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Solving Constrained Total-Variation Image Restoration
and Reconstruction Problems via Alternating Direction

Methods

Michael Ng1, Pierre Weiss2 and Xiao-Ming Yuan3

Abstract In this paper, we study alternating direction methods for solving
constrained total-variation image restoration and reconstruction problems. Al-
ternating direction methods can be implementable variants of the classical aug-
mented Lagrangian method for optimization problems with separable structures
and linear constraints. The proposed framework allows us to solve problems of
image restoration, impulse noise removal, inpainting and image cartoon+texture
decomposition. As the constrained model is employed, we only need to input the
noise level and the estimation of the regularization parameter is not required
in these imaging problems. Experimental results for such imaging problems are
presented to illustrate the e�ectiveness of the proposed method. We show that
the alternating direction method is very e�cient for solving image restoration
and reconstruction problems.

1 Introduction

Digital image restoration and reconstruction play an important role in va-
rious areas of applied sciences such as medical and astronomical imaging, �lm
restoration, image and video coding and many others [47, 9, 58, 6, 43]. Most
imaging systems capture an image x and return a degraded data x0. A common
model of the degradation process is the following :

x0 = Ax+ b (1)

where b is an additive noise and A : Rn → Rm is a linear transform (e.g.
a convolution by a blurring kernel followed by a sub-sampling). Recovering x
from x0 is usually an ill-posed inverse problem and it should be regularized.
Since the work of Rudin, Osher and Fatemi [57], the regularization methods
based on total variation (TV) have known an important success, mostly due to
their ability to preserve edges in the image.

Most of these techniques share the same formulation. They can be written
as :

min |||∇x|||1 +τ
∣∣∣∣Ax− x0

∣∣∣∣
N

subject to x ∈ Rn
(2)

or the equivalent constrained form :

min |||∇x|||1
subject to x ∈ Rn,

∣∣∣∣Ax− x0
∣∣∣∣
N
≤ α

(3)

1Centre for Mathematical Imaging and Vision and Department of Mathematics, Hong Kong

Baptist University, Kowloon Tong, Hong Kong. Research supported in part by HKRGC grants

and HKBU FRGs.
2Centre for Mathematical Imaging and Vision, Hong Kong Baptist University, Kowloon

Tong, Hong Kong.
3Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong.

Research supported in part by an HKRGC grant and NSFC grant 10701055.

1



In these equations n is the pixels number. ∇ : Rn → Rn × Rn is a discrete
version of the gradient. |||·|||1 represents a norm on Rn×Rn. ||·||N is a norm or
a semi-norm on Rm. A : Rn → Rm is a linear transform. α and τ are positive
real numbers which measure the trade-o� between the �t to x0 and the amount
of regularization.

Content of the paper A number of numerical methods have been proposed
for solving instances of problem (2), see e.g. [57, 41, 54, 62, 10, 36, 37, 35, 42,
22, 39, 63, 29, 23]. To our knowledge, very few works tackle the constrained
problems (3). This is surprising since choosing a reasonable value of α is usually
much easier than �nding a suitable value of τ . A natural choice proposed in the
early papers [57] consists in setting α = ||b||N or α = (1 + ε) ||b||N where ε is a
small value.

Our aim in this work is to provide fast schemes for solving the constrained
problems (3). We restrict our attention to a special case of (3) : we assume that
A = SH where H is a circulant matrix (e.g. a convolution by a blurring kernel)
and S has a very simple structure described in Section 4. This structure is
however su�ciently general to cover the cases of sub-sampling (super-resolution
problems) and loss of partial information (inpainting problems). The proposed
algorithms allow to treat the case ||·||N = ||·||p, the classical lp-norms, but

also the norms associated to the Sobolev spaces of negative index W−1,p. They
thus allow to solve problems of image cartoon+texture decomposition, but also
reconstruction with negative norms. Such problems are very demanding and not
tackled well yet in the literature. The computational times are competitive with
some recently proposed approaches.

By reformulating the problem (3) into some optimization problems with fa-
vorably separable structures, we notice that the problem (3) can be solved e�-
ciently via the well-developed Alternating Direction Methods (ADMs). In short,
ADMs are implementable variants of the classical Augmented Lagrangian me-
thod for optimization problems with separable structures and linear constraints,
and they have been intensively studied in the community of optimization. We
refer the reader to Section 3 for the detailed delineation of ADM. Overall, the
aim of this paper is to develop ADM-based numerical algorithms for solving the
constrained problem (3).

Related work Though this work was begun in early 2009 independently, the
ADM method was introduced earlier in image processing in [18], where the au-
thor provides some equivalence with the so-called split-Bregman algorithm [29].
However, in this paper the authors only consider the case where the projection
onto the constraint can be computed explicitly. In this paper, we will consider
a more general constraint. Recently, Wu et al. [66] extended the augmented La-
grangian method to total variation restoration models with non-quadratic �deli-
ties. They applied their method to TV restoration with l1 and Kullback-Leibler
(KL) �delities. They showed the algorithm can have closed form solution and
can also be e�ciently solved via FFT implementation. The main di�erences
between our paper and the Wu paper are that (i) the constrained model is
studied and (ii) inpainting and image cartoon+texture decomposition are also
considered and tested.

To our knowledge very few works tackle the case of constrained problems
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when the projection onto the set of constraints cannot be computed exactly.
A common method consists in solving a sequence of unconstrained problems
of type (2) in order to satisfy the constraint asymptotically. However, using
this technique, a lot of time is lost by solving many instances of problem (3).
Another technique used in [11] consists in using subgradient projections. Once
again, this technique is known to have a bad asymptotic behavior. Moreover, it
is not straightforward to compute the subgradient of the negative norms used in
image cartoon+texture decomposition. Recently, the authors of [50] proposed
a dual �rst order method. However, this technique can be used only when the
objective function is strongly convex.

