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Foreword. These notes are a condensed version of a class taught to third-year
students in the “Parcours Spécial” of the Licence de Mathématiques of the Université
Paul Sabatier, Toulouse. Some proofs may be only cursorily indicated. Interested
readers should refer to the books by Ahlfors and Rudin given in the bibliographical
references.

0. Prerequisites

We take it that you attended Jasmin Raissy’s “Analyse Complexe” class in L2 Spe-
cial, as well as a class in advanced calculus, covering at least the basics of differentiable
maps from Rn to Rm and the Inverse Function Theorem.

We shall assume that the following topics are known.

0.1. Definition of holomorphic functions. As C-differentiable maps, or as an-
alytic functions (locally expendable as power series). Both are equivalent (major
theorem).

The set of all holomorphic functions on an open set Ω is denoted by O(Ω) (O stands
for olomorfa, the Italian word, and we use it because there are too many other kinds
of function spaces called H).

We usually consider holomorphic functions as defined on a domain, i.e. a connected
open set.

0.2. Path integration. We recall that a curve in a topological space X is a con-
tinuous map γ from an interval [a, b] to X. Intervals of definition can be modified
by using strictly increasing bijections. Two curves γ1, γ2 defined respectively on [a, b]
and [b, c] can be concatenated in the obvious way if γ1(b) = γ2(b). We can still do it
if γ2 is defined on any interval [c, d], provided that γ1(b) = γ2(c), at the expense of
translating the interval of definition of γ2 by b− c.

When X happens to be a subset of a R-vector space, a path is a piecewise-C1 curve,
i.e. the concatenation of a finite number of curves which are C1. Given a bounded
measurable function on X, we set∫

γ

f(ζ)dζ :=

∫ b

a

f(γ(t))γ′(t)dt,

where the last integral is to be understood as a finite sum on each of the differentiable
“pieces” of γ.
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0.3. Cauchy’s theorem. Here is the elementary form of Cauchy’s Theorem which
you saw in second year. We recall that a (P )-domain is a bounded domain ∆ such
that its boundary is made up of a finite number of pairwise disjoint closed curves Γj,
1 ≤ j ≤ n, each of them being the image of a closed path γj with no double points
except for the origin and extremity, the γj being oriented so that ∆ always lies to the
left of its boundary.

Theorem 0.1. If f ∈ O(Ω) such that Re f, Im f ∈ C1(Ω) and ∆ is a (P )-domain
such that ∆̄ ⊂ Ω, then ∫

∂∆

f(ζ)dζ = 0.

line

0.4. The Schwarz Lemma. Let D := {z ∈ C : |z| < 1}.

Theorem 0.2. Let f ∈ O(D) such that f(D) ⊂ D̄ and f(0) = 0. Then |f(z)| ≤ |z|
for all z ∈ D, and |f ′(0)| ≤ 1. If equality occurs in the first inequality for z 6= 0, or
in the second one, then there exists θ ∈ R such that f(z) = eiθz.

0.5. Classification of isolated singularities. Let f ∈ O(D(a, r) \ {a}). If f is
locally bounded near a, then f can be extended to a holomorphic function on the
whole disc and we say that a is a removable singularity (theorem due to Riemann).
If limz→a |f(z)| = +∞, there exists m ∈ N∗ such that (z− a)mf(z) extends holomor-
phically to the whole disc, and we say that a is a pole and call the smallest m as
above the order of the pole. Finally, if none of those two cases happen, which also
mean that the Laurent expansion near a

f(z) =
∞∑

k=−∞

ak(z − a)k

admits non-zero coefficients ak for arbitrarily large negative values of k, we say that
a is an essential singularity.

0.6. Complex logarithm. The function Log z := log |z|+ iArg z, where Arg is the
unique determination of the argument of z belonging to (−π,+π], is holomorphic on
C \ R−, and verifies exp(Log z) = z on its domain.

1. Conformal Maps

In this section, we consider holomorphic maps as maps of domains in the plane,
from a geometric point of view.

