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Abstract We propose an algorithm to segment 2D ellipses or 3D ellipsoids. This
problem is of fundamental importance in various applications of cell biology. The
algorithm consists of minimizing a contrast invariant energy defined on sets of non
overlapping ellipsoids. This highly non convex problem is solved by combining a
stochastic approach based on marked point processes and a graph-cut algorithm that
selects the best admissible configuration. In order to accelerate the computing times,
we delineate fast algorithms to assess whether two ellispoids intersect or not and
various heuristics to improve the convergence rate.

Keywords Nuclei segmentation · 2D and 3D images · Graph-cuts · Marked point
processes · Ellipses and ellipsoids · Multiple objects detection · Multiple birth and
cut · Bio-imaging

1 Introduction

Cell or nuclei segmentation in 2Dand3D is amajor challenge in bio-medical imaging.
New microscopes provide images at higher resolutions, deeper into biological tis-
sues, leading to an increasing need for automatic cell delineation. This task may be
easy in certain imaging modalities where images are well resolved and contrasted,
but it remains mostly unresolved in emerging fluorescent microscopes dedicated
to live imaging such as confocal, bi-photon, or selective plane illumination micro-
scopes. These modalities suffer from multiple degradations such as light attenuation
in the sample, photo bleaching, heavy noise and spatially varying blur that make the
segmentation task hard even for human experts.
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Our aim in this work is to propose a segmentation algorithm robust to such
situations. Since images are heavily deteriorated, standard methods aiming at finding
contours based on a sole regularity assumption such as active contours or Mumford-
Shah derivatives fail for the segmentation. This observation led us to introduce strong
shape priors: cells are modelled as ellipses or ellipsoids that should fit the image con-
tents. Unfortunately, adding geometrical constraints makes the optimization prob-
lems highly non convex and appeal for the development of new global optimization
methods.

Following recent works [5, 6, 9], we use randomized algorithms that allow to
escape from local minima. These algorithms are based on marked point processes.
The Marked Point Process (MPP) approach [1, 7] consists in estimating a configura-
tion of geometric objects (in our case ellipses or ellipsoids) whose number, location
and shape are unknown. It has proved to be very efficient in numerous image analy-
sis applications as it allows the combination of radiometric information with strong
geometrics constraints on the objects but also at a global scale. Defined by a density
against the Poisson process measure, its main advantage is to consider a random
number of objects and can be considered as an extension of the Markov Random
Field approach. A review of this approach and its applications can be found in [5].

The objects are defined on a state space χ = I × M by their location and their
marks (i.e. geometric attributes). The associated marked point process X is a ran-
dom variable whose realisations are random configurations of objects. Considering
a Gibbs process, the modeling consists of an energy construction. Similarly to the
Bayesian framework, this energy can be written as the sum of a data term and a prior.
In this paper we consider a pairwise interactions prior that forbids intersections be-
tween objects. Once the model defined, the solution is obtained by minimizing the
energy. This energy being highly non-convex requires stochastic dynamics, such as
MCMCmethods, to be minimized. The Reversible Jump MCMC embeded in a sim-
ulated annealing framework is a natural candidate for this task [10]. However, in
case of simple constraints such as non overlap, the recently proposed multiple birth
and death algorithm is preferable [6]. To avoid the fastidious calibration of annealing
parameters, we propose to revisit the combination of the multiple births principle
with the graph cut paradigm proposed by [9].

The paper is organized as follows. We formalize the segmentation problem as
a minimization problem in Sect. 2. Section3 begins by a global algorithm descrip-
tion and is followed by a precise description of each algorithm step. We finish by
presenting numerical results in Sect. 4.

2 Problem Statement

Figure1 contains typical examples of images encountered in biology. It is readily seen
from these images that most nuclei contours can be well approximated by ellipses
or ellipsoids, at least at a coarse scale. Moreover these nuclei cannot overlap due
to obvious physical considerations. We thus formulate our segmentation problem as
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Fig. 1 Example of a SPIM
image (Multicellular tumor
spheroid)

that of finding a set of non overlapping ellipsoids that fit the image contents. We
formalize this statement in the latter.

