A PROXIMAL METHOD FOR INVERSE PROBLEMS IN IMAGE PROCESSING.
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ABSTRACT

In this paper, we present a new algorithm to solve some in-
verse problems coming from the field of image processing.
The models we study consist in minimizing a regularizing,
convex criterion under a convex and compact set. The main
idea of our scheme consists in solving the underlying varia-
tional inequality with a proximal method rather than the ini-
tial convex problem. Using recent results of A. Nemirovski
[13], we show that the scheme converges at least as O (%)
(where k is the iteration counter). This is in some sense an
optimal rate of convergence. Finally, we compare this ap-
proach to some others on a problem of image cartoon-+texture
decomposition.

1. INTRODUCTION

Recently, the interest for convex problems in signal process-
ing increased a lot. Several reasons might explain that trend.
One of them is that new theorems (like those related to com-
pressed sensing [4]) provide a very nice theory to support
their use. Furthermore, some impressive results were ob-
tained in image reconstruction, using combinations of har-
monic and convex analysis (see e.g. [9]). Finally, it seems
natural to optimize some criteria in order to carry out a given
task. Unfortunately, very few optimization problems can be
solved (globally) in reasonable computing times. This is not
the case for convex problems: they can be considered as solv-
able under very mild assumptions. Indeed, the solutions of
most convex problems can be obtained with an accuracy € in

ep
lem’s dimension and p and g are positive numbers [2].

All those reasons make convex problems very attractive
in image processing. However, due to the huge dimensions
involved, solving those problems fast and accurately is still
critical and new effective methods are still required for many
applications. In this paper, we provide a first order scheme
which has many interesting theoretical features. One of them
is its “optimality”” which will be described later. The scheme,
known as extra-gradient method, actually dates back from
1976 [10] and seems to have been ignored until now. We
show its efficiency on a problem of image cartoon+texture
decomposition.

less than O <ﬂ> arithmetic operations, where 7 is the prob-

1.1 Notations

The following notations will be used throughout the paper.
X and Y denote subsets of R” and R™ respectively and
Z =X x Y. Those sets are endowed with the usual scalar

products (-,-)x, (-,-)y and (-,-)z respectively. || -||, denotes
the standard /”-norm on either spaces. Let A be a linear trans-
form. Its complex conjugate (or transpose in the real case) is
denoted A*. |||A]|| = max (||Ax||») denotes the highest

% |xll2<1
singular value of A. Finally IT;(z°) = argmin (Ilz— 2 2) is
2€Z

the Euclidean projector on Z.

1.2 Problem statement

In this paper, we consider the following class of problems:

min (¥(x)) (H

xeX

where X is a convex, compact subset of R”, W is a convex
function which can be written under a conjugate form:

¥(x) = max ((Ax,y)y — (y)) @

yey

where Y is a convex, compact subset of R”,; A: X — Y is a
linear transform, (-,-)y is the usual scalar product and ¢ is a
closed convex function with Lipschitz gradient:

IVO(y1) =V (y2)ll2 < Lollyr —y2ll2, V(y1,y2) €Y x Y-3)
(
We further make the strong assumption that we can compute
projections on X and Y exactly.

1.3 Applications

This class of problems contains a number of interesting ap-
plications. Let us give some examples:

1. If we set A = V (the discrete gradient), ¢ =0,Y = {y €
R™, ||yl < 1}, then W(x) corresponds to the discrete
total variation. Giving different definitions to the set X
allows to achieve tasks like denoising of Gaussian, uni-
form or impulse noise, compression noise reduction, tex-
ture+geometry decompositions,... A detailed review of
those applications is given in [15].

2. If we change Y to an 12 or [!-ball, then problem (1) be-
comes a Tikhonov regularization or an infinite-Laplacian
problem. These are interesting when the signals to be
restored are smooth or have bounded derivatives.

3. If we keep the same setting as previously, only chang-
ing A to be a wavelet transform, then W corresponds to a
Besov semi-norm [6] which is known as a good regular-
izer.



