UNIVERSITÉ PAUL SABATIER : PRÉPARATION À L'AGRÉGATION DE MATHÉMATIQUES FONCTIONS HOLOMORPHES

PASCAL J. THOMAS

Introduction.

Cette feuille sert de support aux travaux dirigés qui accompagnent le cours de D.-C. Cisinski, du 2 au 12 octobre 2012.

Comme d'habitude, nous ne ferons qu'une partie des exercices.

BIBLIOGRAPHIE

Liste non limitative:

- L. Ahlfors, Complex Analysis
- E. Amar & E. Matheron, Analyse Complexe
- H. Cartan, Théorie élémentaire des fonctions analytiques
- W. Fischer & I. Lieb, A Course in Complex Analysis
- W. Rudin, Analyse Réelle et Complexe, chapitre 10.
- 1. Séries entières, Principe des zéros isolés, prolongement analytique
- 1.1. Montrer que la fonction $z \mapsto \cos \sqrt{z}$, définie a priori sur $\mathbb{C} \setminus \mathbb{R}_-$, peut s'étendre en une fonction holomorphe sur tout \mathbb{C} , et donner son développement en série entière.
- 1.2. On rappelle que $\tan z := -i\frac{e^{iz}-e^{-iz}}{e^{iz}+e^{-iz}}$. Montrer que $\tan z \neq i, -i$ pour tout $z \in \mathbb{C}$. En déduire que $\tan' z \neq 0$ pour tout $z \in \mathbb{C}$. Montrer que tan induit une bijection de $\{-\pi/2 < \text{Re } z < \pi/2\} \text{ sur } \mathbb{C} \setminus \{it : t \in]-\infty, -1] \cup [1, +\infty[\}.$
- 1.3. Soit Ω un ouvert connexe de \mathbb{C} , et f, g deux fonctions analytiques sur Ω . On suppose que f(z)g(z) = 0 pour tout $z \in \Omega$. Montrer que soit f(z) = 0 pour tout $z \in \Omega$, soit g(z) = 0 pour tout $z \in \Omega$.
- 1.4. Pour toutes les conditions ci-dessous, dire s'il est possible de trouver une fonction f analytique sur le disque unité qui les vérifie, et si oui, ce qu'on peut dire de cette fonction.

(1)
$$f(\frac{1}{n}) = \sin \frac{\pi n}{2}$$
, pour tout $n \in \mathbb{N}$, $n \ge 2$.

(2)
$$f(\frac{1}{n}) = \frac{1}{n^2}$$
, pour tout $n \in \mathbb{N}$, $n \ge 2$.

(1)
$$f(\frac{1}{n}) = \sin \frac{\pi n}{2}$$
, pour tout $n \in \mathbb{N}$, $n \ge 2$.
(2) $f(\frac{1}{n}) = \frac{1}{n^2}$, pour tout $n \in \mathbb{N}$, $n \ge 2$.
(3) $f(\frac{1}{n}) = \frac{1}{n^3}$, $f(-\frac{1}{n}) = \frac{1}{n^3}$, pour tout $n \in \mathbb{N}$, $n \ge 2$.
(4) $f(\frac{1}{2n}) = f(\frac{1}{2n+1}) = \frac{1}{n}$, pour tout $n \in \mathbb{N}$, $n \ge 2$.

(4)
$$f(\frac{1}{2n}) = f(\frac{1}{2n+1}) = \frac{1}{n}$$
, pour tout $n \in \mathbb{N}$, $n \ge 2$.

(5)
$$f(\frac{1}{n}) = e^{-n}$$
, pour tout $n \in \mathbb{N}$, $n \ge 2$.

1.5. Soit f analytique sur Ω un ouvert connexe de C, qui vérifie : pour tout $z \in \Omega$, il existe un entier n tel que $f^{(n)}(z) = 0$. Montrer que f est une fonction polynomiale. (Indication : théorème de Baire).