Let Cn, n ∈ N denote the set of configurations containing n objects that do not
overlap. An element x ∈ Cn is a set of n non overlapping objects. Since the number
of nuclei in the configuration is unknown, we aim both at finding this number n∗ and
the best configuration x ∈ Cn∗ with respect to a certain data fidelity term f (x). Our
optimization problem can thus be formulated as follows. Let

g(n) = min
x∈Cn

f (x)

denote the minimum value of f in the set Cn . We wish to find both

n∗ = argmin
n∈N

g(n)

and
x∗ = argmin

x∈Cn∗
f (x).

By convention, we assume that C0 = ∅ and that min
x∈C0

f (x) = 0. The data term

f should thus be negative for configurations that are likely to represent the nuclei
parameters and positive otherwise. We detail how the ellipses are parametrized and
the construction of such a function in the following paragraphs.
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Fig. 2 Parameters of the
ellipse

2.1 Object Modelling

In two dimensions, ellipses are parameterized using five parameters (see Fig. 2):

• (x, y) ∈ Ω: center coordinates which should belong to the image domain Ω .
• θ ∈ [0, 2π[: angle with the horizontal direction.
• 0 < λ− < b < a < λ+: describe the ellipses minor and major axes size. λ−
and λ+ are user defined parameters that describe the nuclei maximal size and
ellipticity.

In three dimensions, nuclei are parameterized using nine parameters:

• (x, y, z) ∈ Ω: center coordinates.
• φ, θ,ψ ∈ [0, 2π[3: Euler angles to define the ellipsoids orientations.
• 0 < λ− < c < b < a < λ+: axes lengths.

Overall, it can be seen that objects belong to a state space χ defined as a paral-
lelepiped:

χ = Ω × [0, 2π[×[λ−,λ+]2 (1)

in 2D and
χ = Ω × [0, 2π[3×[λ−,λ+]3 (2)

in 3D.
In this paper, the objects are denoted ω and their boundary is denoted ∂ω.

2.1.1 Data Term

Let u : Ω → R denote a grayscale image. In order to define the data term f (x), we
associate an elementary energy Ud(ω, u) to each element ω ∈ x and set:
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f (x) =
∑

ω∈x

Ud(ω, u). (3)

The functionUd(ω, u) ∈ [−1, 1] should be negative if the objectω is well positioned
on the image and positive otherwise.

In fluorescence microscopy, nuclei are usually characterized by bright region
surrounded by a dark background since they are stained or genetically modified in
order to express a fluorescent protein. Unfortunately, their radiometry is not constant
due to local bleaching or light attenuation in the deepest layers. We thus need to
construct an energy that is contrast invariant, meaning that local modifications of
the radiometry shall not affect the energy. Such an energy can be constructed easily
by considering the normal to the image level lines ∇u

|∇u| where ∇u denotes the usual

gradient in R
d and |∇u| denotes the gradient magnitude in the standard Euclidean

norm. This tool is well known to be contrast invariant. Let us define an energy U for
a given object ω as:

U (ω) = 1

|∂ω|
∫

∂ω
〈 ∇u(x)√|∇u(x)|2 + ε2

, n(x)〉dx (4)

where 〈·, ·〉 denotes the standard scalar product, |∂ω| denotes the length of the object
boundary, n(x) denotes the outward normal to ω at location x ∈ ∂ω and ε is a
regularization parameter that discard faint transitions. The behavior of this energy
is illustrated on Fig. 3. Overall, it does what is expected, but as can be seen on the
illustration (b) and (d) in Fig. 3, badly located ellipses might have a negative energy
and be kept in the final configuration. It is thus necessary to modify U in order to
promote well located objects only. A simple way to do so consists in setting:

Ud(ω, u) = ψ(U (ω), s)

where s ∈] − 1, 0] is an acceptance threshold for the objects and

ψ(α, s) = min(
1

s + 1
α − s

s + 1
, 1).

Fig. 3 Behavior of the energy given by Eq. (4). The corresponding energy values are: U= −1 (a).
U= −0.1 (b). U= −0.2 (c). U= −0.5 (d)
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Other data terms based on the contrast between the object interior and the back-
ground as presented by [9] (in dimension 2) could also be used but present two
drawbacks: first they require to compute an integral over the interior of the domain
while the proposed approach consist in computing a boundary integralwhich is faster.
Second, such measures might be inaccurate in the case of very dense media, where
the background can be difficult to extract. Finally our measure is contrast invariant,
which is central for the targeted applications.