4. This formalism also allows to do compressed sensing in
a particular case. Let B be a frame (i.e. a linear mapping
such that cHxH% < ||Bx||% < C|\x||%, Vx € R" with C >
¢>0). Then the set X = {x € R"||Bx —)°||3 < a}
is bounded and projectors can be computed using linear
algebra. Thus we can solve problems of the form:

min_ (]|x|]1) or min
x|[Bx—y0|f<a x||Bx—y0|[5<a

(Ivall) @

where y? is the datum to be processed. Those are a par-
ticular cases of the “compressed sensing” problem.

5. Until now we considered only the case ¢ = 0. For
instance, if we choose ¢(y) = 1[[y[|3 and ¥ = {y €
R™ ||y|| < 1}, then W becomes the Huber regulariza-
tion of the /'-norm, which is used in many applications.

1.4 Algorithm features

In this paper, we show that the extra-gradient method can be
used successfully to solve the above cited problems. This
scheme was proposed as early as 1976 in [10] and used
broadly since then in different areas. Strangely, it seems that
it has never been used yet in image processing, while it is
considered as one of the most efficient first order methods
[3]. Recently, A. Nemirovski studied this scheme from a the-
oretical point of view and got many interesting theoretical
results including convergence rates [13]. Let us summarize
some of them:

e It converges to the set of minimizers [10].

e It converges with a rate of convergence better than
W(xk) —W(x*) < O(1)% where {x*} are the iterates, x*
is a solution of the problem [13] and 7 is the problem’s
dimension. Furthermore, one can provide a bound on the
term O(1).

e Its rate of convergence is “optimal”, in the sense that no
first order method can converge faster (up to a multiplica-
tive factor) on the class of problems considered [13].

e It requires only one parameter: the number of iterations
or the precision.

e Ateach iteration it is possible to evaluate the duality gap.
Thus the scheme has a reliable stopping condition.

Those features are quite unusual in the image processing lit-
erature.

2. ALGORITHM’S DESCRIPTION

The idea of the proposed scheme consists in solving the vari-
ational inequality associated with (1) rather than tackling its
minimization directly.

Let us show how (1) can be rewritten as a variational in-
equality. The fact that X and Y are bounded and that ¢ is
convex is sufficient to ensure the following central equality

(seee.g. [7, p.176]):

mif | max ((Ax,y)y —9(y)) ®)
¥(x)

= max aréi}r(l(@,z‘\*)’)x)—‘l)(ﬂ : (©6)
P (y)

Moreover, the two problems (5) and (6) have the same set
of solutions. Note that the solution of (1) is not unique in
general. x is what we will call a primal variable and y is a
dual variable. The scheme we propose can be seen as primal-
dual in the sense that both x and y are updated recursively and
will converge to the set of minimizers.

Let x* and y* denote a primal and a dual solution respec-
tively. The optimality condition for x* writes (see e.g. [7,

p.36]):

Ay, x—x")x >0, Vx e X. (7
The optimality condition for y* writes:
(Ax=Vo(y"),y—y")y <0, ¥y €Y. (8)

Now, let us define the following mapping:

F: XxY — R'xR™

i=(y) {Axf%(y)} ©

In view of (7) and (8), finding a solution of (5) is equivalent
to solving the following problem:

find 2" = (x*,y") s.t. (F(z"),z—2")z>0,VzeZ, (10)

and this is exactly what we have been naming variational
inequality associated with (1).

There exists a huge body of literature that deals with
methods for solving variational inequalities, as they are more
general than convex problems (see e.g. [8] for a recent refer-
ence). In this paper, we concentrate only on a simple version
of the extra-gradient method. This method can be used as
soon as F is a monotonous and Lipschitz operator [10].

Let us show that those conditions are satisfied. Mono-
tonicity is simply due to the fact that ¢ is convex. Thus:

(F(z1) —F(z2),21—22)2z >0, V(z1,22) € ZxZ  (11)
Moreover F is Lipschitz continuous:

[[F(z1) = F(z2)|]2 < Ll|z1 — 22[]2, (12)

witth,/2(|||A|\|2+Lé) and L < |[|A]|| in the case Ly = 0.