1.1. Definition.

Proposition 1.1. Let f be a holomorphic function on an open set Ω. If z0 ∈ Ω and
f ′(z0) 6= 0, there exists a neighborhood U of z0 such that f is a one-to-one (injective)
map on U .

Proof. For |h| small enough,

f(z0 + h) = f(z0) + f ′(z0)h+ o(h),
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so as map from R2 to R2, writing h = h1 + ih2 and f(z) = Re f(z) + i Im f(z), the
differential of f at z0 is given by

Df(z0) · h =

(
Re f ′(z0) − Im f ′(z0)
Im f ′(z0) Re f ′(z0)

)(
h1

h2

)
.

The determinant of the differential map is |f ′(z0)|2 6= 0. So applying the Inverse
Function Theorem, we find a neighborhood U so that f is a bijection (one-to-one and
onto) from U to f(U). �

Another proof could be obtained using power series. We remark that the converse
is true (exercise).

Notice that the computation shows that the differential map is a direct similarity,
i.e. a rotation followed by a dilation. Such linear maps preserve angles between
vectors. This is the property we are interested in.

Definition 1.2. Let U1 and U2 ⊂ R2 be open sets. A map Φ : U1 −→ U2 is conformal
at a point z0 if it is differentiable there and for any C1 curves γ1, γ2 such that γ1(0) =
γ2(0) = z0, with non-vanishing derivative at 0, then

angle ((Φ ◦ γ2)′(0), (Φ ◦ γ1)′(0)) = angle (γ′2(0), γ′1(0)) ,

where the angles are understood as oriented angles between nonzero vectors.
We say that Φ is conformal on U1 if it is conformal at each point of U1.

Remark. We could define a notion of conformality in higher dimension, using
non-oriented angles. It turns out that this is much more restrictive than in dimension
2, giving rise to a very rigid class of mappings. This is a difficult theorem due to
Liouville, which we will not discuss.

1.2. Characterization.

Proposition 1.3. Let f ∈ C1(Ω), and z0 ∈ Ω. Suppose that Df(z0) 6= 0. Then f is
conformal at z0 if and only if ∂f

∂z̄
(z0) = 0.

Therefore such an f is conformal on Ω if and only if f ∈ O(Ω) and f ′(z0) 6= 0 for
any z0 ∈ Ω.

Proof. We recall the complex notation for partial derivatives, with the usual notation
z = x+ iy:

Df(z0) · h =
∂f

∂x
(z0)h1 +

∂f

∂y
(z0)h2

=
1

2

(
∂f

∂x
(z0)− i∂f

∂y
(z0)

)
(h1 + ih2) +

1

2

(
∂f

∂x
(z0) + i

∂f

∂y
(z0)

)
(h1 − ih2)

=:
∂f

∂z
(z0)h+

∂f

∂z̄
(z0)h̄.

This implies the complex form of the Chain Rule:

(f ◦ γ)′(t) =
∂f

∂z
(γ(t))γ′(t) +

∂f

∂z̄
(γ(t))γ̄′(t).
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Thus, if we suppose that ∂f
∂z̄

(z0) = 0, then

(f ◦ γ2)′(t)

(f ◦ γ1)′(t)
=
f ′(γ2(t))γ′2(t)

f ′(γ1(t))γ′1(t)
.

When γ1, γ2 are as in Definition 1.2, then f ′(γ2(0)) = f ′(z0) = f ′(γ1(0)), so the above

ratio when t = 0 is =
γ′2(0)

γ′1(0)
and we are done.

Conversely, consider the curves γ1(t) = z0 + eiαt, γ2(t) = z0 + ei(α+θ)t, where
α, θ ∈ [0, 2π). The angle between those two curves is θ. We have

(f ◦ γ1)′(0) =
∂f

∂z
(z0)eiα +

∂f

∂z̄
(z0)e−iα,

(f ◦ γ2)′(0) =
∂f

∂z
(z0)ei(α+θ) +

∂f

∂z̄
(z0)e−i(α+θ).

If we had ∂f
∂z

(z0) = 0, the angle between the curves f ◦ γ1 and f ◦ γ2 at f(z0) would
be −θ 6= θ if we choose θ 6= π.

