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Introduction

Objectives of this lecture

• Quick introduction on the need for computers:
• image acquisition
• image restoration
• image analysis
• image generation

• Starting with the basics:
• Python programming
• Pixel operations
• Linear filtering and convolutions
• Morphological operations
• Inverse problems

• Some basic principles of deep learning

These are very introductory lectures!

Watch this excellent contents for further information.
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https://www.denbi.de/online-training-media-library/919-introduction-to-bioimaging 


A modern view on image acquisition

Computers and image acquisition
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A modern view on image acquisition

Baker’s yeast with a wide-field microscope - Resolution = 0.2µm
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A modern view on image acquisition

Nobel prize E. Betzig 2014 - resolution 50nm.
Image by S. Cantaloube, T. Mangeat
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A modern view on image acquisition

Single Molecule Localization Microscopy, histone H3 (106 images).
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Introduction: single molecule localization microscopy

From microscopy to nanoscopy

1. Standard microscope: 200-500 nanometers (1mm / 5000)

2. SMLM: 10-50 nanometers (1mm / 100,000)

3. Atom size: 0.1nm (1mm / 10, 000, 000)

Current limit is mostly computation (and thermal agitation)
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A modern view on image acquisition

A usual camera (WYSIWYG)
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A modern view on image acquisition

Why is this not so simple?

• Impossible to measure the signal directly.

• Sub-optimal as well.

Examples

• Echography, oil prospection.

• Magnetic Resonance Imaging, radio-interferometry.

• X-ray Tomography.

• In fact nearly any device...
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A modern view on image acquisition

X-Ray Tomography
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A modern view on image acquisition

Magnetic Resonance Imaging
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A modern view on image acquisition

Summary

Camera

Tomography

MRI

Other choices?

In general, we just probe the signal using “integral” measurements!
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A modern view on image acquisition

How to reconstruct images?

1. First step: modelling the system

y = Ax + b, (1)

where
• The image x ∈ X is a vector
• The operator A : X → RM describes the system
• The perturbation b models noise

2. Second step: design a reconstruction algorithm

x̂ = argmin
x∈X

1
2
∥Ax − y∥2

2 + R(x), (2)

where R promotes “realistic looking images”.

3. Third step: design algorithms to interpret/extract/quantify data
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A modern view on image acquisition

What can be done with computational imaging?

Image super-resolution (20Mpix image)
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A modern view on image acquisition

What can be done with computational imaging?

Image super-resolution x4 with 30 burst images
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A modern view on image acquisition
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A modern view on image acquisition

What can be done with computational imaging?

Image super-resolution x4 with 30 burst images
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A modern view on image acquisition

Computational imaging: augmented reality
18



Computers and image improvement
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Image improvement

Improving the image quality

Most images suffer from problems

• Noise

• Blur

• Unwanted objects

• Too large size
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Image improvement

Low signal-to-noise-ratio

Image denoising
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Image improvement

Discarding structured noise

Image denoising (LSFM image of zebrafish)
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Image improvement

Discarding structured noise

Image denoising (here with VSNR)
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Image improvement

Sharpening images

Image deblurring

Explain the difference between blind and non blind image deblurring
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Image improvement

Discarding unwanted objects

Image inpainting
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Image improvement

Discarding unwanted objects

Image inpainting
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Image improvement

Reducing the image sizes

Image Compression

Think about it seriously (though noone usually cares):

• Buy a larger server to store your data, or...

• Work a bit to keep only useful information?
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Image improvement
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Computers and image analysis
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Image analysis

How to have a computer automatically:

• Segment objects?

• Detect objects?

• Interpret the image contents?
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Image analysis

The different types of image segmentation
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Image analysis

Image segmentation
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Image analysis

Semantic segmentation
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Image analysis

Semantic segmentation
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Image analysis

Semantic segmentation – harder cases
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Image analysis

Why is semantic segmentation important?

• Assess volumes, boundaries, numbers of cells...

• Assist doctors, biologists...

• Reduce human subjectivity

• Some automatic algorithms now perform better than humans

• Treat large volumes of data for statistical analysis

35



Image analysis

Image classification

Image classification

We’ll see this aspect in Part II.
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Image interpretation

Image interpretation

An example of automatic scene interpretation
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Image analysis

Image interpretation

An example of application for self-driving cars
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Image analysis

Unexpected applications

What can be deduced from fundus images? 39



Computers and image/model generation
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Image generation

Deep face

The rapid evolution of deepface
Now it is perfect enough ⇒ new applications
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Image generation

Animated deepfaces = deepfakes
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Image generation

Diffusion models – Dall-E

Draw an astronaut riding a horse on the moon
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Image generation

Diffusion models – Dall-E

Draw a very muscled teapot
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Image generation

Diffusion models – Dall-E

Complete this painting of Vermeer (Girl with a ring)
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Image generation

Impact in biology?

