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On Variant Strategies To Solve The Magnitude
Least Squares Optimization Problem In Parallel

Transmission Pulse Design And Under Strict SAR
And Power Constraints

A. Hoyos-Idrobo, P. Weiss, A. Massire, A. Amadon, N. Boulant

Abstract—Parallel transmission is a very promising
candidate technology to mitigate the inevitable radio-
frequency (RF) field inhomogeneity in magnetic reso-
nance imaging (MRI) at ultra-high field (UHF). For
the first few years, pulse design utilizing this technique
was expressed as a least squares problem with crude
power regularizations aimed at controlling the specific
absorption rate (SAR), hence the patient safety. This
approach being suboptimal for many applications sen-
sitive mostly to the magnitude of the spin excitation,
and not its phase, the magnitude least squares (MLS)
problem then was first formulated in 2007. Despite
its importance and the availability of other powerful
numerical optimization methods, the MLS problem
yet has been faced almost exclusively by the pulse
designer with the so-called variable exchange method.
In this paper, we investigate various two-stage strate-
gies consisting of different initializations and nonlinear
programming approaches, and incorporate directly the
strict SAR and hardware constraints. Several schemes
such as sequential quadratic programming (SQP), in-
terior point (I-P) methods, semidefinite programming
(SDP) and magnitude squared least squares (MSLS)
relaxations are studied both in the small and large tip
angle regimes with RF and static field maps obtained
in-vivo on a human brain at 7 Tesla. Convergence and
robustness of the different approaches are analyzed,
and recommendations to tackle this specific problem
are finally given. Small tip angle and inversion pulses
are returned in a few seconds and in under a minute
respectively while respecting the constraints, allowing
the use of the proposed approach in routine.

Index Terms—RF parallel transmission, Magnetic
resonance imaging, Mathematical programming, opti-
mization.

I. Introduction
One of the main purposes of Ultra High Field (UHF)

magnetic resonance imaging (MRI) is to improve spatial
resolution, thanks to an increased signal to noise ratio
(SNR). The applicability of most MRI sequences however
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is challenged due to enhanced non-uniformities in the
transmit-sensitivity and off-resonance profiles [1]. If not
addressed, these can yield zones of important SNR losses
across the images, detrimental to diagnosis. Over the last
few years, a lot of research has been devoted to solve the
above-mentioned problems, leading to an assortment of
new powerful tools including shaped pulses [2], [3], radio-
frequency (RF) shimming [4] and transmit SENSE parallel
transmission (pTX) [5], [6], [7]. While RF shimming may
be useful for very specific applications [8], due to its ver-
satility pTX so far has proved to be almost indispensable
to tackle the RF and static field inhomogeneity problem
at UHF for specific absorption rate (SAR) demanding
sequences [9], [10]. Due to the large number of degrees of
freedom pTX provides, there can be many different SAR
patterns for a given RF pulse performance. The goal of the
RF pulse designer in general then is to find the pattern
that satisfies the SAR guidelines [11] with the best pulse
performance.

Most often, SAR constraints in RF pulse design
have either been addressed indirectly through the use
of Tikhonov power regularization factors [12], [13],
[14], [15], [16] or by focusing on a more tractable, hence
significantly smaller, subset of constraints [17], [18]. While
the first set of approaches requires the tuning of some
parameters, the second one generally does not encompass
the complexity of the full SAR spatial distribution. It
was not until recently that the crucial development of
the virtual observation points (VOPs) [19], [20] made the
problem considerably more tractable and facilitated the
treatment of all the SAR constraints in RF pulse design
utilizing pTX. In [21], the authors could thereby study
more thoroughly the trade-offs between the different
constraints and the pulse performance in 2D applications.
Furthermore, the harder but more beneficial magnitude
least squares (MLS) formulation [22], [23] of the pulse
design problem was to some extent tackled in the latter
work either by identifying a suitable target phase and
solving the corresponding least squares problem, or by
looping over different least squares problems, the so-called
variable exchange method [24]. In most cases otherwise,
the MLS problem was not addressed. While this can be
justified perhaps for spiral k-space trajectories where the
rank of the matrix in the linear system is significant, this
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can lower pulse performance substantially for more sparse
trajectories such as spokes [23] and kT -points [25].

The MLS problem in RF pulse design is equivalent to
the phase retrieval problem where a complex signal is
sought based on the knowledge of magnitude measure-
ments. It occurs in other branches of physics such as X-
ray crystallography imaging [26], diffraction imaging [27]
and microscopy [28]. The variable exchange method used
in the MRI community is identical with the Gerchberg-
Saxton algorithm published in 1972 [29]. Yet, despite the
importance of this problem in RF pulse design and its
known limitations [30], its use has been ubiquitous in the
pulse designers’ community [21], [22], [23], [25].

In this work, we investigate other strategies to solve
the MLS problem in 3D, both in the small and the
large flip angle (FA) regimes, based on RF field maps
measured in-vivo on a human brain at 7 Tesla. The
strategies consist of two stages: an initialization and a
nonlinear programming approach [31]. Moreover we incor-
porate all 10-g and global SAR constraints using VOPs,
as well as peak and average power constraints. Due to the
nonconvexity of the problem, there is no proof that we
find the global minimum. However, by exploring different
techniques such as sequential quadratic programming,
interior point methods, semidefinite programming and
magnitude squared least squares relaxations, experience
can be built and greater confidence can be gained to finally
make useful recommendations. We first present the general
context, by defining the mathematical problem and some
computational tricks we used to make the problem more
tractable. For the sake of clarity and completeness, we
then briefly describe the theory behind each technique
investigated. Their corresponding performance, execution
time and robustness are then presented and discussed.