Outline of the paper The outline of this paper is as follows. In Section 2,
we introduce the notations used in this paper. In Section 3, the Alternating
Directions Method (ADM) based on the augmented Lagrangian is presented.
Some theoretical aspects of this algorithm are presented. In Section 4, we present
how to apply the ADM for solving problem (3) using di�erent norms. The
main di�culty consists in introducing correct equality constraints. In Section 5,
numerical examples are given to demonstrate the e�ectiveness of the proposed
method. Conclusions are made in Section 6.

2 Notations

In this work, we consider optimization problems in the �nite dimensional
vector space Rn (n ∈ N). 〈·, ·〉 denotes the canonical inner product and ||·||
denotes the associated norm : ||x|| =

√
〈x, x〉.

Now let x ∈ Rn be a 2D image. Then n = n1 · n2 is the total number of
pixels and n1 and n2 denote the number of pixels in the horizontal and vertical
directions respectively. Let i ∈ {1, 2, ..., n1} and j ∈ {1, 2, ..., n2}. x(i, j) denotes
the intensity value of pixel (i, j). The theory developed in this paper extends in
a trivial manner to color images. We omit this case for the clarity of exposition.
{ei,j}i,j is the canonical basis of Rn.

The notation ||·||p refers to the standard de�nition of an lp-norm. In par-
ticular ||·||2 = ||·||. We also de�ne another p-norm |||·|||p on Rn × Rn. Let

y =
(
y1

y2

)
∈ Rn × Rn. We de�ne |y| =

√
y2

1 + y2
2 ∈ Rn and :

|||y|||p = ||(|y|)||p .

Note that |||y|||2 = ||y||.
Let A : Rn → Rm be a linear mapping. A∗ denotes its conjugate transpose.

AT denotes its transpose. We de�ne ||A|| as :

||A|| = sup
x6=0

(
||Ax||
||x||

)
.

This corresponds to the de�nition of the largest singular value of A. I denotes
the identity matrix. F denotes the Discrete Fourier Transform (DFT) and F−1

denotes its inverse. Sometimes, we will also write x̂ = Fx.
Let us de�ne the discrete gradient operator. ∂1 : Rn → Rn and ∂2 : Rn → Rn

are linear applications. They design the discretized derivatives in the hori-
zontal and vertical directions respectively. The gradient operator is denoted
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∇ :=
[
∂1

∂2

]
. All the experiments carried out in this paper are done using

circular boundary conditions :

(∂1x)(i, j) =
{
x(i+ 1, j)− x(i, j) if i ≤ n1

x(n1, j)− x(1, j) if i = n1

and

(∂2x)(i, j) =
{
x(i, j + 1)− x(i, j) if j ≤ n2

x(i, n2)− x(1, j) if j = n2.

The interest of using circular boundary conditions is that the di�erential ope-
rators are diagonalized by the DFT. We have :

∂1 = F−1D1F and ∂2 = F−1D2F

where D1 ∈ Cn×n and D2 ∈ Cn×n are diagonal matrices. The counterpart
of periodic boundary conditions is that it can lead to some artifacts on the
image borders. Let us point out that L. Moisan proposed an arguably better
discretization of the gradient, also based on a convolution in [46]. In this work
we make use of the described operators for simplicity.

The operator div : Rn → Rn is a matrix which to an image x associates
a discretization of its divergence. It de�ned by div = −∇T = −

[
∂T1 , ∂

T
2

]
. The

Laplacian of x ∈ Rn is de�ned by ∆x = div(∇x)
In all the paper H : Rn → Rn will design a circulant matrix (e.g. the blurring

operator) which can be written as :

H = F−1DHF

where DH ∈ Cn×n is a diagonal matrix.
All the functions considered in this text are extended-real valued functions

f : Rn → [−∞,+∞] 4. The domain of f is de�ned by dom(f) = {x ∈ E, f(x) <
+∞}. Let K ⊆ Rn. χK denotes the indicator function of K :

χK(x) =
{

0 if x ∈ K
∞ otherwise

Let X ⊆ Rn be a convex closed set. The projection on X is de�ned for x0 ∈ Rn
by :

ΠX(x0) = arg min 1
2

∣∣∣∣x− x0
∣∣∣∣2

subject to x ∈ X
We will also make use of the proximal operator made popular in signal processing
in papers like [12]. Let f be a convex closed function. The proximal operator of
f is de�ned for x0 ∈ Rn by :

proxf
(
x0
)

= arg min f(x) + 1
2

∣∣∣∣x− x0
∣∣∣∣

subject to x ∈ Rn

The proximal operator of β |||·|||1 will be denoted shrinkβ (·). For y0 = (y0
1 , y

0
2) ∈

Rn × Rn it is de�ned by :

shrinkβ
(
y0
)

= proxβ |||·|||1
(
y0
)

= arg min β |||y|||1 + 1
2

∣∣∣∣y − y0
∣∣∣∣2

subject to y ∈ Rn × Rn

4this avoids having to consider constrained optimization problems
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This operator has a closed form expression. Let |y0| ∈ Rn be de�ned by |y0| =√
(y0

1)2 + (y0
2)2. Then

(shrinkβ
(
y0
)
)(i, j) = y0 −min(β, |y0|) · y

0

|y0|
.

where y0

|y0| should be taken as 0 on places where |y0| = 0.

3 Review of ADM methods

In this section, we brie�y review the well-known Alternating Direction Me-
thod (ADM) which has been well studied in the areas of convex programming
and variational inequalities, see e.g. [5, 16, 17, 21, 24, 25, 26, 31, 33, 40, 60, 67].

We consider the following well-structured optimization problem that moti-
vated the original presence of ADM in [25, 26, 31].

min f1(x) + f2(y)
s.t. Bx+ Cy = b,

x ∈ X, y ∈ Y,
(4)

where X ⊆ Rn and Y ⊆ Rm are given convex sets, f1 : X → R and f2 : Y → R
are closed proper convex functions ; B ∈ Rl×n and C ∈ Rl×m are given matrices ;
and b ∈ Rl is a given vector. Obviously, the particular problem (3) falls into a
special case of (4).