Otherwise, choose α such that ∂f
∂z

(z0)eiα + ∂f
∂z̄

(z0)e−iα 6= 0; since we assume that f
is conformal at z0, we must have for all θ

∂f
∂z

(z0)ei(α+θ) + ∂f
∂z̄

(z0)e−i(α+θ)

∂f
∂z

(z0)eiα + ∂f
∂z̄

(z0)e−iα
= eiθ.

This easily implies ∂f
∂z̄

(z0) = 0. �

Note that things change when f ′(z0) = 0. This time, the tangent lines to the
curves will be given by higher-order derivatives of f , and conformality will be lost
(even when the images of curves still admit tangent lines). For instance, f(z) = zm

multiplies all angles by m at the point 0.

1.3. Examples: Linear Fractional Maps.

Definition 1.4. The Riemann Sphere is the set S := C ∪ {∞} endowed with the fol-
lowing topology. On C, we take the usual topology, and a neighborhood basis of∞ is
given by the complements of closed discs centered at 0, i.e.

(
{∞} ∪ (C \ D̄(0, R), R > 0

)
.

Consider the map I : z 7→ 1
z
, which can be extended by ∞ 7→ 0 and 0 7→ ∞. This

map is called the inversion (with respect to the unit circle). We say that a function
f is holomorphic in a neighborhood of∞ iff f is holomorphic in C \ D̄(0, R) for some
R > 0, lim|z|→∞ f(z) exists, and f ◦ I is holomorphic in a neighborhood of 0.

Exercise 1.5. Prove that the Riemann sphere is homeomorphic to

S2 :=
{
ξ ∈ R3 : ‖ξ‖ = 1

} ∼= {(z, t) ∈ C× R : |z|2 + t2 = 1
}
,

where ‖ξ‖2 = ‖(x, y, t)‖2 = x2 + y2 + t2 is the Euclidean norm, using the map

C 3 z 7→
(

2z

|z|2 + 1
,
|z|2 − 1

|z|2 + 1

)
.

This map is called a stereographic projection (there are different versions of it). Is it
conformal? (you have to define a notion of angle on the sphere first).
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Definition 1.6. Given (a, b, c, d) ∈ C with (c, d) 6= (0, 0), a linear fractional map is
the map ϕ : S −→ S defined by

ϕ(z) =
az + b

cz + d
if z ∈ C, cz + d 6= 0,

ϕ(∞) =
a

c
if c 6= 0, ϕ(∞) =∞ if c = 0,

ϕ(−d
c

) = ∞ if c 6= 0.

It is easy to check that ϕ is holomorphic in a neighborhood of any point z0 ∈ S
such that ϕ(z0) 6= ∞, and that I ◦ ϕ is holomorphic in a neighborhood of a point
z0 ∈ S such that ϕ(z0) =∞.

Proposition 1.7. To a matrix M :=

(
a b
c d

)
∈ C2×2, associate the linear fractional

map described in Definition 1.6, denoted by ϕM . Then

(1) ϕM = ϕN if and only if there exists λ ∈ C \ {0} such that M = λN ;
(2) ϕM ◦ ϕN = ϕMN ;

(3) ϕ is a bijection of S if and only if

∣∣∣∣a b
c d

∣∣∣∣ 6= 0, and in this case ϕ−1
M (w) =

ϕM−1(w) = dw−b
−cw+a

when w ∈ C \ {a/c}, and ϕ is a homeomorphism.

The (elementary) proof is left to the reader.
One also checks easily that ϕ ∈ O (C \ {−d/c}) and that

ϕ′(z) =
ad− bc

(cz + d)2
6= 0, ∀z ∈ C \ {−d/c},

so, except in the degenerate case when it is constant, ϕ extends to a conformal
bijection of S, with the angle at ∞ of two (generalized) curves γ1, γ2 tending to ∞
being defined as the angle of I ◦ γ1, I ◦ γ2 at 0.

Proposition 1.8. The non-constant linear fractional maps form a group under com-
position of maps, denoted by H(S). The map M 7→ ϕM is a group homomorphism
GL(2,C) −→ H(S), its kernel is made up of the scalar matrices. The group H(S)
is generated by the rotations z 7→ eiθz, θ ∈ R, the dilations z 7→ λz, λ > 0, the
translations z 7→ z + b, b ∈ C, and the inversion I.