3 Multiple Birth and Cut Algorithm

The Multiple Birth and Cut algorithm (MBC) has been proposed by [9] for counting
flamingos in a colony. In this section, we describe the different steps of the MBC
algorithm (Algorithm 1).

The main idea consists in generating two random configurations of non-
overlapping objects x and x′ (birth step) and then keep the subset of objects in
x ∪ x′ that minimizes f (cut step). This process is iterated and decreases f at each
iteration. The cut step can be performed efficiently using a Graph Cut algorithm
[4, 11]. We describe this algorithm more formally below:

Algorithm 1: Multiple Birth & Cut algorithm.

Require: N
1: Generate a configuration x[0] with Algorithm 2
2: n ←− 0
3: while (Not converged) do
4: Generate of a new configuration x′

using Algorithm 2.
5: x[n+1] ←− Cut (xn ∪ x′)
6: n ←− n + 1
7: end while

Interestingly, this algorithm contains only one parameter N (the number of objects
generated in a configuration). We observed experimentally that this parameter might
affect slightly the speed of convergence but not the segmentation accuracy. This
algorithm is thus much easier to tune than more standard RJMCMC based dynamics.

3.1 Birth Step

Anewconfigurationx′ of non-overlappingobjects is generated.Note that only objects
which are in the same configuration have to respect the non-overlapping constraint,
but two objects in different configurations can intersect as can be seen on Fig. 4.
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Fig. 4 Two configurations on an image (the black ellipses are the object to detect)

The birth step is detailed in Algorithm 2. The fourth step of this algorithm can
be efficiently implemented using a lookup table and the fast intersection algorithm
proposed in the latter.

Algorithm 2: Birth step.
Require: N , nmax .
1: Set k = 0, n = 0, x′ = ∅.
2: while k < N and n < nmax do
3: Construct an object ω′ by generating a random vector uniformly in χ.
4: If ω′ intersects an object in x′, set n = n + 1 and go back to 3.
5: Otherwise set x′ = x′ ∪ {ω′}, k = k + 1, n = 0 and go back to 3.
6: end while

3.2 Cut Step

This step consists in selecting the best configuration of non-overlapping objects in
(x[n] ∪x′). To perform this optimization, a weighted graph is constructed. The nodes
of this graph are the objects ω of the two configurations x[n] and x′. This graph also
possesses two special nodes, the source ‘s’ and the sink ‘t’. The weights should
belong to [0, 1] ∪ {+∞} and a weight equal to 1 should be associated to a well
positioned object. It is thus necessary to redefine the data term Ud(ω, u) by:

W (ω) = (1 − Ud(ω, u))/2.

which will be equal to 1 for Ud(ω, u) = −1 and to 0 for Ud(ω, u) = 1 what is
expected.
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3.2.1 Graph Construction

Each object of the configuration (x[n] ∪ x′) is linked to the source and the sink. The
difference between the objects ωi ∈ x[n] and the objects ω j ∈ x′ is that the objects
ωi ∈ x[n] are linked to the source with a weight equal to the data energy W (ω) and
to the sink with a weight equal to 1 − W (ω), while it is the reverse for the objects
ω j ∈ x′.

The weights associated to edges linking two objects are non zero only when two
objects intersect. If ω1 ∈ x[n] (current configuration) intersects with ω2 ∈ x′ (new
configuration), the link from ω1 to ω2 is set to ∞ and the link from ω2 to ω1 is
set to zero.1 This ensures that the cut step generates an admissible configuration
(with no overlapping objects). Figure5 summarises the graph construction of the
configurations on Fig. 4. The nuclei to detect are represented by black ellipses.

3.2.2 Cut

Once the graph is constructed, we perform a cut that consists in partitioning the
vertices into two disjoint subsets. One contains the source and the other the sink. The
cut realized is the one with minimal cost (the one minimizing the sum of the weights
of the removed edges).