2. Holomorphie, Équations de Cauchy-Riemann

- 2.1. Soit Ω un ouvert connexe de C et f une fonction holomorphe sur Ω . On suppose que Re f est constante sur Ω . Montrer que f est constante.
- 2.2. Soit Ω un ouvert connexe de \mathbb{C} et f, g deux fonctions holomorphes sur Ω telles que pour tout $z \in \Omega$, $f(z) + \overline{g(z)} \in \mathbb{R}$. Montrer que f(z) = c + g(z), où c est une constante réelle.
- 2.3. Montrer que la fonction $z \mapsto \operatorname{Re} z$ n'admet pas de primitive (au sens complexe) sur \mathbb{C} . (Source : Fischer & Lieb, p. 40)
- 2.4. Montrer que si f est holomorphe et bornée sur $D(0,1) \setminus \{0\}$, alors elle admet un prolongement holomorphe à tout le disque.

Indications : on peut considérer la fonction g(z) = zf(z) et se ramener ainsi au cas où f est continue. On peut aussi montrer que f admet une primitive F, qui se prolonge au disque.

Ce résultat s'appelle Théorème de la Singularité Eliminable de Riemann.

2.5. Soit Ω un ouvert connexe du plan complexe. On suppose que f est continue sur Ω , et que f^2 (le carré pour la multiplication) est holomorphe sur Ω . La fonction f est-elle holomorphe sur Ω ? Démontrer ou donner un contre-exemple.

3. Formules de Cauchy, homotopie

3.1. Soit f une fonction analytique sur C tout entier. On suppose que pour tout r > 0,

$$\int_0^{2\pi} |f(re^{i\theta})| d\theta \le r^{17/3}.$$

Montrer que f est identiquement nulle. (Indication : considérer $r \to 0$ et $r \to \infty$).

- 3.2. Montrer qu'il existe une fonction g holomorphe sur $\mathbb{C} \setminus [-1, +1]$ telle que $g(z)^2 = z^2 1$ et $\lim_{z \to \infty} g(z)/z = 1$.
- 3.3. Soit f une fonction holomorphe sur un voisinage du disque unité fermé. Montrer que

$$\frac{1}{2\pi i} \int_{|z|=1} \frac{\overline{f(z)}}{z-a} dz = \overline{f(0)} \text{ si } |a| < 1, \quad = \overline{f(0)} - \overline{f(\frac{1}{\overline{a}})} \text{ si } |a| > 1.$$

(Indication : vous pouvez calculer d'abord $\int \frac{z^k dz}{z-a}$).

Ce résultat reste-t-il vrai si f est seulement holomorphe sur le disque ouvert et continue sur le disque fermé?

3.4. Soit P un polynôme (holomorphe). Montrer que $\max_{|z|=1} |\bar{z} - P(z)| \ge 1$.

3.5. a) Soit $f(z) = \sum_k a_k z^k$ une série entière de rayon de convergence 1, avec $a_k \ge 0$ pour tout k. Montrer que f n'est pas prolongeable analytiquement au voisinage du point 1.

(Indication : montrer que si f était prolongeable, sa série de Taylor au point $\frac{1}{2}$ aurait un rayon de convergence supérieur à $\frac{1}{2}$)

b) On pose $f(z) = \sum_{k \geq 0} z^{k!}$. Montrer que f n'est prolongeable en aucun point du cercle unité.

(Source : Chambert-Loir & Fermigier, Exercices de mathématiques pour l'agrégation, Analyse, tome 2.)

4. Principe du module maximum

- 4.1. Soient f,g holomorphes sur \mathbb{D} et continues sur $\overline{\mathbb{D}}$. On suppose que pour tout $z\in\overline{\mathbb{D}},\ f(z)\neq 0, g(z)\neq 0$ et que |f(z)|=|g(z)| pour tout $z\in\partial\mathbb{D}$. Montrer qu'il existe $\theta\in\mathbb{R}$ tel que $f=e^{i\theta}g$. Que se passe-t-il si on admet des zéros pour f ou g? (Source : Fischer & Lieb).
- 4.2. Soit f une fonction holomorphe sur un ouvert connexe Ω . Soit Ω' un ouvert non vide, relativement compact dans Ω . On suppose que |f| est constant sur la frontière de Ω' . Montrer que f est constante sur Ω ou s'annule au moins une fois dans Ω' . (Indication : considérer la fonction 1/f).