The proof is left to the reader. For the last statement, use partial fraction decom-
position (which reduces here to one Euclidean division).

Proposition 1.9. The image of a line or circle under a linear fractional map is a line
or circle.

The proof is left to the reader. Notice that the image or a line or circle of C under
the stereographic projection is always a circle in the sphere of R3, and that lines are
characterized by the fact that their image circle passes through the “North Pole”
(0, 0, 1).

Proposition 1.10. Given any distinct points a1, a2, a3 ∈ S, there exists ϕ ∈ H(S) such
that ϕ(a1) = 0, ϕ(a2) = 1, ϕ(a3) =∞.
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The proof is left to the reader. Here are some hints: suppose for the moment that
a1, a3 ∈ C. We may write ϕ(z) = c z−α

z−β . It is easy to choose α such that ϕ(a1) = 0,

and β such that ϕ(a3) =∞. Then all that is left is the computation of c. One must
discuss the various special cases when one of the aj is ∞.

The value ϕ(z) is known as the cross ratio of (z, a2, a1, a3).

1.4. Automorphisms of the unit disc. The domain D := {z ∈ C : |z| < 1} occurs
in many places. The Riemann Mapping Theorem will shows us that it is actually the
model for all simply connected domains in C distinct from the whole plane. It turns
out that all the holomorphic bijective self maps of the disc are linear fractional.

Lemma 1.11. If θ ∈ R and a ∈ D, let

ϕa,θ(z) := eiθ
a− z
1− āz

.

Then ϕa,θ(z)(D) = D and ϕa,θ(z)(∂D) = ∂D.
Writing ϕa := ϕa,0, we have ϕa ◦ ϕa = id (the identity map of the disc).

Proof. When |z| ≤ 1, |āz| ≤ |a| < 1, so ϕa,θ is holomorphic on a neighborhood of D̄.
Suppose first that z ∈ ∂D, say z = eiα. Then

ϕa(z) =
a− eiα

1− āeiα
= e−iα

a− eiα

e−iα − ā
= −e−iαa− e

iα

a− eiα
,

so |ϕa(z)| = 1 and we have ϕa(∂D) ⊂ ∂D. By the maximum principle, since ϕa is not
constant, ϕa(D) ⊂ D.

A straightforward computation shows that ϕa(ϕa(z)) = z for any z ∈ D̄. It follows
that ϕa(z)(D) = D and ϕa(z)(∂D) = ∂D.

The general case is obtained by observing that the rotation rθ of angle θ also
preserves the unit disc and circle. We note that ϕ−1

a,θ = ϕa ◦ r−θ. �

Proposition 1.12. Any holomorphic bijection of D is of the form ϕa,θ for some θ ∈ R
and a ∈ D.

Proof. Consider first the special case where f is a holomorphic bijection of D such that
f(0) = 0. Then, by the Schwarz Lemma (Theorem 0.2), |f ′(0)| ≤ 1. This also applies
to the inverse map f−1: |(f−1)′(0)| ≤ 1. But (f−1)′(0) = 1/f ′(0), so |f ′(0)| = 1, and
by the case of equality in the Schwarz Lemma, f must be a rotation.

In the general case, let a := f−1(0). Then f1 := f ◦ ϕa is another holomorphic
bijection of D and verifies f1(0) = 0. By the first part of the proof, f ◦ ϕa = rθ for
some θ ∈ R. Finally, f = f ◦ ϕa ◦ ϕa = rθ ◦ ϕa. �

1.5. Other Examples, and applications.

• For m ∈ N∗, θ ∈ R, 0 < α ≤ 2π
m

, the map z 7→ zm is a conformal bijection
from the sector {z ∈ C : θ < arg z < θ + α} to the sector {z ∈ C : mθ <
arg z < mθ + mα}. When we write θ < arg z < θ + α, we mean that there
exists some determination of the argument of z which satisfies that inequality.