Fig. 5 Graph corresponding to the Fig. 4

1 When two objects intersect the link affected by a weight of ∞ is always the link from the object
of the current configuration to the object of the new configuration.
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Fig. 6 Graph associated to
two overlapping objects

After the cut step, if ωi ∈ x[n] is in the sub-graph containing the source, we keep
it, otherwise we remove it. On the contrary the objects ω j ∈ x′ are kept only if
they belong to the sub-graph that contains the sink. This difference of interpretation
between the two configurations combined with the different weights to the source
and the sink, ensure that in case where an object of x[n] and an object of x′ intersect,
only one can be kept.

Let ωA ∈ x[n] and ωB ∈ x′ be two overlapping objects. Figure6 presents the
associated graph and Fig. 7 shows the four possible cuts of this graph.

As the cut step consists in finding the cutwithminimal cost, the situation presented
in 7(d) can not occur since the cost is equal to ∞. Furthermore, case 7(c) can occur
and then, for two overlapping objects, either one is kept (7(a) and 7(b)) or both are
removed (7(c)).

Remark 1 In 7(c) and 7(d) the vertices are well partitioned into two disjoint subsets
since there is no subset of edges in the resulting graph which allows to go from the
source ‘s’ to the sink ‘t’.

The cut step is implemented using the graph-cut code developed by Boykov and
Kolmogorov in [3, 4, 11].

3.3 A Fast Determination of Ellipses Intersection

One of the proposed algorithm bottleneck is the fast determination of whether two
ellipsoids intersect or not. In this section, we present a fast algorithm to answer that
question and prove theoretically that only a few arithmetic operations suffice to pro-
vide the answer with a low error rate.

Let ω be an ellipse or an ellipsoid. It can be defined using a quadratic function
Qω as ω = {x ∈ R

d , Qω(x) = 1}. The quadratic function Q can be defined by:
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Fig. 7 Four possible cuts of the graph corresponding to the Fig. 6. Keep wA, remove wB (a).
Cost = 1 − WA + WB . Keep wB , remove wA. Cost = 1 − WB + WA (b). Remove wA and wB .
Cost = WA + WB (c). Keep wA and wB . Cost = ∞ (d)

Qω(x) = 〈A(x − c), (x − c)〉 (5)

where c denotes the object center and A is positive definite matrix defined by:

A = P−1D P = PT D P.

where P is a rotation matrix and D is a positive diagonal matrix. In 2D, P is defined
by:

P =
(
cos(θ) sin(θ)
−sin(θ) cos(θ)

)

and

D =
(

1
a2

0
0 1

b2

)
.

In 3D, the notation become cumbersome and we leave them to the reader.
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Letω1 andω2 be two ellipses or ellipsoids. In order to knowwhether they intersect
or not, we can find the minimal level set of Qω2 which intersects the boundary of
ω1. If this level set is associated to a value greater than 1, the ellipses are separated,
otherwise they overlap. This idea can be formulated as the following minimization
problem:

min
x∈Rd ,Qω1 (x)≤1

Qω2(x) (6)

This problem consists of minimizing a quadratic function over convex set. Projected
descentmethods can thus be used. Unfortunately, there exists no closed form solution
to the problem of projection of a point on an ellipse. We thus need to simplify the
constraint set:

min
Qω1 (x)≤1

Qω2(x)

= min〈A1(x−c1),(x−c1)〉≤1
〈A2(x − c2), (x − c2)〉

= min
〈√A1(x−c1),

√
A1(x−c1)〉≤1

〈A2(x − c2), (x − c2)〉

= min
‖y−√

A1c1‖22≤1
〈A2(A

− 1
2

1 y − c2), (A
− 1

2
1 y − c2)〉.

where y = √
A1x . In this reformulation, the constraint set Y = {y ∈ R

d , ‖y −√
A1c1‖22 ≤ 1} is a simple l2-ball and the function F(y) = 〈A2(A

− 1
2

1 y −
c2), (A

− 1
2

1 y − c2)〉 is a strongly convex differentiable function. We can thus use
a projected gradient descent that writes:

Algorithm 3: Detection of overlapping ellipsoids.

Require: Qω1 , Qω2 , ε > 0.
1: Set k = 0, y0 = c1+c2

2 .

2: Set μ = b21
a22
, L = a21

b22
.

3: Set τ = 2
μ+L .