II. Theory
The physical examples we shall work with are non-

selective kT -points pulses [25] with 30◦ and 180◦ target
flip angles. The k-space trajectories in both cases were not
optimized and consisted respectively of 5 and 7 kT -points
symmetrically located around the centre. The number of
kT -points and the number of channels are respectively
called NkT

and Nc (here equal to 8) throughout. The
flip angle (MLS) homogenization problem in the small tip
angle approximation (STA) [32], [33] is written as:

min
x∈Cp

‖|Ax| − θ‖2
2, (1)

where θ denotes the target FA (in rads), A ∈ CN×p the
spins’ dynamics matrix only in the brain region (number
of voxels N = 12 000, number of columns p = Nc × NkT

),
and x the concatenated RF waveforms of the Nc different
channels. The elements of A are given by

am,(j−1)Nc+n = isB1,n(rm) exp(i〈rm, kj〉)
exp (iγ∆B0(rm) (T − (j − 1/2)Ts)) .

For computational reasons that will appear shortly, and
contrary to general practice [7], [13], [14], [15], the elements

for each row are ordered first by channel and then by
time. Above, ∆B0 corresponds to the static field offset
(in Tesla), γ is the gyromagnetic ratio, B1,n(rm) is the
B1 (in µT ) RF field at location rm for maximum voltage
(here 180 Volts) corresponding to the nth channel and T
is the total pulse duration. The k-space trajectory k(t)
is equal to the time-reversed integration of the gradient
waveforms to be played during excitation. The index j
thus labels the kT -points. Each sub-square pulse is 0.2 ms
long for the 30◦ target and 0.5 ms long for the 180◦ target
(duration Ts above). The scalar s in the expression as a
result is the FA (in rads/µT ) achieved for such a sub-pulse
with peak RF amplitude of 1 µT . The time symmetry of
the sub-pulses in the low FA regime also implies the 1/2
correction in the ∆B0 evolution in the same expression.

To address the SAR constraints, and for the sake of
convenience, we use the Q matrices commonly used for
SAR calculations [17]. For a single kT -point, these are

Q(r) = σ

2ρ

Ts

TR

(
EH

x Ex + EH
y Ey + EH

z Ez

)
(r), (2)

where σ and ρ are the conductivity and density re-
spectively, TR is the repetition time and Ex, Ey, Ez

are the components of the complex electric field row
vector at position r along the respective directions for
the maximum voltage available on each channel, e.g.
Ex(r) = [Ex,1(r), Ex,2(r), . . . , Ex,Nc

(r)]. The superscript
H throughout denotes Hermitian conjugation. Here, we
take TR such that the overall duty cycle for the 30◦

and 180◦ pulses are 10 % and 0.25 % respectively. For
a single kT -point the SAR at location r for a pulse shape
x that way is SAR(r) = xHQ(r)x. Equation (2) then is
simply averaged over 10-g of contiguous tissue to obtain
the corresponding Q10g(r) matrices. Strictly speaking,
thus the number of 10-g SAR constraints is equal to the
number of voxels in the head model. In the human head
model we describe later on, it is roughly equal to 37 000.
To make the problem more tractable, we have used the
compression model described in [19]. This model returns
a set of VOPs with corresponding QV OP s matrices which
guarantees that ∃i ∈ V OPs so that

SAR10g,i ≤ max
r∈Ω

(SAR10g(r)) ≤ SAR10g,i + εGSARglobal,

(3)
where Ω denotes the ensemble of all voxels. Respecting
the constraints over the VOPs with a certain pre-defined
tolerance hence guarantees to satisfy the constraints in
every voxel. The number of VOPs, here denoted as NV OP s

throughout for the sake of generality, depends on εG, the
model and the experimental set-up. In this study, we have
taken εG = 1, which returned a set of 490 VOPs. A
matrix QG was also used to deal with the constraint on
global SAR. In addition we incorporate peak power and
average power constraints for each channel (again taking
into account the duty cycles). Finally the optimization
problem for the 30◦ target FA can be summarized as the
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following:

min f(x) := ‖|Ax| − θ‖2
2

x ∈ Cp,
ci(x) ≤ 10 W/kg, i ∈ {1, . . . , NV OP s},
cG(x) ≤ 3.2 W/kg,
cpw,k(x) ≤ 10 W, k ∈ {1, . . . , Nc},
cA,j(x) = |xj |2 ≤ 1, j ∈ {1, . . . , Nc × NkT

}.

(4)

The functions ci, cG, cA,j and cpw,k are quadratic func-
tions. They denote the 10-g SAR constraints over the
VOPs (calculated with QV OP s), the global SAR constraint
(calculated with QG), the amplitude and the average
power for the kth channel (here taken as 10 W) constraints
respectively. The values for the SAR constraints above
correspond to the guidelines issued by the International
Electrotechnical Commission (IEC) [11]. For the inversion
pulse, the FA in the objective function in (1) is no longer
expressed as a linear relationship but is obtained via the
nonlinear function bl (for Bloch):

min f(x) := ‖|bl(x)| − θ‖2
2

x ∈ Cp,
ci(x) ≤ 3 W/kg, i ∈ {1, . . . , NV OP s},
cG(x) ≤ 1 W/kg,
cpw,k(x) ≤ 2 W, k ∈ {1, . . . , Nc},
cA,j(x) ≤ 1, j ∈ {1, . . . , Nc × NkT

}.