For instance, z 7→ z2 maps {Re z > 0} to C \ R−. Its inverse map is often
denoted z1/2 (but be careful with that notation).
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• For 0 < α ≤ 2π, θ ∈ R, −∞ ≤ a < b ≤ ∞, z 7→ ez is a conformal bijection
from the rectangle {a < Re z < b, θ < Im z < θ+α} to the region {ea < |z| <
eb, θ < arg z < θ + α}.

For instance, the strip {−π < Im z < π} is mapped by the exponential map
to C \ R−.
• The map Log is the inverse map of the exponential on the domains above.

Theorem 1.13. (Casorati-Weierstrass) If w0 is an essential singularity of f ∈ O(U \
{w0}, where U is a neighborhood of w0, then for any r > 0 such that D(w0, r) ⊂ U ,
f (D(w0, r) \ {w0}) is dense in C.

Proof. We only give an outline, to be filled by the reader.
Proceed by contradiction: if f (D(w0, r) \ {w0}) is not dense in C, there exist a ∈ C

and r1 > 0 such that D(a, r1) ∩ f (D(w0, r) \ {w0}) = ∅.
Find a conformal map ψ from C \ D̄(a, r1) to D.
Using Riemann’s removable singularity theorem, prove that ψ ◦f extends holomor-

phically to U . Conclude that w0 is a pole or removable singularity for f . �

Proposition 1.14. Let f ∈ O(C) (we say that f is an entire function) such that its
values omit a ray emanating from the origin, i.e. there exists θ ∈ R such that for any
z ∈ C, f(z) /∈ eiθR+. Then f is constant.

Proof left to the reader. Hint: find a conformal bijection from C \ eiθR+ to D, and
apply Liouville’s Theorem.

2. Path integrals and antiderivatives

We know what the derivative of a holomorphic function is. Now given g ∈ O(Ω),
does there exist G ∈ O(Ω) such that G′ = g? The answer to this question turns
out to be expressed in topological terms, and we will have to take a closer look at
Cauchy’s Theorem.

2.1. Examples; the convex case. Let us give two simple but fundamental exam-
ples. If Ω = D, then the power series expansion g(z) =

∑
n anz

n is valid for any
z ∈ D, and we can take G(z) =

∑
n

an
n+1

zn+1. Any two antiderivatives will differ
by an additive constant (because of the familiar fact that a differentiable map on a
connected open set, the differential of which vanishes identically, must be constant).

In general however we cannot represent a holomorphic function by a single power
series. Think of the function 1/(1− z) on C \ {1}, for instance. And there are cases
where an antiderivative simply does not exist.

Proposition 2.1. Let Ω = C \ {0} and g(z) = 1/z. There is no function G ∈ O(Ω)
such that G′ = g.

Proof. Suppose such a G exists. Then

d

dz

(
1

z
eG(z)

)
=

1

z

1

z
eG(z)− 1

z2
eG(z) = 0,

so eG(z) = Cz for some constant C ∈ C. Choosing C1 ∈ C such that eC1 = C, then
eG(z)−C1 = z, and taking Im(G(z) − C1) we would have a continuous determination
of the argument of z on C \ {0}, which is known to be impossible. �
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There is an easy way to solve our problem when Ω is convex, which will serve as
template for the eventual proof.

Notation: whenever a, b ∈ C, [a; b] will stand both for the line segment between a
and b and the oriented path given by γ(t) = (1− t)a+ tb, 0 ≤ t ≤ 1.

Proposition 2.2. Let Ω be a convex domain, z0 ∈ Ω, g ∈ O(Ω). Let

G(z) :=

∫
[z0;z]

g(ζ)dζ.

Then G is the unique antiderivative of g in Ω such that G(z0) = 0.

Proof. Uniqueness is proved as above: if G1, G2 are two solutions, (G1−G2)′ = g−g =
0, so we have a constant function and G1(z)−G2(z) = G1(z0)−G2(z0) = 0.

To study the complex differentiability of G at z ∈ Ω, let h ∈ C be such that
z + h ∈ Ω. By convexity, the triangle with vertices z0, z, z + h is a (P)-domain
contained in Ω. So Cauchy’s Theorem 0.1 tells us that∫

[z0;z]

g(ζ)dζ +

∫
[z;z+h]

g(ζ)dζ −
∫

[z0;z+h]

g(ζ)dζ = 0.