Indeed, denoting z; = (x1,y1) and z2 = (x2,y2), we have:

IF(z1) = F(22)|13

|A*y1 — A%y |5 + [JAx) — Axz + VO (y1) — VO (32)|[3
APy = y2l15 + 2l lx1 — x21[3) +2L5 | y1 — y2ll3
I[IAI[* +2LF)[lz1 — 22 3.

IA A



Thus, all the requirements are satisfied in order to use an
extra-gradient method.

This method writes simply as follows:

Algorithm 1 Extra-gradient method
Choose a number of iterations N.
Set a point z° = (x%,y%) (as close as possible to z¥).
fork=1to N do
WA =TI = yF (&)
2 =TIz (" = yF (wh))
end for

and zF converges to the set of minimizers as long as y < %
[10] where L is defined in (12). In [13], the author shows an
additional result:

Proposition 1 (Convergence rate)

1 k
1 =k k . : .
Let y= 7L and 7 = X 2 lz . This sequence satisfies:
P

< V2Ldiam(Z)?

YE) -YE) < (13)
where diam(Z) = max L 2211L).
¢ ( ) (21712)eZ><Z(HZ ¢ ||2)

This convergence rate is neatly sublinear and might look bad.
However, we would like to point out that we are considering
non differentiable and non elliptic problems, for which there
can exist no better rates. Result (13) is somehow optimal: A.
Nemirovski [12] shows that some instances of (1) cannot be
solved faster than O (%) using only the mapping F. So that
any improvements of this method will only result in lowering
the multiplicative constants of the convergence rates, but not
their asymptotic behavior.

Finally, let us precise that this method can be modified in
order to give a reliable stopping criteria. In view of equality
(6), we have:

Vix,y) €XxY, Wi(y) W (") =¥x") <¥(x). (14)
Thus the quantity:
Alx,y) =W (x) =¥ (y) (15)

satisfies A(x,y) > W(x) — ¥ (x*). This quantity is called du-
ality gap. It is a reliable measure of convergence. It is thus
interesting to modify scheme (1) as follows:

Algorithm 2 Extra-gradient method (with stopping criterion)

Choose a precision €.
Set a point z° = (x%,y%) (as close as possible to z*).
while A(x*, %) > & do
W= T (e yr ()
=T (! —yF(Wh))
end while

Note that in view of Proposition 1, it might seem in-
teresting to change the condition in the while statement by

A()‘H‘, )7]‘) > ¢. However, we observed that z* converged less
rapidly than z¥ on the tested problems.

3. NUMERICAL RESULTS

In this section we provide some preliminary comparisons of
the scheme’s efficiency. We consider a problem of image car-
toon+texture decomposition proposed initially in [11]. The
main idea is to decompose the image into a cartoon part
which has a low total variation (i.e. has little oscillations)
and a texture part which has a low “G-norm”. The G-norm
of an oscillatory function is low. This model should thus sep-
arate piecewise smooth and oscillatory patterns.

3.1 The problem considered

Let x° denote the image to be decomposed. The problem of
decomposition consists in solving:

min (HV(xO—div(x))Hl), (16)

x| |x] [ <0t

where V and div are the discrete gradient and divergence.
This model was proposed in [11] and further investigated in
[1]. Reformulation (16) was proposed in [15]. We look for a
decomposition of the image x° into two components u and v.
u is the cartoon component defined as u = x° — div(x*) where
x* is a solution of (16). v is the texture component defined as
v = div(x*). We thus have x” = u+v. We refer the reader to
[11, 1, 15] for more insight on those models.

This problem can be stated in our formalism. It suffices
to choose:
o X ={xeR"||x||]» < o} (nis twice the number of pix-
els).
e A = —Vdiv. Thus m = n and using the discretization of
V and div proposed in [5], we get |||A||| = 8.