(5)

Note that the SAR and average power thresholds here
are different than in problem (4). This is because inversion
pulses are often used in combination with many additional
low FA pulses and that both participate in yielding an
effective SAR pattern and an average power. An important
example is the MPRAGE sequence, where the duty cycle
of that pulse indeed is on the order of 0.25 % (TR '
2s). This is why the SAR thresholds above have been set,
arbitrarily, about 3 times less than the ones recommended
by the IEC, keeping in mind that this pulse would likely
be used in combination with other small FA pulses.

Both problems (4) and (5) are nonconvex optimization
problems with nonlinear constraints. All techniques we
have explored to solve them make use of the values of
the objective function, the constraints and their respective
gradients. We detail briefly how these values were calcu-
lated later on. All CPU times provided in this paper are
for a workstation equipped with an Intel Xeon E5-2620
processor, 16 GB of RAM and using either the Matlab
R2013a (The Mathworks, Natick, MA, USA) or the Knitro
(Ziena optimization LLC, Evanston, IL, USA) software
depending on the algorithms. The Bloch integrations
needed for problem (5) were performed with CUDA on a
Graphics Processing Unit (GPU) NVIDIA (Santa Clara,
CA, USA) Tesla C1060 card.

III. Methods
A. Head model, B1 and ∆B0 maps.

The numerical head model we used for the SAR cal-
culations is the one described in [34] whose surface-based
representation was obtained from the voxel-based model

reported in [35]. Such a representation was a necessary
step to be able to run finite element electromagnetic
simulations in HFSS (Ansys, Canonsburg, PA, USA) with
our 8-channel pTX coil tuned and matched at 297 MHz
to correspond to the proton Larmor frequency at 7 Tesla.
Electric fields computed by HFSS were projected onto
a 5 × 5 × 5 mm3 Cartesian grid and used to build
up the Q matrices of (2). The head model (illustrated
in Fig. 1(a)) contains 20 anatomical structure entities
with corresponding electric properties, which added up
to around 37 000 voxels. The RF and static field maps
were acquired at 7 Tesla on a healthy adult volunteer,
for which approval was obtained from our institutional
review board. The same dataset was used in some of our
earlier work [25]. For both RF transmission and reception,
a home-made transceiver-array head coil was used (Fig.
1(b)), which consists of eight stripline dipoles distributed
every 42.5◦ on a cylindrical surface of 27.6-cm diameter,
leaving a small open space in front of the subject’s eyes.
Relative B1 maps were first acquired using 8 small tip
angle FLASH sequences [36], with a small T1 nonlinearity
correction. Two reference actual FA acquisitions [37] were
then acquired to convert the previous data into absolute
maps, with additional echoes in the first repetition time to
monitor the ∆B0 evolution. Matrix size was 48 × 48 × 32
with isotropic resolution of 5 mm. These data allowed
the encoding of the A matrix in (1). Due to the relative
smoothness of the B1 and ∆B0 maps, significant differ-
ences in homogeneity when dealing with higher resolution
maps are not expected. Finally, although the direct link
between the resolution and the number of VOPs is not
known to the authors, a higher resolution can lead to
increased accuracy of the SAR results but at the possible
expense of computational speed.

(a) (b)

Figure 1. Head model (a) and 8-channel pTX coil (b). Only
subcutaneous tissues are shown for illustration in a). Both models
of the coil and the head were imported into HFSS to perform finite
element electromagnetic simulations. Electric fields were returned for
each voxel of the head for a given input power on each transmit
element. The electric fields were then used to build the Q matrices
in (2) and the VOPs [19], [20] .

B. Algorithms
The nonconvex problems defined by (4) and (5) are

solved using a two stage optimization strategy, where in
the first stage an initial vector x is determined and used
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as an input to the second stage, a nonlinear program-
ming algorithm. The techniques we investigated for the
former stage are random initialization, the Gerchberg-
Saxton algorithm [29] and Semidefinite Relaxation (SDR)
[30]. For the nonlinear programming stage, we studied
the algorithms proposed by the optimization toolbox of
Matlab, i.e. the active-set (A-S), Sequential Quadratic
Programming (SQP), interior-point (I-P) algorithm, as
well as some variants proposed by the Knitro software
allowing a user-supplied Hessian of the Lagrangian.

1) Initialization phase

Random initialization

To increase our chances to find the global minimum, 500
random vectors (uniform distribution) were generated and
scaled to satisfy initially all constraints. These inputs
were then fed to each different nonlinear programming
algorithm. In the large FA case however, and when the
Hessian of the Lagrangian was user-supplied, only 50
random vectors were tried due to the long execution time.

