proxτG(x) =
1

2

(
x− τα1 +

√
(x− τα1)

2
+ 4τα1

)
.

(56)

This algorithm was implemented on a GPU using

CUDA. Except convolutions, all operators appearing in

this algorithm are pixel-wise operations which are the

perfect setting for GPU. To implement convolutions we

used the cuFFT library. In all experiments, the GPU

implementation has been run in double precision on a

NVIDIA Tesla K20c containing 2496 CUDA cores and

5GB internal memory.

6 Numerical experiments

In this section, we first provide some numerical results

on synthetic images, where ground-truth is available

and then turn to real images.

6.1 The case of white noise

In this paragraph, we first generate noisy images by the

formula:

u0 = u� ηηη, (57)

where ηηη ∈ E is a random vector with i.i.d. components.

The distribution of the marginals ηηη[i] is set as a gamma

distribution Gamma(a, a) in Figure 4 and as an inverse-

gamma distribution in Figure 5. Our model is supposed

to be well adapted only to the inverse-gamma distribu-

tion. We provide comparisons with the denoising model

(52) proposed in [30, 31]. The minimizer of (42) is re-

ferred to as MSNR, for Multiplicative Stationary Noise

Removal.

In order to compare the restoration results, we eval-

uate the rescaled Signal to Noise Ratio, denoted SNRr

and defined by:

SNRr(u,u0) = −min
a∈R

log10

(
‖au− u0‖22
‖u0‖22

)
. (58)

The reason to use this image quality measure is that the

models only yield results valid up to a multiplicative

(a) Original (b) Noisy
SNRr = 17.17dB

(c) [30, 31]
SNRr = 17dB

(d) MSNR
SNRr = 20.8dB

Fig. 4: Denoising experiment for image formation model

u0 = u�ηηη, where ηηη is a gamma distributed white noise

with ηηη[1] ∼ Gamma(50, 50). The SNRr for MSNR is

stable after 50 iterations. Computing time MATLAB -

CPU: 0.15s.

a 10 20 50

Degraded SNRr (dB) 10.6 13.2 17.1
SSIMr 0.69 0.78 0.87

[30,31] SNRr (dB) 15.5 16 16.6
SSIMr 0.78 0.81 0.83

MSNR SNRr (dB) 17.2 18.7 20.7
SSIMr 0.79 0.85 0.90

Table 1: SNRr and SSIMr for image formation model

u0 = u�ηηη, where ηηη is a gamma distributed white noise

with ηηη[1] ∼ Gamma(a, a).

constant. We also compute another image quality mea-

sure denoted SSIMr, defined as the Standard Structural

Similarity Index Measure [34] applied to the rescaled

image au where a is optimized in (58). In all experi-

ments, the model parameters are set so as to maximize

the SNRr.

As can be seen in Figures 4 and 5 and Tables 1

and 2, our model provides significantly higher rescaled

SNRs and SSIMs than model (52). When having a close

look at the images, it can be seen however that the

details are preserved similarly in both approaches. The

main difference lies in the fact that model (52) does not

preserve the contrasts as well as the proposed model.
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(a) Original (b) Noisy
SNRr = 12.8dB

(c) [30, 31]
SNRr = 15.9dB

(d) MSNR
SNRr = 18.9dB

Fig. 5: Denoising experiment for image formation model

u0 = u�ηηη, where ηηη is a gamma distributed white noise

with ηηη[1] ∼ Gamma(20, 20). The SNRr for MSNR is

stable after 50 iterations. Computing time MATLAB -

CPU: 0.15s.

a 10 20 50

Degraded SNRr (dB) 9.84 12.8 16.9
SSIMr 0.66 0.77 0.87

[30,31] SNRr (dB) 15.2 16 16.8
SSIMr 0.79 0.81 0.85

MSNR SNRr (dB) 17.4 18.9 20.8
SSIMr 0.79 0.85 0.91

Table 2: SNRr and SSIMr for image formation model

u0 = u�ηηη, where ηηη is a gamma distributed white noise

with ηηη[1] ∼ Gamma(a, a).

6.2 The case of structured noise

We now investigate the efficiency of the method pro-

posed in this paper versus VSNR (Variational Station-

ary Noise Remover) [13,14]. We use the 256×256 droso-

phila image see Figure 3 top left, corrupted with noise

generated using two different filters ψψψ. The first one

is an anisotropic Gaussian and the second one is the

indicator of a square. The data term parameter α is

set so as to maximize the SNRr. Results are displayed

Figures 6 and 7. The proposed method provides higher

rescaled SNR and images containing finer details and

more natural contrasts. The computing times are also

very appealing.

(a) Noisy – SNRr = 15.1dB

(b) VSNR – SNRr = 19.1dB

(c) MSNR – SNRr = 19.9dB

Fig. 6: Denoising simulation with structured noise. The

image is corrupted with ψψψ a segment and a = 1.1 see

Figure 3 bottom-left. The SNRr is stable after 50 iter-

ations. Computing time GPU: 0.03s.

6.3 A few results on real images

To end up with our numerical validation, we perform

experiments on real images. We consider two different

images and compare the results on these images ob-

tained with VSNR and the method proposed in this

paper, see Figures 8 and 10. Following the previous

works [13,14], we set ψψψ as an anisotropic Gaussian filter
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(a) Noisy – SNRr = 12.5dB

(b) VSNR – SNRr = 14.8dB

(c) MSNR – SNRr = 15.4dB

Fig. 7: Denoising simulation with structured noise. The

image is corrupted with ψψψ the indicator function 4× 4

square and a = 1.1 see Figure 3 bottom-right. The

SNRr is stable after 40 iterations. Computing time

GPU: 0.025s.

elongated in the stripes direction. This choice allows to

accurately describe the noise in the frequency domain.

In particular, the filter’s smoothness ensures that only

low frequencies will be changed by the variational model

(42). This is a key feature to preserve fine details in the

image.

The results can only be compared qualitatively since

no ground truth is available. A quick inspection of the

results advocates for the method proposed in this pa-

per. Images restored with VSNR suffer from smear ar-

tifacts at the locations of stripes, especially in dark re-

gion. Images proposed by the MSNR do not suffer from

these artifacts and overall have a better contrast see

Figure 9.
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