3.1 Algorithmic framework of ADM

By attaching the Lagrangian multiplier λ ∈ Rl to the linear constraint, the
Augmented Lagrangian (AL) function of (4) is

L(x, y, λ) := f1(x) + f2(y) + 〈λ,Bx+ Cy − b〉+
β

2
||Bx+ Cy − b||2 , (5)

where β > 0 is the penalty parameter for the violation of the linear constraints,
see e.g. [51]. Hence, with a given initial λ0, the AL method approaches the
solutions of the original problem (4), denoted by (x∗, y∗), by solving iteratively
the following auxiliary problem :

(xk+1, yk+1) ∈ arg min L(x, y, λk)
subject to x ∈ X

y ∈ Y
λk+1 = λk + β(Bxk+1 + Cyk+1 − b)

(6)

Despite its popularity for solving generic optimization problem with equality
constraints, it is not bene�cial to implement directly the original AL method (6)
to solve the particular problem (4). In fact, the nice separable structure emerging
in both the objective function and the constraint of (4) is completely ignored by
doing so, and thus xk+1 and yk+1 are required to be minimized simultaneously
in (6). This pitfall, however, can be favorably overcame by the ADM. More
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speci�cally, to approach a solution of (4), the ADM solves the following sub
problem at each iteration :

xk+1 ∈ arg min L(x, yk, λk)
subject to x ∈ X

yk+1 ∈ arg min L(xk+1, y, λk)
subject to y ∈ Y

λk+1 = λk + β(Bxk+1 + Cyk+1 − b)

. (7)

Note that ADM inherits the algorithmic framework of the AL method, but with
the improvement of minimizing xk+1 and yk+1 serially via solving two lower-
dimensional sub problems. In this sense, ADM is a variant of AL with practical
features for solving structured problems like (4).

Hence, the ADM algorithmic framework for solving (4) as follows :

Algorithm 1: Alternating Direction Method for solving (4)

Input: The maximal number of iterations N ; The starting point x0 ∈
dom(f1), y0 ∈ dom(f2) and λ0 ∈ Rl ; The initial value of β.

Output: xN , an estimate of an element of x∗ satisfying some stopping
criterion.

begin

for k= 0 to N − 1 do

Step 1. xk+1 = arg min L(x, yk, λk)
subject to x ∈ X

.

Step 2. yk+1 = arg min L(xk+1, y, λk)
subject to y ∈ Y

.

Step 3. λk+1 = λk + β(Bxk+1 + Cyk+1 − b).
end

end

Remark 1. For a clear exposition of the main idea, we only present the algorith-
mic framework of the basic ADM. Some more advanced ADM type methods are
also applicable for solving (4). For example, the general ADM in [31] modi�es

Step 3 of the basic ADM with a relaxation parameter in the interval (0,
√

5+1
2 ) ;

and the method in [67] develops descent directions based on the iterates gene-
rated by the basic ADM.

3.2 Variational inequality reformulation

Let ∂f1 and ∂f2 denote the respective subdi�erentials of f1 and f2 ; let
Ω := X × Y × Rl. Then, it is easy to verify that solving (4) is equivalent to
�nding (x∗, y∗, λ∗) ∈ Ω such that (x− x∗)T (∂f1(x∗) +BTλ∗) ≥ 0,

(y − y∗)T (∂f2(y∗) + CTλ∗) ≥ 0,
(λ− λ∗)T (Bx∗ + Cy∗ − b) = 0,

∀ (x, y, λ) ∈ Ω. (8)
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where ∂fi is understood as any element of the corresponding subdi�erential
without ambiguity. Hence, we have the following variational inequality (VI)
reformulation of (4) : Find u∗ ∈ Ω such that

(u− u∗)TF (u) ≥ 0, ∀ u′ ∈ Ω,

where

u =

 x
y
λ

 and F (u) =

 ∂f1(x) +BTλ
∂f2(x) + CTλ
Bx+ Cy − b

 .

3.3 Stopping criterion

In this subsection, we specify an implementable stopping criterion for ap-
plying the ADM.

Note that the iterate (xk+1, yk+1, λk+1) generated by ADM satis�es
(x− xk+1)T

{
∂f1(xk+1) +BTλk+1 + βBTC(yk − yk+1)

}
≥ 0, ∀x ∈ X,

(y − yk+1)T
{
∂f2(yk+1) + CTλk+1

}
≥ 0, ∀y ∈ Y,

(Bxk+1 + Cyk+1 − b) = 1
β (λk+1 − λk).

(9)
Therefore, (9) enable us to design an easy-for-check stopping criterion for im-
plementing ADM, see also [68]. More speci�cally, based on (8) and (9), it is
clear that (xk+1, yk+1, λk+1) is a solution of (8) if and only if yk = yk+1 and
λk = λk+1. This observation motivates us to develop a stopping criterion for
implementing ADM in the following manner :

max{eyk, ezk} ≤ ε, (10)

where ε > 0 and

eyk := β‖BTC(yk − yk+1)‖ and ezk :=
1
β
‖(λk − λk+1)‖. (11)

3.4 A strategy of adjusting penalty parameter

Theoretically, ADM type methods are convergent for any constant β > 0,
see e.g. [?, 25, 26, 31]. In practice, however, it is necessary to adjust the values
of β dynamically in order to achieve better numerical performance. We refer to,
e.g. [33, 34, 40], for some existing strategies of adjusting the variable sequence
of penalty parameter {βk} self-adaptively. Convergence of ADM with variable
penalty parameters can also been found there.

The property implied by (9) not only motivates us to present the stopping
criterion (10)-(11) for implementing ADM, but also induces us to present the
following strategy of adjusting β with the purpose of balancing eyk and ezk

iteratively :

βk+1 =
{

2
3βk if ezk ≤ 0.9ε,
βk otherwise.

In Section 5, we will use this strategy to improve the convergence of the ADM
method.
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4 Application of the ADM for constrained TV

problems

In this section, we focus on applying the ADM to solve some interesting
scenarios of the model (3) in image restoration and reconstruction.