Gerchberg-Saxton

Also called variable exchange method [24], this algorithm
is inspired from the alternating projection strategy [38]
where the problem (1) is reformulated in a way that
does not involve the absolute value function by explicitly
splitting amplitude and phase contributions, diag(θ) and
u, with u satisfying the unity modulus constraint |ui| = 1
for i ∈ {1, . . . , N}. The problem is thus written as

min ‖Ax − diag(θ)u‖2
2

u ∈ CN ,
|ui| = 1,
x ∈ Cp,

(6)

where the optimization procedure is iterated over both
variables u ∈ CN and x ∈ Cp. For fixed u, x can be found
by solving the unconstrained linear least squares problem:

x = A† diag(θ)u, (7)

where A† is the Moore-Penrose pseudo-inverse of A. De-
spite the crude approximation thereby made for the large
FA, where the relation between the pulse shape and the
FA is nonlinear, it is an easily implementable and quick
technique able to return a nonrandom and reasonable
guess. The Gerchberg-Saxton (G-S) algorithm projects the
current diag(θ)uh on the image of A using the orthogonal
projector AA† and correspondingly updates its phase for
the new iterate (which is just equivalent to adjust the new
phase to the one of Axh). This procedure is repeated until
some convergence criteria are satisfied, e.g. when the cost
function varies less than by 1 % from one iteration to the
next. Nevertheless, and as the problem is nonconvex in
u, this alternating projection method is known to stall
in local minima when there are no constraints [30]. This
method also requires an initial phase distribution in the
vector u, which we took to be the one of the circularly

polarized mode obtained by aligning the phases of the
RF field maps at the center of the brain. Finally, the G-S
algorithm the way we have presented it so far generates
only one candidate x. To generate different candidates, we
solved instead the following problem

min ‖Ax − diag(θ)u‖2
2 + λ‖x‖2

2
u ∈ CN ,
|ui| = 1,
x ∈ Cp,

, (8)

where λ is a regularization parameter which was varied
logarithmically from 1 to 300 and 10 000 for the small
and large FA targets respectively (500 steps). The range
in the latter case indeed was increased as it appeared it
generated more variability in the returned input vectors.
The G-S algorithm in this case is implemented in the
same way this time by using x = Ãλ diag(θ)u where
Ãλ = (AHA + λId)−1AH [23]. Cross-correlations between
the corresponding results were calculated to assess their
similarities.

Semidefinite Relaxation

The problem (8) can be expressed as a quadratic pro-
gramming problem (QP) with variable u by inserting x =
Ãλ diag(θ)u in the same equation and setting the positive
definite Hermitian matrix M = diag(θ)(Id−AÃλ) diag(θ)
[30],

QP (M) := min uHMu
u ∈ CN ,
|ui| = 1, i ∈ {1, . . . , N}.

(9)

This problem is equivalent to a Semidefinite Program
(SDP) in U = uuH ∈ HN :

SDP (M) := min Tr(UM)
U ∈ HN ,
diag(U) = 1,
U � 0, Rank(U) = 1.

(10)

The Semidefinite Relaxation (SDR) is obtained by drop-
ping the nonconvex rank constraint and is known to have
theoretical guarantees about the global minimum when
there are no additional constraints. When the solution
has rank one, the relaxation is tight and the vector u is
an optimal solution to the problem defined by (9) [30].
If the solution has rank larger than one, a normalized
leading eigenvector of U is used as a candidate solu-
tion. In practice, the semidefinite programing solvers are
rarely designed to handle complex matrices. Therefore the
complex programs are often reformulated using the linear
transformation T that maps Hermitian complex matrices
HN in to real semi-definite positive matrices in S2N [39],

T (M) =
[

Re(M) −Im(M)
Im(M) Re(M)

]
. (11)

We used the code available at (http://www.cmap.
polytechnique.fr/scattering/code/phaserecovery.zip),
which is a block-coordinate descent method, to solve
this new problem. Because solving this problem using
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this approach took several hours given the size of the
matrices, we tried only three different values of λ to
generate different initial guesses (1, 100, and 300 for the
small FA and 1, 100 and 10 000 for the large FA). These
candidates likewise were then fed as initial starting points
to the nonlinear programming algorithms we investigated.

2) Nonlinear programming

Some of the most successful large scale algorithms for
generally constrained nonlinear optimization fall into one
of two categories [40]: active-set sequential quadratic pro-
gramming methods and interior-point or barrier methods.
Active-set methods can quickly generate a good work-
ing set of active constraints, i.e. the ones that satisfy
the constraint equalities in Problems (4) and (5), and
then perform a minimization on the smaller dimensional
subspace generated by this set of linearized and active
constraints which are iteratively updated. The constraints
that are estimated to be nonactive at the solution point are
simply disregarded. Interior-point methods on the other
hand always attempt enforcing all the constraints by using
barrier penalty functions which progressively vanish as
the number of iterations increases. The efficiency and
the scaling of these schemes with respect to the size of
the problem heavily depend on the particular problem of
interest [41]. We now briefly detail these methods.

Active-set methods

They consist of a (Quasi-)Newton procedure where at
each step the problem is approximated by a QP with
the constraints linearized [41]. Let QP (xh, Hh) denote the
following problem:

min 1
2 dHHhd + ∇f(xh)Hd

d ∈ Cp,
ci(xh) + ∇ci(xh)Hd ≤ 10 W/Kg, i ∈ {1, . . . , NV OP s},
cG(xh) + ∇cG(xh)Hd ≤ 3.2 W/Kg,
cpw,k(xh) + ∇cpw,k(xh)Hd ≤ 10 W, k ∈ {1, . . . , Nc},
cA,j(xh) + ∇cA,j(xh)Hd ≤ 1, j ∈ {1, . . . , Nc × NkT

},
(12)

where d = x − xh is the unknown step vector to take
at the hth iteration and Hh is the Hessian of the La-
grangian updated in the Matlab implementation via the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [41].
The basic principle of the A-S algorithm is to solve
problem (12) and estimate the active constraints via a
calculation of the Lagrange multipliers. At each iteration
the constraints believed to be nonactive at the solution
point are simply disregarded (but can be reincorporated
at a later iteration). For those that are active, the linear
constraints above allow to find a subspace tangent to
these in which a search direction is determined. The SQP
implementation of Matlab is similar to A-S [42], the main
differences being: the strict feasibility with respect to
bounds, this is beneficial when the objective function or

the nonlinear constraints functions are undefined or are
complex outside the region constrained by the bounds;
feasibility routines are reformulated; SQP algorithm is
more robust to non-double results, hence it tries to ensure
numerical convergence; the linear algebra routines are
refactored in order to be more efficient in memory usage
and speed.