4: while ‖yk+1 − yk‖ ≥ ε do
5: yk+ 1

2
= yk − τ∇F(yk).

6: yk+1 = �Y

(
yk+ 1

2

)
.

7: k = k + 1.
8: end while
9: If F(yk) >= 1 return 0 (the ellipsoids do not intersect with high probability).
10: If F(yk) < 1 return 1 (the ellipsoids intersect).

Let y∗ denote the solution of the above problem. The previous algorithm comes
with the following guarantees:
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Theorem 1 After k iterations, yk satisfies:

F(yk) − F(y∗) ≤ μ

2
‖y0 − y∗‖22

(
QF − 1

QF + 1

)2k

‖yk − y∗‖22 ≤ ‖y0 − y∗‖22
(

QF − 1

QF + 1

)2k

where

QF = a2
1

b22

a2
2

b21
≤ λ4+

λ4−
.

Proof The Hessian of F is HF (y) = 2A
− 1

2
1 A2A

− 1
2

1 . Since A1 and A2 are products
of orthogonal and diagonal matrices (A = PT D P), the eigenvalues of HF (y) can
be easily bounded:

λmin[HF (y)] ≥ b21
a2
2

λmax [HF (y)] ≤ a2
1

b22

The function F is thus μ-strongly convex withμ ≥ b21
a2
2

and its gradient is L-Lipschitz

with L ≤ a2
1

b22
. Using standard convergence theorems in convex analysis [2], we obtain

the announced result. �

The conditioning number QF depends solely on the ratio between the major axis
and the minor axis sizes and not on the dimension d. This algorithm will thus be
as efficient in 3D as in 2D. For two circles the ratio QF is equal to a

b = 1 and
the algorithm provides the exact answer after one iteration. For elliptic ratios of 2,
Q f = 16 and in the worst case, after 18 iterations, the algorithm returns a point
yk that is 100 times closer to the intersection than y0. We also tested an accelerated

algorithm by [12], where the convergence rate is of order
(√

QF −1√
QF +1

)2k
but it did not

improve the computing times.
In our problems the ratio between a and b is always less than 2 and the algorithm

usually converges in just a few iterations (2–10 depending on the problem).

3.4 Acceleration by Local Perturbations

When the objects variability is important, the state space size increases and affects the
convergence speed of the MBC algorithm. This problem is particulary important in
3D since ellipsoids are definedby9parameters instead of 5 for the 2 dimensional case.



Graph Cut Based Segmentation of Predefined Shapes: Applications … 165

In order to improve the convergence speed, [8] proposed to insert a selection phase
in the birth step. This selection phase consists in generating a dense configuration
of objects at similar locations and to keep the best ones using Belief Propagation in
order to form the new configuration.

In this paper, we propose another heuristic in order to increase the convergence
speed. We propose to alternate between two different kinds of birth steps. The
first one is that proposed in algorithm 2. The second one consists in perturbating
locally the current configuration. This principle mimics the proposition kernels
used in RJMCMC algorithms [13]. The idea behind this modification is that after a
while, most objects are close to their real location and that local perturbations may
allow much faster convergence than fully randomized generation. This algorithm is
described in details in Algorithm 4.

Algorithm 4: MBC algorithm with local perturbations.

Require: N
1: Generate a configuration x[0] using Algorithm 2.
2: n ←− 0
3: while (Not converged) do
4: Generate a uniformly distributed random number r ∈ [0, 1].
5: if r < p then
6: Generate a new configuration x′

using Algorithm 2.
7: else
8: Generate a new configuration x′

using Algorithm 5.
9: end if
10: x[n+1] ←− Cut (xn ∪ x′)
11: n ←− n + 1
12: end while

3.4.1 Local Perturbations

A given object ω in x[n] is described by a set of parameters λ ∈ χ (see Eqs. 1 and 2).
We generate the new object ω′ by setting its parameters λ′ = λ + z where z is the
realization of a random vector Z distributed uniformly in χε where:

χε = [−δxy, δxy]2 × [−δab, δab]2 × [0, 2π[

in 2D and
χε = [−δxyz, δxyz]3 × [−δabc, δabc]3 × [0, 2π[3

in 3D.
The value of the different δ describes the perturbation extent. We observed that

small values accelerates the convergence speed.
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Algorithm 5: Birth step with local perturbation.
Require: x[n].
1: while k < si ze(x[n]) do
2: Construct an object ω′ by local perturbation of ωk ∈ x[n].
3: If ω′ intersects an object in x′, set k = k + 1 and go back to 2.
4: Otherwise set x′ = x′ ∪ {ω′}, k = k + 1 and go back to 2.
5: end while

Fig. 8 Comparison of the MBC and MBC with LP algorithms

3.4.2 Comparison of the Convergence Speed

We have tested this method in order to compare the speed of convergence of the
MBCalgorithm and theMBCalgorithmwith local perturbation. Figure8 presents the
energy evolutionwith respect to time for bothMBCandMBCwith local perturbations
(denoted MBC with LP) on the same image (the 3D nuclei of Drosophila embryo).
The segmentation result is presented on Fig. 13 (image size 700×350×100). These
results show that the MBC with LP algorithm strongly improve the MBC algorithm.

4 Results

In this section, we present some practical results in 2D and 3D. Figure9 shows the
segmentation result on a Drosophila embryo obtained using SPIM imaging. This is a
rather easy case, since nuclei shapes vary little. The images are impaired by various
defects: blur, stripes and attenuation. Despite this relatively poor image quality, the
segmentation results are almost perfect. The computing time is 5min using a c++
implementation. The image size is 700 × 350.
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Fig. 9 Left Drosophila embryo. Right result of the proposed 2D segmentation algorithm

Figure10 presents a more difficult case, where the image is highly deteriorated.
Nuclei cannot be identified in the image center. Moreover, nuclei variability is
important meaning that the state space size χ is large. Some nuclei are in mitosis
(see e.g. top-left). In spite of these difficulties, the MBC algorithm provides accept-
able results. They would allow to make statistics on the cell location and orientation,
which is amajor problem in biology. The computing times for this example is 30min.

Nuclei segmentation is a major open problem with a large number of other appli-
cations. In Fig. 11, we attempt to detect the spermatozoon heads. The foreseen appli-
cation is tracking in order to understand their collective motion. Figure12 presents
a multicellular spheroid, an in vitro model mimicking microtumor region organiza-
tion, surrounded by a circle of high aspect ratio pillars made in a soft material by
advanced microfabrication processes. The aim of this experiment is to determine
the displacement of the pillars induced by the spheroid dynamics. To address this
question, the precise detection of the contours of the top of the pillars is required for
this quantitative measurement.

Fig. 10 2D segmentation of a multicellular tumor spheroid (Fig. 1)
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Fig. 11 Segmentation of a spermatozoon colony (5min). Image size: 2,000× 1,024

Fig. 12 Micro pillars detection ( <1min). Image size: 840× 800

3D results are presented in Figs. 13 and 14. For the Drosophila embryo, the seg-
mentation is very close to what a human expert would do. The computing times are
2 hours and the image size is 700 × 350 × 100. The curves in Fig. 8 correspond to
this image.

Fig. 13 Left 3DDrosophila embryonuclei.Right Result of the proposed 3Dsegmentation algorithm
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Fig. 14 Left 3D multicellular tumor spheroid. Right Result of the proposed 3D segmentation
algorithm

The spheroid segmentation presented in Fig. 14 is less precise than the previous
ones due to an important cell variability and to the fact that the images are extremly
blurry in the Z direction. For that case, image restoration algorithms and the design
of new energies robust to strong perturbations seem important.

5 Conclusions

We proposed a detection algorithm capable of identifying sets of non overlapping
ellipses or ellipsoids. Interestingly, this algorithm contains only parameters that are
related to physical properties of the underlying objects (e.g. nuclei variability in size
and ellipticity) and is thus easy to apply for any person working in fields such as
biological imaging. We presented the wide applicability of this algorithm for 2D
and 3D images. Even in hard cases with contrast loss and high noise, the algorithm
manages to find most nuclei due to contrast invariant energies.

Future work will include a quantitative evaluation of the algorithm efficiency with
gold standards. We are also investigating the possibility to encode more complex
interactions between objects to handle cases where the normal to the image level
lines do not provide sufficient information for ellipsoid fitting.
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