4.1 TV − l2 deconvolution problems

In this paragraph, we show how to apply the ADM method for solving the
constrained TV − l2 model. This model is adapted to the restoration of a blurry
image with additive Gaussian noise. The problem under consideration is the
following :

min |||∇x|||1
subject to x ∈ Rn,

∣∣∣∣Hx− x0
∣∣∣∣2 ≤ α (12)

where H : Rn → Rn is a spatially invariant blur. We also assume that the set

K = {x ∈ Rn,
∣∣∣∣Hx− x0

∣∣∣∣2 ≤ α} is non-empty, which ensures that there exists
a convex set of minimizers.

To apply the preceding theory, the �rst step consists in splitting the mini-
mization of |||∇x|||1 and the projection onto K. In this paragraph we present
an e�cient solution for the TV − l2 problem. An alternative will be presented
in the next section.

Problem (12) can be rewritten as :

min |||y|||1
subject to x ∈ K

y ∈ Rn × Rn, y = ∇x

(13)

This problem �ts the framework (4) by choosing : f1(x) = χK(x), f2(y) =
|||y|||1, B = ∇, C = −I and b = 0.

The augmented Lagrangian functional associated to this problem is de�ned
by :

L(x, y, λ) = |||y|||1 +〈λ,∇x− y〉+
β

2
||∇x− y||2 + χK(x)

The main di�culty in order to apply the ADM method consists in solving steps
1 and 2 in Algorithm 1. Let us show that it can be achieved e�ciently.

Step 1 amounts to solving :

Find xk+1 ∈ arg min 〈λk,∇x− yk〉+ β
2

∣∣∣∣∇x− yk∣∣∣∣2
subject to x ∈ Rn,

∣∣∣∣Hx− x0
∣∣∣∣2 ≤ α

This is a constrained least square problem. Its solution can be computed e�-
ciently if the singular value decompositions of the matrices H and ∇ are given
explicitly [30, p.580]. This is the case for our problem. We describe such an al-
gorithm in the appendix. In large dimensions, the overall cost of this algorithm
is dominated by two DFTs.
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Step 2 amounts to solving

yk+1 ∈ arg min |||y|||1−〈λk, y〉+ β
2

∣∣∣∣y −∇xk+1
∣∣∣∣2

subject to y ∈ Rn × Rn

⇔ yk+1 = arg min |||y|||1 +β
2

∣∣∣∣∣∣y − (∇xk+1 + λk

β

2)∣∣∣∣∣∣2
subject to y ∈ Rn × Rn

⇔ yk+1 = shrink 1
β

(
∇xk+1 +

λk

β

)
.

We see that both Steps 1 and 2 can be computed explicitly : the ADM is
thus implementable.

4.2 TV − lp super-resolution, inpainting and deconvolution

problems

Image deconvolution, inpainting and super-resolution are prototypical image
reconstruction problems. In this paper we focus on the case where a single image
has been convoluted and su�ered some loss of information. This image formation
model can be written as :

x0 = SHx+ b (14)

where
� H is a spatially invariant convolution (or more generally a circulant ma-
trix).

� b is an additive white noise. We will focus only on the cases of Laplacian,
Gaussian and uniform noise in this paper. We assume that the noise dis-
tribution is the same for every pixel of the image domain. This hypothesis
is not absolutely necessary but simpli�es the notations.

� S : Rn → Rm is a rectangular matrix with a special structure. We assume

that S =


S1

S2

...
Sm

 and that the lines Sk of S satisfy Sk = skei(k),j(k) with

sk ∈ R. This structure, despite its simplicity, covers important applica-
tions :
� Vignetting and inpainting. If S is square and diagonal, it can re-
present a variable lighting of the scene : the intensity of every pixel k
is multiplied by a factor sk ∈ R. This e�ect often occurs both in tradi-
tional and digital photography and is called vignetting. If we set sk = 0
for k ∈ K and sk = 1 on the complementary of K then the degradation
(14) represents a loss of information on K. This equation can be used
to model the degradation occurring in inpainting problems.

� Sub-sampling. Let x ∈ Rn, suppose that n1 and n2 are multiple of
s ∈ N. Let i ∈ {1, 2, ..., n1

s } and j ∈ {1, 2, ...,
n2
s }. Now let us de�ne S

as :
(Sx)(i, j) = x(i · s, j · s).

This mapping can be represented as a matrix S with the structure
described earlier. It is a sub-sampling by a factor s in the vertical and
horizontal directions.

9



� Clearly, we can also consider cases where vignetting, sub-sampling and
loss of information occur all together.

The problem of image reconstruction we tackle in this paper consists in
recovering x from x0 knowing, S, H and the statistical properties of the noise.
The variational formulation of this problem is the following :

Find x∗ ∈ arg min |||∇x|||1
subject to x ∈ Rn,

∣∣∣∣SHx− x0
∣∣∣∣
p
≤ α

(15)

In the case of impulsive or Laplacian noise p should be equal to one [49], while it
should be equal to 2 for Gaussian noise and to ∞ for uniform noise. We assume
that the set {x ∈ Rn,

∣∣∣∣SHx− x0
∣∣∣∣
p
≤ α} is non-empty. This is a su�cient

condition to ensure existence of a solution.
Now, let us show how the ADM method can be applied to solve problem

(15). For this problem, solving Step 1 of Algorithm 1 is too complicated if we
use the same strategy as in (13). We use two equality constraints instead of
using just one. Problem (15) can be rewritten as :

Find x∗ ∈ arg min |||w|||1
subject to x ∈ Rn

w ∈ Rn × Rn, w = ∇x
z ∈ Rn, z = Hx,

∣∣∣∣Sz − x0
∣∣∣∣
p
≤ α

(16)

Let Z = {z ∈ Rn,
∣∣∣∣Sz − x0

∣∣∣∣
p
≤ α}. This problem can be casted in the fra-

mework (4) using the following notations : y =
(
w
z

)
, f1(x) = 0, f2(y) =

|||w|||1 +χZ(z), B =
[
∇
H

]
, C =

[
−I
−I

]
and b = 0.