• Image acquisition/analysis now relies on the same mechanisms

• Computers can learn complex patterns

• What if we could train Deepcells? Deeporganisms?

• These technologies have not yet strongly entered biology...

• Things may change rapidly... Stay tuned
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Ending words

Why should you care about computers?

• Image acquisition (all modern digital devices rely on computing)

• Image improvement (deblurring, denoising, inpainting)

• Image analysis (segmentation, detection, classification, interpretation)

• Image generation (learning complex models from observations)

How to use computers?

• Acquisition/improvement:
• Physics/Mathematics model of acquisition device (with manufacturers)
• Invert the acquisition model (with optimization, neural networks)

• Analysis (the main focus of this course):
• Python, thresholding, filtering, morphology, iterative methods (Part I)
• Basics of deep learning (Part II)
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Hands-on!
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Basics of Python

Many existing languages: C, C++, Java, Matlab, Fiji, Icy,...

Why Python?

• Python is getting dominant for imaging

• Plenty of libraries are currently developed/maintained

• Wide community with plenty of forums

• 99% of deep learning models

• Allows GitHub and ctrl+c ctrl+v programming

• Relatively easy and universal

• Basis of modern tools such as Napari
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Images and Python

Importing image processing libraries

Plenty of powerful image processing libraries

• OpenCV

• Scikit image

• MatPlotLib

• Scikit learn

• Numpy

• Pillow...

Machine learning libraries

• Scikit-Learn

• PyTorch

• TensorFlow

• ...
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Images and Python

Opening an image

• Import scikit image

• Open a 2D gray-scale image

• Open a 2D colour image

• Open a 3D gray-scale image

• Open a 3D colour image

• Show channels, slices

• Crop, flip
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https://scikit-image.org/docs/dev/auto_examples/


Representing images and Python

Representing an image

• Show a surface plot

• Show a contour plot

• Explain level lines

• Change lookup tables
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Pointwise operations in Python

Pointwise operations

• Inverting contrasts

• Thresholding

• Change of contrast

• Sine (or other random grayscale changes)

• Quantification
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Filtering operations in Python

Convolution/filtering

• Take a look here

• Average blur

• Gaussian blur

• Edge detection (x,y gradients + norm of gradient)

• Laplacian

• General convolution + implementation with for loops
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https://scikit-image.org/docs/stable/api/skimage.filters.html


Morphological operations in Python

Image morphology

• You can take a look here

• Invariance to contrast changes + level lines

• Median filtering (+ pepper noise, structuring elements)

• Dilation, erosion, opening, closing
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https://scikit-image.org/docs/stable/auto_examples/applications/plot_morphology.html


Iterative methods in Python

Iterative methods

• Total variation deblurring

• Active contours
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The limits of handcrafted methods

A typical pipeline
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Lightning presentation of supervised learning
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Supervised learning

Supervised vs unsupervised learning

• Supervised: labeled data

• Unsupervised: unlabeled data (clustering)
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Supervised learning

Where to get your data

Many open datasets/challenges are being created

• Fast MRI (10000+ 3D volumes)

• ImageNet (106+ images)

• Data science bowl

• Go Pro deblur challenge

Create your own!

Really worth the investment on the long run!

Data + computing ≡ sinews of war

60

https://www.kaggle.com/competitions/data-science-bowl-2018/overview
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https://www.kaggle.com/competitions/data-science-bowl-2018/overview


Supervised learning

Data = pair (image, desired output)

Labeling for image classification
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Supervised learning

Data = pair (image, desired output)

Labeling for image segmentation
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Supervised learning

The basic principle...
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Supervised learning

Opening the black-box

The main existing tools:

• Linear regression

• Support vector machines

• Decision trees

• Random forests

• Neural networks
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Supervised learning

Decision trees

A decision tree to decide the type of lens

Tree = decision path based on features

• Easy to interpret (≃ human decision)

• Not so efficient
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Supervised learning

A random forest classifier – Hands on Ilastik!
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https://www.ilastik.org/


Supervised learning
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A Neural Network for Classification (depth = 2)
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Supervised learning
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A Neural Network for Classification (depth = 3)
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Supervised learning

Random forest VS neural networks
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