In other words,

G(z + h)−G(z) =

∫
[z;z+h]

g(ζ)dζ = hg(z) +

∫
[z;z+h]

(g(ζ)− g(z)) dζ.

Let ε > 0. There exists δ > 0 such that for |h| ≤ δ, for any ζ ∈ [z; z + h],
|g(ζ)− g(z)| < ε, so that the last integral is bounded in modulus by ε|h|. So the
error term is an o(h) and we have proved G′(z) = g(z). �

Observe that if we tried to copy this proof in the case of C\{0}, taking for instance
z0 = 1 and z = −1, we could not take a straight path because 0 needs to be avoided,
and our path integral would yields different results depending on whether the path
goes above or below the origin (even without considering more complicated paths).

2.2. Path integrals. Let us suppose that we have a domain where this kind of
difficulty doesn’t arise. Then things work well.

Recall that when are given paths γ1, γ2, we define γ1 + γ2 and −γ1 by∫
γ1+γ2

f(ζ)dζ :=

∫
γ1

f(ζ)dζ +

∫
γ2

f(ζ)dζ,

∫
−γ1

f(ζ)dζ := −
∫
γ1

f(ζ)dζ.

When the origin of γ2 happens to coincide with the endpoint of γ1, taking γ1 + γ2 is
the same as concatenating the paths; taking −γ1 is the same as going along the same
path in the reverse direction. And of course γ1 − γ1 = 0, that is to say, the constant
path, over which any integral will vanish.

Theorem 2.3. Let Ω be a domain such that for any closed path γ with range in Ω,
any f ∈ O(Ω), then

∫
γ
f(ζ)dζ = 0. Let z0 ∈ Ω. Then any f ∈ O(Ω) admits a unique

antiderivative F ∈ O(Ω) such that F (z0) = 0.

Proof. Since Ω is connected, uniqueness is proved as before.
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Since Ω is open and connected, for any z ∈ Ω, there exists a broken line path γz
such that γz(0) = z0 and γz(1) = z. Define

F (z) :=

∫
γz

f(ζ)dζ.

This seems to depend on the choice of the path γz, but it doesn’t. Indeed, take any
other piecewise-C1 path γ̃z with the same endpoints. Then γz − γ̃z is a closed path in
Ω, so ∫

γz

f(ζ)dζ −
∫
γ̃z

f(ζ)dζ = 0.

To prove that F ′(z) = f(z), choose r such that D(z, r) ⊂ Ω. For |h| < r, γz+[z; z+h]
is a path from z0 to z + h, so by the above

F (z + h)− F (z) =

∫
γz+[z;z+h]

f(ζ)dζ −
∫
γz

f(ζ)dζ =

∫
[z;z+h]

f(ζ)dζ.

The same calculation as in the proof of Proposition 2.2 proves that F is complex-
differentiable and F ′(z) = f(z). �

We observe that the hypothesis in Theorem 2.3 was necessary.

Proposition 2.4. If f = F ′ where f, F ∈ O(Ω), and γ is a path in Ω, parametrized by
[0, 1], then ∫

γ

f(ζ)dζ = F (γ(1))− F (γ(0)).

Proof. The complex Chain Rule implies that d
dt

(F◦γ(t)) = F ′(γ(t))γ′(t) = f(γ(t))γ′(t),
so that applying the Fundamental Theorem of Calculus,∫ 1

0

f(γ(t))γ′(t)dt = F ◦ γ(1)− F ◦ γ(0).

�

In particular, the integral of a derivative of a holomorphic function on a closed path
is always 0.

2.3. Simply connected domains. It remains to see which domains have the good
property in the hypothesis of Theorem 2.3. They turn out to be the simply connected
domains, which we will define forthwith.