The augmented Lagrangian of this problem writes :

L(x, y, λ) = f2(y) + 〈λ,Bx− y〉+
β

2
||Bx− y||2 .

Step 1 amounts to solving :

Find xk+1 ∈ arg min 〈λk, Bx− yk〉+ β
2

∣∣∣∣Bx− yk∣∣∣∣2
subject to x ∈ Rn

xk is thus the solution of a linear system which can be diagionalized by the DFT.
This makes no di�culty and allows to avoid the technicalities of the previous
example due to the constrained least square problem.

Step 2 amounts to solving :

Find yk+1 ∈ arg min f2(y) + 〈λk, Bxk+1 − y〉+ β
2

∣∣∣∣y −Bxk+1
∣∣∣∣2

subject to y ∈ Rn × Rn × Rn
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The solution of this problem is unique due to strong convexity of ||·||2 and we
can continue as follows :

yk+1 = arg min f2(y) + 〈λk, Bxk+1 − y〉+ β
2

∣∣∣∣y −Bxk+1
∣∣∣∣2

subject to y ∈ Rn × Rn × Rn

= arg min f2(y) + β
2

∣∣∣∣∣∣y − (Bxk+1 + λk

β

)∣∣∣∣∣∣2
subject to y ∈ Rn × Rn × Rn

= proxf2/β

(
Bxk+1 + λk

β

)
.

Then we can write

(
wk

zk

)
= Bxk+1 + λk

β and decompose proxf2/β

(
·
)

as :

proxf2/β

(
w
z

)
=
(

prox|||·|||1 /β
(
w
)

proxχK/β
(
z
) )

We already proved that prox|||·|||1 /β
(
w
)

= shrink1/β (w). Now let us focus on

proxχK/β
(
z
)

= ΠK(z)

= arg min 1
2 ||z

′ − z||2
subject to z′ ∈ Rn∣∣∣∣Sz′ − x0

∣∣∣∣
p
≤ α

Due to the structure of S, this operation is a projection onto a weighted lp-ball.
This can be computed explicitly or very accurately. We refer the reader to the
appendix of [64] for a detailed implementation.

4.3 Image cartoon+texture decomposition problems

Despite a wide amount of publications related to total variation reconstruc-
tion problems, the practical results obtained using this prior on natural images
are usually not as good as those obtained using harmonic analysis transforms
for instance. One possible reason is that natural images do not seem to be of
bounded total variation [32] as they contain details at very small scales.

To our belief, one of the main interests of total variation is that it allows
to simplify the image content by removing erratic information. This idea was
formalized by Y. Meyer who proposed new total variation based models in his
book [45]. There he describes variational methods which aim is to decompose
an image x0 into the sum of two components : a �cartoon� u and a �texture�
v. This kind of decomposition has a large number of potential applications :
image segmentation, texture analysis, separate compression or inpainting of the
cartoon and the textured parts... The basic idea of Y. Meyer is to de�ne two
functionals f1 and f2 and to look for the solution of :

u∗ = arg min f1(u) + f2(v)
subject to u ∈ Rn, v ∈ Rn

x0 = u+ v

This model should lead to a good decomposition if the two following conditions
are ful�lled simultaneously :
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� f1(v)� f2(v) if v is an �oscillating� component.
� f1(u)� f2(u) if u is a �cartoon� component.

In his work [45], Y. Meyer proposes to choose f1(u) = TV (u) and f2(v) = ||v||G
where ||·||G is a norm on the negative Sobolev space W−1,∞

0 . In the discrete
setting, this norm is simply the dual of the total variation. One of the reasons
for the choice of this norm is a nice result of functional analysis (see [45, 1] for
more precise results and de�nitions) :

If vn ⇀ 0 then ||vn||G → 0,

where ⇀ denotes the weak convergence. This indicates that an oscillating func-
tion has a low G-norm.

From a numerical point of view, this model was investigated in [55, 2, 28,
64]. However, we believe that the numerical schemes used in order to solve
decomposition problems still lack precision or e�ciency (see e.g. [65]).

After Meyer's model was proposed, a number of variants and new decom-
position models were proposed (see e.g. [56, 59, 4]). Recently the dual norms
were used not only for image decomposition but also for image reconstruction
[14, 53, 52]. These kinds of techniques can be of interest when the noise dis-
tribution is not white or when only the �cartoon� part of the image should be
retrieved. The numerical experiments led in [52] also show that they allow to
capture white noise better than the l2-norm for geometric images.

Our aim in this paragraph is to show that the ADM method allows to solve
these kinds of problems e�ciently. We investigate only the total variation based
models. The ADM can clearly be successful for other related problems and we
hope the given numerical results will encourage people using this technique.

4.3.1 Dual norm and its computation

Let us describe the problem under consideration. We refer the reader to [3]
for more detailed comments. Let

X = {x ∈ Rn,
∑
i,j

x(i, j) = 0}.

We de�ne the following norm on X :

||x||−1,p = min |||g|||p
subject to g = (g1, g2) ∈ Rn × Rn,divg = x

This is possible since div is surjective from Rn × Rn to X. In the case p = ∞,
this norm corresponds to the discrete version of Meyer's G-norm [2]. In the
case p = 2, it corresponds to the discrete H−1-norm proposed in [56]. The case
p = 1 was already investigated numerically in [64] and led to good practical
decomposition results. In the continuous setting, this norm would be adapted
to the Sobolev space of negative index W−1,1

0 .
The computation of such dual norms is not straightforward. However, it is

important to have an estimate in order to assess - e.g. - the empirical convergence
rates of iterative algorithms. A dichotomic solution is proposed in [3], but the
authors report that the computation is not accurate. Computation of such dual
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norms can be achieved e�ciently using the ADM. It su�ces to remark that :

||x||−1,p = min |||g|||p
subject to g ∈ Rn × Rn, g = y

y ∈ Rn × Rn,divy = x

This problem is a simple instance of (4). At each iteration, the proximal operator
of lp-norms must be computed, which can be done explicitly for p ∈ {1, 2,∞}.
We do not detail this approach further and turn to the more demanding recons-
truction problem.