Interior-Point Methods

The I-P approach consists of approximating the problem
by a sequence of equality constrained problems that are
easier to solve than the original inequality-constrained
problem [40]. It reads:

min f(x) − µk

∑
l∈J log(sl)

ci(x) + si = 10 W/Kg, i ∈ {1, . . . , NV OP s},
cG(x) + sG = 3.2 W/Kg,
cpw,k(x) + spw,k = 10 W, k ∈ {1, . . . , Nc},
cA,j(x) + sA,kd = 1, j ∈ {1, . . . , Nc × NkT

},
sl ≥ 0, l ∈ J ,

(13)

where J is the set of constraints, s is a vector of slack
variables and µk > 0 is the sequence of the barrier
parameter with limk→+∞ µk = 0. There are two main
classes of I-P methods [40]. The first class can be viewed as
direct extensions of I-P methods for linear and quadratic
programming. They use line searches to enforce conver-
gence, computing the descent steps by solving a system
of equations corresponding to the Karush-Kuhn-Tucker
[40] conditions; they are also called I-P with direct step.
The methods in the second class use a quadratic model to
define the step and incorporate a trust-region constraint to
provide stability; they are also called I-P with conjugate
gradient (CG) step [40]. Matlab exploits both classes in
its implementation. In both I-P and A-S methods, the
number of iterations, i.e. the number of times problem (12)
or problem (13) was solved, was set equal to 60 which was
enough in this particular problem to reach convergence
towards a local minimum.

C. Implementation
1) Calculation of the objective function, the SAR con-

straints and their respective gradients.

Given a candidate solution x the objective function in the
small tip angle regime is calculated easily by using (4),
where most of the computation consists of multiplying the
matrix A with the vector x and taking an l2-norm. Because
most optimization algorithms do not deal directly with
complex variables, we first split the vector x into two parts:[

Re(x)
Im(x)

]
. The gradient ∇f

(
Re(x)
Im(x)

)
could be obtained by

blind finite difference with ∂f

∂xj
(x) ' f(x + εej) − f(x)

ε
,

where ej is an elementary vector (1 at one position and
zero elsewhere) but this would imply calculating the same
kind of matrix-vector product for each degree of freedom,
i.e. 2 × Nc × NkT times (here 80 for the small FA pulse).
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By denoting aj the jth column of the matrix A, instead by
linearity one has A(x+εej) = Ax+εaj , for the first half of
the gradient vector and Ax + iεaj−p, for the second half,
where i =

√
−1. The product Ax thereby is performed

only once. This saves many unnecessary calculations. At
the end of the procedure, the normalized root mean square

error (NRMSE)

√
1
N

N∑
i=1

(θi − θ)2/θ is provided. In the

large tip angle regime, the objective function is calculated
by using (5), where most of the computation consists of
carrying a full Bloch simulation over all voxels and taking
an l2-norm. Its gradient in this case is evaluated via finite
differences. The evaluation of the objective function, thus
a crucial step to make this approach feasible in routine,
was performed by using CUDA and a GPU card.

For one kT -point, the SAR for one VOP for a pulse
shape x is equal to cV OP (x) = xHQV OP x. For NkT

kT -points back to back, the result conveniently becomes
cV OP (x) = xH(IdNkT

⊗QV OP )x thanks to the ordering of
the elements in the A matrix, where IdNkT

is the Identity
matrix of size NkT

and ⊗ is the Kronecker product. If
NkT

is not small, the matrix sandwiched between the x
vectors is sparse and can be declared as such to speed up
the computations. Most importantly, the gradient of the
SAR hence has the following analytical expression:

∇cV OP

(
Re(x)
Im(x)

)
= 2

[
Re((IdNkT

⊗ QV OP )x)
Im((IdNkT

⊗ QV OP )x)

]
.

Although the VOPs considerably reduce the size of the
problem, doing a loop over all of them to calculate the
SAR would be suboptimal, especially for less compressed
models. If Ic is the matrix whose columns are the NT -time
point waveforms of the different channels, for 100 %
of duty cycle the SAR at one spatial location can be
calculated using the following formula [43]:

SAR =
Nc∑

m=1

Nc∑
n=1

Qm,nIH
c,mIc,n, (14)

= 1
T

(
Q �

(
1

NT
IH

c Ic

))
1, (15)

where 1T = [1, . . . , 1] ∈ RNc , the operator on the right
hand side denotes the Hadamard product and the bar
denotes a time average. For one voxel, this formula already
saves looping over the different time points. To calculate
the SAR value over all the VOPs, we simply compute:

SAR = 1
T

Qcat �

IH
c Ic, . . . , IH

c Ic︸ ︷︷ ︸
NV OP s times




1 . . . 0
... . . .