Que se passe-t-il si on suppose plutôt que f prend des valeurs réelles sur la frontière de Ω' ?

- 4.3. Soit f holomorphe sur un ouvert Ω . Sous quelles conditions |f| peut-il admettre un minimum local?
- 4.4. Soit f une fonction entière telle que pour tout $z \in C$, $|f(z)| \leq M|z|^m$, où M > 0 et $m \in N$ sont des constantes. Montrer que f est un polynôme de degré inférieur ou égal à m.
- 4.5. Pour tout point a du disque unité, l'application

$$\varphi_a(z) = \frac{a-z}{1-z\bar{a}}$$

est une bijection biholomorphe du disque unité (cf. Proposition 4.3.8 du cours).

Soit f une fonction holomorphe du disque unité dans lui-même, telle qu'il existe deux points $a \neq b$ du disque vérifiant f(a) = a, f(b) = b. Montrer que f(z) = z, pour tout z du disque.

(Indication : Lemme de Schwarz).

5. Fonctions harmoniques

- 5.1. a) Pour f holomorphe, calculer $\Delta |f|^2$.
- b) Quelles sont les fonctions f holomorphes sur Ω connexe telles que $|f|^2$ soit harmonique ?
- 5.2. Montrer que si f est une fonction de classe C^2 sur un ouvert Ω telle que $\Delta f(z) \geq 0$, pour tout $z \in \Omega$, alors f n'admet pas de maximum local strict dans Ω . Indication: si z_0 est un tel maximum local, se ramener au cas $\Delta f(z) > 0$ en considérant $f_{\varepsilon} := f(z) + \varepsilon |z z_0|^2$ pour $\varepsilon > 0$ bien choisi.

5.3. Montrer qu'une fonction harmonique h vérifie le principe du maximum, soit à partir de l'exercice précdent, soit à partir de la théorie des fonctions holomorphes (indication : trouver localement une fonction holomorphe g telle que $|g| = e^h$), soit à partir de la formule de la moyenne.

6. Singularités, Résidus

6.1. Soit f une fonction entière et propre (l'image réciproque de tout compact est compacte). Montrer que f est un polynôme.

(Indication : étudier la singularité en 0 de la fonction $z \mapsto f(\frac{1}{z})$ et utiliser l'exercice 4.4 (c)).

6.2. Savez-vous déterminer toutes les applications holomorphes et bijectives du disque unité sur lui-même ? (utiliser l'exercice 4.5, ou lire le cours, Proposition 4.3.8).

Et du plan complexe sur lui-même? (utiliser l'exercice 6.1).

6.3. a) Calculer l'intégrale définie

$$\int_0^\infty \frac{dx}{1+x^n}$$

en utilisant le contour constitué du segment de droite de 0 à R > 1, puis de l'arc de cercle centré en 0 qui va de R à $Re^{2\pi i/n}$, puis du segment qui va de $Re^{2\pi i/n}$ à 0.

b) Calculer l'intégrale définie

$$\int_0^\infty \frac{x^\alpha dx}{1+x^n}$$

en utilisant le contour constitué du segment de droite de ε à R, puis de l'arc de cercle centré en 0 qui va de R à $Re^{2\pi i/n}$, puis du segment qui va de $Re^{2\pi i/n}$ à $\varepsilon e^{2\pi i/n}$, puis de l'arc de cercle centré en 0 qui va de $\varepsilon e^{2\pi i/n}$ à ε . (Ici $0 < \varepsilon < 1 < R$).