4.3.2 Reconstruction problem

The class of problems we consider in this paper write :

Find x∗ ∈ arg min |||∇x|||1
subject to

∣∣∣∣SHx− x0
∣∣∣∣
−1,p

≤ α
(17)

This problem is clearly more complicated than the previous ones and applying
the ADM method is tricky. The �rst remark in order to apply it consists in
rewriting (17) as :

arg min |||∇x|||1
subject to x ∈ Rn

g ∈ G,divg = SHx− x0,

(18)

where G = {g ∈ Rm × Rm, |||g|||p ≤ α}. This is possible since all terms in the
problem are convex. Problem (18) can be tackled directly by the ADM method.
However the subproblems 1 and 2 in this case are still di�cult convex problems
and can only be solved by iterative methods. In order to make these subproblems
easier, we need to introduce other linear equality constraints. Problem (18) is
also equivalent to :

arg min |||w|||1
subject to x ∈ Rn

y ∈ Rm × Rm,divy = Sz − x0

g ∈ G, g = y
w ∈ Rn × Rn, w = ∇x
z ∈ Rn, z = Hx

(19)

By setting : f1(x, y) = 0, f2(g, w, z) = |||w|||1 + χG(g) and

A =


∇ 0
H 0
0 div
0 I

 B =


0 −I 0
0 0 −I
0 0 −S
−I 0 0

 and b =


0
0
−x0

0

 ,

problem (19) rewrites :

arg min f1(x, y) + f2(g, w, z)
subject to A(x, y) +B(g, w, z) = b

13



This is clearly an instance of the class of problems (4). The introduction of 4
equality constraints is the most straightforward way to ensure that both sub-
problems 1 and 2 can be solved exactly. The augmented Lagrangian associated
to problem (19) writes :

L((x, y), (g, w, z), λ) = f2(g, w, z) + 〈λ,A(x, y) +B(g, w, z)− b〉

+
β

2
||A(x, y) +B(g, w, z)− b||2 ,

where λ = (λ1, λ2, λ3, λ4). Now let us show that the ADM method can be used
e�ciently for solving (19).

Step 1 amounts to minimizing L((x, y), (gk, wk, zk), λk) w.r.t (x, y). The so-
lution (xk+1, yk+1) satis�es :

βATA(xk+1, yk+1) = −AT
(
λ+ β(B(gk, wk, zk)− b)

)
, (20)

where

ATA =
[
∇T∇+HTH 0

0 ∇∇T + I

]
.

The resolution of (20) can be done in O(n log(n)) operations using the DFT.

Step2 amounts to minimizing L((xk+1, yk+1), (g, w, z), λk) w.r.t (g, w, z). This
writes :

(gk+1, wk+1, zk+1) ∈ arg min |||w|||1 + 〈λk1 ,∇xk+1 − w〉+ β
2

∣∣∣∣∇xk+1 − w
∣∣∣∣2

+χG(g) + 〈λk4 , yk+1 − g〉+ β
2

∣∣∣∣yk+1 − g
∣∣∣∣2

+〈λk2 , Hxk+1 − z〉+ β
2

∣∣∣∣Hxk+1 − z
∣∣∣∣2

+〈λk3 ,divyk+1 − Sz + x0〉+ β
2

∣∣∣∣divyk+1 − Sz + x0
∣∣∣∣2

subject to w ∈ Rn × Rn
g ∈ Rm × Rm
z ∈ Rn

To solve this problem we �rst remark that the variables w, g and z are not
coupled. Using the same strategy as in the previous examples it is easy to get :

wk+1 = shrink1/β

(
∇xk+1 +

λk1
β

)
and

gk+1 = ΠG

(
yk+1 +

λk4
β

)
.

Finally zk+1 is the solution of the following diagonal linear system :

β(I + STS)zk+1 = λk2 + βHxk+1 + ST
(
λk3 + βdivyk+1 + βx0

)
.

We see that every step of the ADM has an explicit solution.
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4.4 Metric change

We showed that every step of the ADM method could be performed exactly
for various imaging problems of interest. In practice, we observed that it is
important to re�ne the ADM scheme in order to get better performances. There
are two natural ways of improving the performances of the scheme : changing
the metric and using an adaptive "step-size"

{
βk
}
instead of a constant β. We

already described the idea of adjusting β dynamically in Section 3.4.
We only describe the idea of using a di�erent metric for the TV-lp problem

considered in Section 4.2. The other examples can be generalized easily. The
TV-lp problem is formulated as in (16). By choosing two symmetric de�nite
positive matrices W∇ : R2n → R2n and WH : Rn → Rn, problem (16) can be
reformulated as :

Find x∗ ∈ arg min |||w|||1
subject to x ∈ Rn

w ∈ Rn × Rn,W∇(w −∇x) = 0
z ∈ Rn,WH(z −Hx) = 0,

∣∣∣∣Sz − x0
∣∣∣∣
p
≤ α

(21)

The augmented Lagrangian associated to this problem is de�ned by :

L(x,w, z) = |||w|||1 +〈λ1,W∇(w −∇x)〉+
β

2
||W∇(w −∇x)||22

+〈λ2,WH(z −Hx)〉+
β

2
||WH(z −Hx)||22 .

(22)

We can de�ne a new scalar product 〈·, ·〉W on R2n × R2n :

〈(w1, z1), (w2, z2)〉W := 〈(w1, z1), (W∇w2,WHz2)〉W

and a norm on R2n × R2n : ||x||W :=
√
〈x, x〉W . Doing so and using the same

notations as in Section 4.2, the augmented Lagrangian (22) rewrites :

L(x, y) = |||w|||1 +〈λ,Bx+ Cy − b〉W +
β

2
||Bx+ Cy − b||2W . (23)

The ADM method can be shown to converge in any metric and the possibility
of modifying WH and W∇ can thus lead to better numerical performances [31].
In this work, we simply choose :

WH = δI and W∇ = I (24)

where δ > 0. A good value of δ can be found by the trial and error approach, by
comparing the convergence behaviors. We found out that the �optimal� value
of δ is independent of the images, but depends on the image restoration and
reconstruction problem.