...
0 . . . 1

 ,

(16)
where Qcat = [Q1, . . . , QNV OP s

]. The matrix on the far
right contains NV OP s × Nc rows and should be declared
as sparse (1.6 % of the elements are nonzeros in our case).
Each column of that matrix contains 8 consecutive ones
which isolate a Q matrix. This way, all SAR values are
computed in one shot with optimized algebra routines and

with no for loops, often time-consuming in Matlab imple-
mentations. All matrices besides IH

c Ic are built once and
for all throughout. Finally, because analytical formulas
likewise exist for the gradients of the peak and average
power constraints, they can be calculated very efficiently
as well.

2) MSLS problem and the Hessian of the Lagrangian.

Since the objective function defined by (1) is not ev-
erywhere differentiable, gradient-based methods are not
well defined and can cause problems. For that reason we
attempted to solve the original MLS problem by using
a variant that is different but closely related, i.e. the
Magnitude Squared Least Squares (MSLS) problem [24],
still under the same constraints as in the MLS problems
(4) and (5):

min
x∈Cp

f(x) := ‖|g(x)|2 − θ2‖2
2, (17)

where g(x) = Ax and g(x) = bl(x) for the small and large
tip angle regimes respectively. In the small FA regime the
gradient and the Hessian of the Lagrangian are determined
analytically [24] and supplied at moderate cost to the
Knitro solver (Matlab does not accept a user-supplied
Hessian for the A-S and I-P methods). Like for SDP, in
order to work with real variables, the linear transformation
defined by (11) is applied to A, M = T (A) and setting
Mj = [colj(M), colp+j(M)], the gradient and the Hessian
of the objective function are [24]

∇f(x) = 4
N∑

i=1
(xHMiM

H
i x − θ2)MiM

H
i x

and

∇2f(x) =4
N∑

i=1
2MiM

H
i xxHMiM

H
i

+ (xHMiM
H
i − θ2)MiM

H
i

respectively. For the large tip angle regime the Hessian
of the function, ∇2f

(
Re(x)
Im(x)

)
, was obtained by blind

finite differences. Second derivatives for the SAR and
power constraints were trivially added to this contribution
to return the Hessian of the Lagrangian. Based on this
reformulation we investigated likewise the A-S and I-P
methods. Knitro on the other hand provides the user
with the choice of using either the direct or CG approach
for the latter, so that both were tried. Despite the use
of a GPU to calculate the objective function and the
finite differences in the large tip angle regime, calculating
explicitly the Hessian significantly increased the numerical
burden compared to the much faster, but approximate,
BFGS update method. However the goal in using the
MSLS problem reformulation was to investigate potential
gains in the returned RF pulse performance (NRMSE)
by exploiting full knowledge of the Hessian matrix of
the Lagrangian. Because of the longer duration of this
implementation (around 20 minutes per run), only 50
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random and 50 G-S initializations were performed in
the large FA case (as opposed to 500 for the small
FA). Semidefinite relaxation, as presented above, was
also used to supply three different initial guesses to the
Knitro solver. Knowledge of the Hessian allowed faster
convergence in terms of number of iterations, which was
therefore set to 30.

3) Summary of the different approaches.

We summarize the different schemes investigated in this
paper for the reader’s convenience. Initializations were
performed using: random draws, the G-S algorithm and
SDR. The problem of interest is the MLS problem defined
in (4) and (5). Both A-S and I-P methods were attempted
using a Hessian of the Lagrangian updated by the BFGS
method for Matlab and a user-supplied one for Knitro
(determined analytically for the small FA problem and via
finite differences for the large FA one). The MSLS variant
was used in the latter case.

IV. Results
The cross-correlation among the different input vectors

varied between 0.5 and 1 for the random draws, while the
one among the vectors generated by the G-S algorithm
varied between 0.65 and 1, which indicates a significant
variability in the input states. Fig.2 provides the box plots
showing the variability of the final NRMSEs with the ran-
dom initialization procedure combined with the different
algorithms. In the small FA regime one can observe a
smaller variability within the 1.5 interquartile range for
the A-S methods compared to the I-P ones, except for
the I-P direct approach in the MSLS formulation. The
result however is opposite for the high FA problem with
a higher robustness achieved for the I-P method in the
original MLS formulation.

(a) Low flip angle regime (b) High flip angle regime

Figure 2. Box plots obtained for the small (a) and the large tip angle
regimes (b). The small horizontal lines correspond to the lowest and
highest data within 1.5 interquartile range below the first and above
the third quartiles respectively. The crosses are the outliers. The plots
were generated with 500 random samples for all approaches except
for the MSLS variant in the large FA regime (50 random samples).

Table I summarizes the best NRMSEs obtained for
the small and large FAs and for each algorithm, along
with their execution times (not including the initialization
routine which, besides the SDR method, takes negligible
time). The constraints before and after each algorithm

are also reported in the second table, the initializations
being the ones leading to their best respective results.
The SDR initialization method returned matrices whose
ranks were always far larger than 1 so that no statements
about global optimality (without constraints) could be
made. The differences between the A-S and SQP im-
plementations of Matlab were minor. The SQP program
was slightly slower but guaranteed at the end the strict
respect of all the constraints. The A-S technique could
on the other hand return a result where the constraints
could be, very slightly, violated. Execution time naturally
varied significantly depending on the evaluation method
of the Hessian (analytical, BFGS or finite differences), the
evaluation of the objective function and its gradient (STA,
Bloch simulation, finite differences), the algorithm and its
starting point. Solving the MSLS problem with Knitro in
the large FA regime for instance takes nearly 20 minutes
due to the evaluation of the Hessian via finite differences,
even when using a GPU card. Solving the MLS problem
using the A-S approach and the BFGS update method on
the other hand takes 6 and 47 seconds for the small and
large FAs respectively.