* 9(y) =—(Vx’,y)y (thus Ly =0).
o Y ={yeR"[]yllo <1}
With those choices, we have ¥(x) = ||V(x — div(x))||; and

W*(y) = —a||Vdiv(y)||1 + (Vx°,y)y. The theoretical worst
case convergence rate can be computed and is:

2
W) —w(e) < e an
Note that it grows linearly with the problem’s dimension 7.
This is the best expectable behavior. This result indicates that
whatever the size of x°, the same number of iterations will be
required to get a desired accuracy. It is indeed reasonable to
require a precision which depends linearly on n (if we dou-
ble the number of pixels, it is natural to double the required
accuracy).

3.2 Methods chosen for comparisons

In this paper we will consider and compare only first order
approaches. They are known to have bad asymptotic con-
vergence rates, but their low cost iterations, their low mem-
ory requirements and their good behavior at the origin makes
them very attractive to get approximate solutions fast (which
is often sufficient in image processing). Second order meth-
ods like second order cone programming are accurate, but
seem to be unusable for large images. Until now, the com-
binatorial approaches proposed in the literature seem to be
adapted only to narrow classes of imaging problems.

In this paper, we compare 4 first order methods. We will
not describe them due to space restriction.



e The first one is the proposed approach. We tried different
choices of step-sizes (including variable step-sizes) but
for this problem, the one presented is seemingly the best.

e The second one is the one proposed by J-F. Aujol et al in
[1].

e The third one is a projected subgradient descent with op-
timal step. It is unusable in practice, because the opti-
mum in (16) must be known.

e The fourth one is the one proposed in [15]. It is based on
results by Y. Nesterov [14]. This scheme also has an “op-
timal” O (%) rate of convergence, but it is somehow more
difficult to use because the number of iterations must be
chosen depending on a regularization parameter.

For comparisons, we evaluate the duality gap A(x*,y*)
which is the only reliable criterion available. It can be com-
puted only in the proposed approach and in the approach
[15]. We also evaluate the cost function for the subgradient
descent. Unfortunately, those criteria cannot be evaluated in
the approach of [1]. Indeed this approach does not ensure
that the constraint x € X is satisfied. We will only provide
comparisons on the resulting images (see Figure 2).

Exira-gradient method (or Prox-method)
Nesterov method + Smoothing
ical bound on Extra-gradient method

Duality gap A(xk,yk)

\gﬁ
o 2000 4000 6000 8000 10000
# Computations of Ax

Prox-method -- Nemirovski
Nesterov method +Smoothing
Subgradient descent (optimal step)

10°} ‘

0 1000 2000 3000 4000 5000
# computations of Ax

Figure 1: Comparisons of some schemes efficiency.

According to these curves, we see that the prox-method
proposed in this paper and the one proposed in [15] are the
most efficient. The number of iterations required to ob-
tain satisfactory solutions is quite high (of order 2000). We
could not obtain satisfactory solutions using the approach de-
scribed in [1] nor with the subgradient descent. Those meth-
ods give rough approximations very fast, but do not seem to
allow to get precise solutions. Figure (2) illustrates this fact.
Multiple experiments led us to the conclusion that the pro-
posed approach is completely reliable and easy to use (the
user only has to provide the precision which can be made di-
mension and data independent). We think that those results
are very encouraging. Further work will include the use of

more advanced techniques. To finish, we give an example of
image decomposition using another model. It simply consists
in replacing ||x|| by ||x||1 in (16). This new model allows
the extraction of oscillations with larger amplitude (see e.g.
Figure (2)).
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Figure 2: Left: Cartoon part — Right: texture part. From top to bottom: solution R' using our algorithm (10 minutes) — solution
R? using the approach in [1] (10 minutes) — result replacing ||x||. by ||x||1 in (16). (Note: the total variation of R? is higher
than that of R! and the texture component of R> does not satisfy the constraint. R! is thus more accurate than R?. )