5 Numerical experiments

We divide the numerical section into two parts. In the �rst one, we study
the e�ectiveness of the algorithms. In the second one, we show some numerical
results of the image restoration and reconstruction models discussed in Section
4.
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5.1 Convergence behavior

5.1.1 Comparisons on TV-l2

The �rst experiment consists in comparing three approaches on the TV-l2

deconvolution problem :
� The ADM approach based on the secular equation in Section 4.1.
� The ADM approach using the splitting of the gradient and the convolution
operator in Section 4.2.

� The Nesterov approach described in [64], which can be regarded as an
improvement of the gradient descent method. This technique can be used
only when the projection onto the constraints set can be done explicitly.

The experimental protocol is as follows. We convolve the 512×512 Barbara
image with a uniform kernel of size 5×5. We add Gaussian noise to the image.
We run each method and compute the di�erent characteristics of the methods.

According to Figure 1, we see that the ADM approach using the secular
equation is the most e�cient. We use the SNR as a comparison criterion as one
of the interests of this method is that it leads to visually satisfactory solutions
very fast. In this example, the ADM method based on the secular equation gives
stable solutions in around 1 second on a laptop for a 512×512 image.

5.1.2 Comparisons on TV-l1

In the following tests, we use the TV-l1 deconvolution problem (deconvolu-
tion with impulse noise).

Dynamic β We �rst intend to show that the variable adjustment of β propo-
sed in Section 3.4 allows to pick values βk which are sub-optimal, but reasonable
and automatic. In �gure (5.1.2), we see that a near optimal, �xed value of β
would be 1000 as with this value, the algorithm converges very quickly to a high
SNR. In this example, the variable strategy described in (3.4) �rst leads to a
value of βk close to 100 and increases regularly up to 400. In practice, it would
thus be better to replace these values of βk with a �xed β = 1000, but using the
described strategy, the tuning is done automatically and leads to satisfactory
results in all cases we tested. Therefore, this technique should be adopted as it
has a very low cost at each iteration.

Metric change In this experiment, we show that changing the metric, as des-
cribed in paragraph Section 4.4 is crucial in order to get a good convergence.
We show it through the TV-l1 deconvolution problem with impulse noise. We
use the variable strategy described in Section 3.4 for choosing β. Then we test
di�erent values of δ in the convergence speed. Figure (5.1.2) shows the conver-
gence behavior of the algorithm for various choices of δ. For instance, if the user
chooses δ = 1, the convergence is very slow (at least 104 iterations are required
to get a visually stable solution). For δ = 100 (which is the experimental opti-
mal value of δ), a �good� solution is obtained in no more than 100 iterations.
This is comparable to state-of-the-art results for the unconstrained version of
the TV-l1 problem.
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Fig. 1 � From top to bottom : SNR w.r.t. iterations ; a zoom on SNR w.r.t.
iterations ; SNR w.r.t. computing times ; and total variation w.r.t. iterations.
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Fig. 2 � SNR w.r.t. iterations for di�erent �xed values of β and a dynamic
choice of β as described in Section 3.4.

Fig. 3 � SNR w.r.t. iterations for di�erent �xed values of δ.
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Fig. 4 � CPU time in seconds in order to get 95% of the maximum SNR w.r.t.
number of pixels.

Computing times with respect to problem sizes This experiment is
designed in order to show experimentally that the ADM method scales well with
the problem dimensions. In the test, we proceed as follows. We convolve images
of di�erent sizes with a uniform kernel of size 5×5. We use the Matlab function
imnoise with 30% of the pixels corrupted (i.e., we set randomly 30% of the pixels
to be 0 or 255). We run each method and compute the time necessary to get a
solution which has a SNR higher than 95% of the highest SNR obtainable with
the method. According to these curves, the computing times seem to increase
almost linearly with the problem size. Using the theoretical iteration complexity,
we could expect an increase as O(n log n).

19



Fig. 5 � Computing the dual norm w.r.t. number of iterations.

5.1.3 Dual norm computation

In this experiment, we show in Figure 5 how fast the ADM method converges
in order to compute the dual norms introduced in Section 4.3.1. Here we use
the Barbara image and compute its dual norm. No more than 100 iterations are
necessary in order to obtain a 10−2 precision (around 5 seconds on a laptop).
The behavior for the W−1,∞-norm is not as satisfactory in the �rst iterations
as for the other norms. However, the computational results are still acceptable
by using the ADM method.

5.2 Image Restoration and Reconstruction Results

In this subsection, we employ the ADM method to illustrate the quality
of restored and reconstructed images in the imaging problems stated in Sec-
tion 4. Figure 6 shows an example of image upsampling using the total varia-
tion. Figure 7 shows an example of deconvolution with impulse noise. Figure 8
shows some examples of image texture+cartoon decomposition. The �ngerprint
example shows that the method permits to remove the epidermal ridges inde-
pendently of the light intensity. These three examples demonstrate the ADM
method can restore, reconstruct and decompose images quite e�ectively and
e�ciently.

6 Conclusion

In this paper, we showed that the ADM method based on an augmented
Lagrangian formulation is an e�cient tool for solving many constrained TV-
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Fig. 6 � Image upsampling experiment. From left to right and top to bottom :
original image (1024x1024), image convoluted, downsampled by 4 in each di-
rections with an additive Gaussian noise, nearest neighbor interpolation (14.5
dB), bilinear interpolation (SNR 15.4dB), sinus cardinal interpolation (19 dB),
TV-l2 (SNR 19.7dB, 20 seconds).
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Fig. 7 � Image deconvolution with 50% impulse noise. (top-left) : original image
(460x360), (top-right) : image convoluted by a 10x10 uniform kernel, (bottom-
left) : blurred + noisy image, (bottom-right) : TV-l1 (SNR=19.5dB, 15 seconds).
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Fig. 8 � Examples of image decomposition with the TV −W−1,1 model.
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based image restoration and reconstruction problems (denoising, deconvolu-
tion, super-resolution, inpainting, texture+cartoon decompositions). The me-
thod scales well with the problems sizes and allows to get satisfactory solutions
in times comparable to 1 second for 512×512 pixels images.