6.4. Calculer les transformées de Fourier de $\frac{\sin x}{x}$, et de e^{-x^2} (en utilisant la méthode des résidus).

7. Suites, Séries, Produits, Fonctions spéciales

- 7.1. Soit Ω un ouvert connexe de \mathbb{C} et f une fonction holomorphe sur Ω et nonconstante. Soit (f_n) une suite de fonctions holomorphes sur Ω convergeant vers f, uniformément sur les compacts de Ω .
- a) On suppose que F est un fermé tel que $f_n^{-1}(0) \subset F$ pour tout n. Montrer que $f^{-1}(0) \subset F$ (Théorème de Hurwitz, cf. cours, Proposition 6.1.6). (Indication : se ramener au cas où $F = \emptyset$, et à un zéro isolé d'ordre m. Considérer $\int z^{m-1} \frac{1}{f(z)} dz$ sur un cercle bien choisi).
- b) Application : Soit (P_n) une suite de polynômes à coefficients réels dont toutes les racines sont réelles, qui converge uniformément sur les compacts de \mathbb{C} vers une fonction f. Montrer que tous les zéros de f sont réels. Montrer que les dérivées de e^{az-z^2} n'ont que des zéros réels quand $a \in \mathbb{R}$.
- 7.2. Montrer que la série $\sum \frac{z^n}{1-z^n}$ converge vers une fonction holomorphe sur \mathbb{D} . Trouver son développement en série entière. (Source : Fischer & Lieb, p. 60)

7.3. Montrer que la fonction a priori définie sur $\mathbb{C} \setminus \mathbb{Z}$

$$g(z) := \frac{\pi^2}{\sin^2 \pi z} - \sum_{n \in \mathbb{Z}} \frac{1}{(z-n)^2}$$

est en fait une fonction entière.

Montrer que g(z+1)=g(z) pour tout z, et que $\lim_{|y|\to\infty}g(x+iy)=0$, uniformément pour $0\leq x\leq 1$. En déduire que g est identiquement nulle.

En déduire que

$$\pi \cot \pi z = \frac{1}{z} + \sum_{n \neq 0} \left(\frac{1}{z - n} + \frac{1}{n} \right) = \frac{1}{z} + \sum_{n = 1}^{\infty} \frac{2z}{z^2 - n^2}.$$

En déduire les valeurs de $\sum_1^\infty \frac{1}{n^2}$, $\sum_1^\infty \frac{1}{n^4}$, $\sum_1^\infty \frac{1}{n^6}$.

7.4. Montrer que la série $\sum n^{-z}$ est uniformément convergente sur tout compact de $\{\text{Re } z > 1\}$. On note sa somme $\zeta(z)$. Montrer que pour tout z tel que Re z > 1,

$$(1 - 2^{1-z})\zeta(z) = \sum_{n=1}^{\infty} (-1)^{n+1} n^{-z}.$$

En déduire un prolongement analytique de la fonction ζ à l'ouvert $\{\text{Re } z > 0\}$.

- 7.5. Soit (f_n) une suite de fonction holomorphes qui converge simplement sur un ouvert Ω vers f.
- a) Montrer en utilisant le thórème de Baire qu'il existe $\Omega' \subset \Omega$, dense dans Ω , tel que pour tout $z \in \Omega'$, il existe un voisinage ω de z tel que la suite (f_n) soit bornée sur ω .
- b) En déduire que la suite (f_n) converge uniformément sur les compacts de Ω' (utiliser le Théorème de Montel), et que f est holomorphe sur Ω' .
- c) (Difficile) Pouvez-vous trouver un exemple où $\Omega' \neq \Omega$? (on peut utiliser le Théorème de Runge).

(Amar-Matheron, ex. 3.74)

7.6. Soit f holomorphe et bornée sur l'ouvert $\{z: |\operatorname{Im} z| < 1\}$. On suppose que $\lim_{x \to +\infty, x \in \mathbb{R}} f(x) = 0$. En considérant la suite de fonctions holomorphes $g_n(z) := f(z+n)$ sur le carré $\{z: |\operatorname{Re} z| < 1, |\operatorname{Im} z| < 1\}$, montrer que pour tout $y \in]-1, +1[$, $\lim_{x \to +\infty, x \in \mathbb{R}} f(x+iy) = 0$.

(Indication : Théorème de Montel).