The best NRMSEs found therefore are 5.65 and 8.72
% for the 30◦ and 180◦ target FAs respectively. With a
tolerance of 0.3 % for the NRMSE, when starting from a
random initial guess the probabilities to converge to these
results were for the different algorithms respectively 84, 84,
0, 86, 88, and 69 % (same order as in table I) for the small
FA target, indicating a high robustness of the algorithms
with a cold start input, except for the I-P implementation
of Matlab. The numbers are even more encouraging when
the initializations are performed via the G-S algorithm,
indicating a very high robustness for these algorithms,
especially in the A-S and SQP implementations, when a
warm start is provided. These numbers are 100, 100, 0,
90, 91, and 60 %. The A-S and SQP methods thus are
seen to be very robust with a cross-correlation between
the final output solutions varying between 0.98 and 1. As
far as the large FA target is concerned, the results indicate,
perhaps not surprisingly, a higher sensitivity with respect
to the initial starting point when setting a tolerance of
2 % on the NRMSE, this time the I-P method being
the most robust (see Fig. 2(b)). With that tolerance,
the probabilities were 70, 75, 84, 36, 66 and 28 % for
the random initializations; and 62, 61, 83, 68, 86 and 30
% for the G-S initialization. The I-P (MLS) approach
as a result seems more robust for the large flip angle
case but yields slightly worse NRMSE on average than
the A-S and SQP methods (see Fig. 2(b)), and can take
almost twice longer to execute (see Fig. 3(b)). Moreover,
for the G-S initializations it is worth pointing that as
soon as the Tikhonov parameter exceeded the value of
1000, all MLS methods converged towards their respective
minimum with 100 % probability. The A-S or SQP method
combined with a G-S initialization and a strong power
regularization hence still appears the method of choice
in the large FA regime. Despite the differences between
the original MLS problem and the MSLS reformulation,
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Table I
Best NRMSE in % and execution time in seconds (in parenthesis) obtained for each initialization/algorithm combination

for the small FA (SFA) and large FA (LFA) regimes.

hhhhhhhhhhhInitialization
Algorithm MLS (Matlab) MSLS (Knitro)

A-S SQP I-P direct & CG A-S I-P direct I-P CG

SF
A

Random 5.67 (6) 5.67 (7) 6.70 (9) 5.68 (40) 5.68 (35) 5.73 (34)
G-S 5.70 (6) 5.71 (8) 7.24 (8) 5.68 (47) 5.73 (33) 5.69 (33)
SDR 5.65 (8) 5.65 (9) 12.67 (11) 5.77 (40) 6.42 (37) 10.72 (36)

LF
A Random 8.94 (49) 9.00 (78) 10.22 (44) 8.83 (1 369) 8.76 (1 124) 9.07 (1 126)

G-S 8.90 (47) 8.91 (77) 10.20 (38) 8.72 (1 351) 8.74 (1 119) 8.83 (1 111)
SDR 9.42 (49) 9.49 (48) 10.34 (44) 9.57 (1 357) 9.03 (1 116) 12.54 (1 117)

the numerical experiments performed indicate (but do not
prove) that the exact knowledge of the Hessian is not
required and that much faster, but approximate, methods
such as the BFGS-update method return equally good
results. To illustrate convergence speed, we calculated the
NRMSE versus CPU time for each algorithm and by
selecting the initial starting point which both verifies the
constraints and leads to the best NRMSE achieved in all
runs.

(a) Low flip angle regime (b) High flip angle regime

Figure 3. NRMSE versus CPU time for the different algorithms
in the small (a) and large (b) FA regimes. The plots for the MSLS
variant in the large FA regime are not included due to the time-
consuming calculation of the Hessian of the Lagrangian, resulting in
a much longer execution time (∼ 20 min). In the small FA regime
the plots corresponding to the SQP and A-S algorithms are almost
indistinguishable. Here, for all algorithms, the initial starting point
was chosen based on two criteria: feasibility with respect to all
constraints and best NRMSE obtained among all numerical trials
performed in this study. This best NRMSE was obtained with a
random input vector, thus yielding initially a high cost function.

While it seemed not critical for the A-S methods to
start with a feasible point to achieve a very good result,
the theory behind I-P methods assumes such a starting
point. Results are indicated in Figure 3 both for the
small and large FA problems. The corresponding FA
maps over the 3 dimensional brain are calculated via
a Bloch simulation and are provided in Figure 4, also
with the relative saturation of the different constraints
indicated in bar graphs (i.e. how far the returned values
are from their respective limits). In our case, it seemed
that average power and peak amplitude were the most
critical constraints for the small FA design, whereas the
most critical constraint in the large FA regime was by far
the amplitude.

V. Discussion

A practical evaluation of optimization algorithms is
complicated by details of implementation, heuristics and
algorithmic options. In this paper, it is worth stressing that
the numerical experiments we have carried out made use of
different algorithms provided by different solvers (Matlab,
Knitro) with their default options. Furthermore we found
that variants of the I-P methods (CG and direct) could
behave very differently for the MSLS problem. In those
same methods, the evolution of the barrier parameter µ
with respect to the number of iterations likewise can have
a great impact on the final result [21]. Therefore it is
not excluded that slightly different implementations of the
same class of algorithms could lead to better results. Our
goal here however was to provide a readily implementable
solution. Surprisingly, it was also found that the BFGS
approximation of the Hessian of the Lagrangian led to
equally good results as the ones returned when the Hessian
was fully calculated, however for the MSLS variant. This
is a useful result which allows to significantly speed up the
implementation at no performance expense.