From a theoretical point of view, the method is known to be convergent.
However, the convergence rate can be arbitrarily low. The behaviour in the �rst
iterations still seems to lack theoretical foundations and some future work will
consist in trying to get a better understanding of this feature. It also seems
important to �nd an automatic way to choose the metric since this modi�cation
can a�ect the convergence behavior a lot.

7 Appendix

7.1 Solving the constrained least squares problem

We describe how to solve the following constrained least square problem :

Find x̄ ∈ arg min 〈λ,∇x− y〉+ β
2 ||∇x− y||

2

subject to x ∈ Rn∣∣∣∣Hx− x0
∣∣∣∣2 ≤ α

(25)

Similar ideas are proposed in [30, p.580].
First, note that there exists a Lagrange multiplier δ̄ ∈ [0,+∞[ such that the

solution of (25) satis�es :

x̄ ∈ arg min 〈∇Tλ, x〉+ β
2 ||∇x− y||

2 + δ̄
∣∣∣∣Hx− x0

∣∣∣∣2
subject to x ∈ Rn

The solution of this problem is characterized by the linear system :

(β∇T∇+ δ̄HTH)x̄ = −∇Tλ+ β∇T y + δ̄HTx0. (26)

We assume that the blur H is spatially invariant and periodic boundary condi-
tions are used for the discrete di�erential operator. Thus the above matrices are
diagonalized by the Fourier transform : H = F−1DHF , ∇T∇ = F−1D∆F and
HTH = F−1DHHF where DH , D∆ and DHH are diagonal matrices. Moreover,
the diagonal elements of DHH and D∆ are positive. Therefore, we obtain

(β∇T∇+ δ̄HTH) = F−1(βD∆ + δ̄DHH)F .

The main issue is to �nd the Lagrange parameter δ̄. We denote b = − 1
β∇

Tλ+
∇T y and c = HTx0. The solution of (26) is characterized by :

(βD∆ + δ̄DHH)ˆ̄x = βb̂+ δ̄ĉ.

where x̂ = Fx.
Let I∆ = {i,D∆(i, i) = 0}, IH = {i,DHH(i, i) = 0} and I∆,H = I∆ e IH .

In order to �nd δ̄, we need to distinguish two cases. Either the constraint in
equation (25) is inactive and δ̄ = 0, either it is active and δ̄ > 0. Let us detail
the two cases :
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Case δ̄ = 0 In this case, the problem simpli�es to �nding :

arg min
∣∣∣∣Hx− x0

∣∣∣∣2
subject to x ∈ Rn

F−1D∆Fx = b

Denoting x̂ = Fx and as the Fourier transform is an isometry, this can be
rewritten :

arg min ||DH x̂− x̂0||2
subject to x̂ ∈ Cn

D∆x̂ = b̂

One solution of this problem is given by :

x̂(i) =


0 if i ∈ IH,∆

x̂0

DH(i,i) if i ∈ I∆ \ IH
b̂

D∆(i,i) if i ∈ Ic∆
(27)

In the case δ̄ = 0, as ||Hx− x0||2 = ||DH x̂− x̂0||2, we get that :

||Hx̄− x0||2 =
∑

i∈IH,∆

|x̂0(i)|2 +
∑
i∈Ic∆

∣∣∣∣∣DH(i, i)b̂
D∆(i, i)

− x̂0

∣∣∣∣∣
2

.

Case δ̄ > 0 In that case, the problem consists in �nding δ̄. Let xδ be any
element satisfying :

(βD∆ + δDHH)x̂δ = βb̂+ δĉ.

We are looking for δ̄ such that :

Ψ(δ̄) = ||DH x̂δ̄ − x̂0||2 = α. (28)

Ψ can be rewritten :

Ψ(δ) =
∑
i∈I0

(
|x̂0(i)|2

)
+
∑
i∈Ic0

∣∣∣∣∣ DH(i, i)(βb̂(i) + δĉ(i))
βD∆(i, i) + δDHH(i, i)

− x̂0(i)

∣∣∣∣∣
2
 .

where I0 = {i,D∆(i, i) = 0 and DHH(i, i) = 0}. Ψ can be shown to be
twice di�erentiable, convex and decreasing. Equation (28) can thus be
solved using any root �nding method. We propose a Newton technique as
follows :

We settled everything to design an algorithm in order to solve Step 1 in
Section 4.1. It writes as follows :
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Algorithm 2: Solving the constrained least squares problem (4.1)

Input: λ ∈ Rn, y ∈ Rn × Rn ;
β ∈ R+, α ∈ R∗+ ;
DH ∈ Rn and D∆ ∈ Rn (the diagonal elements) ;
A stopping criterion ε (10−15 in our experiments).

Output: x ∈ Rn a solution of (25)

begin

Set b = − 1
β
∇Tλ−∇T y and c = HTx0 ;

Compute b̂ and ĉ ;

Compute α0 =
∑

i∈IH,∆

|x̂0(i)|2 +
∑
i∈Ic∆

∣∣∣∣∣DH(i, i)b̂
D∆(i, i)

− x̂0

∣∣∣∣∣
2

;

if α0 ≤ α then

Set x̂ according to equation (27) ;
Compute x = F−1x̂.

else

Use Newton method in order to compute δ̄. ;
Set δ ≤ δ̄ (e.g. δ = 0 or an approximation) ;
while |Ψ(δ)− α| ≥ ε do

δ ← δ + α−Ψ(δ)
Ψ′(α) ;

end

Set x̂(Ic0) =
(βb̂(Ic0) + δĉ(Ic0))

(βD∆ + δDHH)(Ic0)
;

Set x̂(I0) = 0 ;
Set x = F−1x̂ ;

end

end

In practice, if the initial value of δ is taken as the value at the previous
iteration, no more than 4 Newton iterations are necessary to get a very high
precision.
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