Among all algorithms and initializations we have tested,
our recommendation depends on the tolerance one may
have on the satisfaction of the constraints. Both A-S
and SQP implementations are robust with respect to the
initialization in the small FA regime, as long as the input
is plausible (generated for instance quickly by the G-S
algorithm). In the large FA regime, the best performance
was obtained with the A-S method but this time a smaller
robustness with respect to the input state was observed.
Initializations performed with the G-S method and a high
regularization parameter returned the best result in a
reliable manner. Whereas A-S is a bit faster than SQP,
the constraints may be slightly violated at the end (by
a few % at the most). Although this can be acceptable
for instance for the SAR or average power constraints,
this solution would not be accepted by the MRI scanner
if the peak power limit was exceeded. This however can
be checked a posteriori and corrected by truncating or
renormalizing the waveforms, provided the performance
is not too much affected. The SQP algorithm on the
other hand should return a solution leading to a strict
nonviolation of the constraints. For the 3D kT -points
tests we have studied, the gain in computation time for
the A-S method versus SQP seemed certainly worth the
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(a) Low flip angle regime (b) High flip angle regime

Figure 4. Flip-angle maps obtained for the small (a) and the large tip angle regimes (b). The bar graphs on the left side of the maps
indicate in a percentile way how far from their limits the constraints are ("A" is for amplitude, "M" for the maximum average power among
the different channels, "L" for local SAR and "G" for global SAR). The numbers in the left of the FA maps correspond to the NRMSE.

Table II
Peak power (A) (without units), maximum average power (P) (W), maximum 10-g SAR (L) (W/kg) and global SAR (G)

(W/kg) corresponding to Table I before and after each algorithm. The initializations here correspond to the ones leading
to the lowest NRMSE for each algorithm.

After initialization After algorithm
A P L G A P L G

SF
A

A-S (MLS) 0.81 10.17 5.15 0.85 0.94 10.00 6.95 1.55
SQP (MLS) 0.81 10.29 5.19 0.85 0.94 10.00 6.97 1.55

I-P Direct & CG (MLS) 0.57 5.51 2.60 0.49 0.66 7.44 2.46 0.47
A-S (MSLS) 0.37 2.81 0.95 0.22 0.94 10.00 7.67 1.73

I-P Direct (MSLS) 0.50 4.34 1.71 0.38 0.93 10.00 6.65 1.60
I-P CG (MSLS) 0.84 11.82 5.78 0.93 0.93 10.00 7.05 1.66

LF
A

A-S (MLS) 0.72 0.06 0.10 0.03 1.00 0.19 0.42 0.10
SQP (MLS) 0.83 0.07 0.12 0.03 1.00 0.19 0.42 0.10

I-P Direct & CG (MLS) 0.81 0.07 0.11 0.03 0.93 0.13 0.26 0.06
A-S (MSLS) 0.50 0.03 0.05 0.01 1.00 0.19 0.38 0.10

I-P Direct (MSLS) 0.65 0.05 0.08 0.02 1.00 0.18 0.38 0.10
I-P CG (MSLS) 0.82 0.07 0.12 0.03 1.00 0.18 0.35 0.09

possible post-correction on the waveforms, which would
take negligible time. Despite the good results obtained
in [21], our results also seem to indicate that it is more
efficient to tackle the MLS problem under constraints
directly rather than looping over constrained least-squares
problems where the phase of the target FA is updated at
each iteration [21].

For the small FA pulse, the best performance we could
find was 5.65 %, which is comparable to our previous
results [25], [9] except this time no tuning of parameters
was required to enforce all constraints. For the inversion
pulse, the best performance obtained was 8.72 % using the
A-S algorithm, the MSLS variant, and a 3.5 ms kT -points
pulse, but in almost 20 minutes. A slightly higher NRMSE
of 8.90 % on the other hand could be obtained in 47
seconds still using the A-S technique on the MLS problem.
This is worse than the 6 % inhomogeneity we had obtained
using an optimal control approach, a pulse duration of
5.9 ms and in around 3 minutes [9]. Considering however
the much smaller number of degrees of freedom we used
here (112 versus 94 000), the substantially shorter pulse
duration and the fact that the SAR constraints this time
were directly incorporated, this result is quite remarkable

and is likely due to the use of second order methods
compared to gradient descent approaches [9]. Furthermore,
note that 8.90 % inhomogeneity is significantly better than
what is typically measured at 3 Tesla using a birdcage
coil ( ∼ 12 %) [44]. This performance and efficiency to
design such pulses thus allows to mitigate the RF inhomo-
geneity problem at UHF in standard T1-weighted imaging
sequences such as the MPRAGE in very reasonable time
and thus in routine.

VI. Conclusion

In this paper we have investigated several initializations
and nonlinear programming methods to solve the MLS
problem in RF pulse design utilizing parallel transmission
at UHF, under strict SAR and hardware constraints, both
in the small (linear) and large (nonlinear) FA regimes. Our
final recommendation in both cases is the use of an A-S
(or SQP) method combined with a G-S initialization with
strong power regularization to yield the lowest NRMSE in
the most efficient way. Moreover, the combination of these
techniques leads to an execution time that is sufficiently
small for the approach to be implemented in routine,
although the use of parallel computing devices (GPUs in
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our case) seems at this point a necessity for the design of
large FA pulses.
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