Definition 2.5. A domain Ω is said to be simply connected if given any two continuous
curves γ0, γ1 such that γ0(0) = γ1(0) and γ0(1) = γ1(1), then there exists a homotopy
with fixed endpoints between those curves, i.e. a continuous map

H : [0, 1]× [0, 1] −→ Ω

such that H(0, t) = γ0(t), H(1, t) = γ1(t), 0 ≤ t ≤ 1

and H(θ, 0) = γ0(0), H(θ, 1) = γ0(1), 0 ≤ θ ≤ 1.
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When such an H exists between two given curves γ0, γ1 (with common endpoints)
we say that γ0 and γ1 are homotopic (with fixed endpoints). Note that H is only
assumed to be continuous because we want this notion to be invariant under home-
omorphism. So even when γ0, γ1 are paths, for 0 < θ < 1, the map H(θ, ·) will only
be a continuous curve, which could be very irregular.

Theorem 2.6. If γ0, γ1 are homotopic paths in Ω (with fixed endpoints), and f ∈
O(Ω), then ∫

γ0

f(ζ)dζ =

∫
γ1

f(ζ)dζ.

Corollary 2.7. If Ω is a simply connected domain, any f ∈ O(Ω) admits an antideriv-
ative.

Proof of Theorem 2.6. Let H be a homotopy between γ0 and γ1, as in Definition 2.5.
Since [0, 1]×[0, 1] is compact, its image is too, and δ := dist (H([0, 1]× [0, 1]), S \ Ω) >
0. By Heine’s Theorem, H is uniformly continuous, so there exists N ∈ N∗ such that

max (|θ − θ′|, |t− t′|) ≤ 1

N
⇒ |H(θ, t)−H(θ′, t′)| < δ.

Define γ̂θ to be the broken line path with vertices H(θ, j
N

), 0 ≤ j ≤ N , parametrized

by 0 ≤ t ≤ 1, so that γ̂θ(
j
N

) = H(θ, j
N

). In particular, if θ = 0 or 1, then γ̂θ(
j
N

) =

γθ(
j
N

), 0 ≤ j ≤ N . So we have created, for each of our paths, an approximation by a

broken line; and N − 1 intermediate broken line paths for θ = k
N

, 1 ≤ k ≤ N − 1.
Claim. For θ = 0 or 1, ∫

γ̂θ

f(ζ)dζ =

∫
γθ

f(ζ)dζ.

Proof. It will be enough to show that for 0 ≤ j ≤ N − 1,∫
γ̂θ|[ j

N
,
j+1
N

]

f(ζ)dζ =

∫
γθ|[ j

N
,
j+1
N

]

f(ζ)dζ.

The closed path γ̂θ|[ j
N
, j+1
N

]−γθ|[ j
N
, j+1
N

] lies inside the disk D(γθ(
j
N

), δ) which is included

in Ω by our choice of δ. In a disc, by our argument on power series or by Theorem
2.2, f admits an antiderivative, so its integral on closed paths must vanish. �

Now it will be enough to prove that∫
γ̂0

f(ζ)dζ =

∫
γ̂1

f(ζ)dζ,

and by an immediate induction, this reduces to proving, for 0 ≤ k ≤ N − 1,

(1)

∫
γ̂ k
N

f(ζ)dζ =

∫
γ̂ k+1
N

f(ζ)dζ.

In order to do this, we will prove by induction on j, for 0 ≤ j ≤ N − 1, that

(2)

∫
γ̂ k
N
|
[0,

j
N

]

f(ζ)dζ +

∫
[
γ̂ k
N

( j
N

),γ̂ k+1
N

( j
N

)

] f(ζ)dζ =

∫
γ̂ k+1
N
|
[0,

j
N

]

f(ζ)dζ.
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Suppose the property is true at rank j. To simplify notations, let

A := γ̂ k
N

(
j

N
), B := γ̂ k

N
(
j + 1

N
), C := γ̂ k+1

N
(
j + 1

N
), D := γ̂ k+1

N
(
j

N
).

Then∫
γ̂ k+1
N
|
[0,
j+1
N

]

f(ζ)dζ =

∫
γ̂ k+1
N
|
[0,

j
N

]

f(ζ)dζ +

∫
[D,C]

f(ζ)dζ

=

∫
γ̂ k
N
|
[0,

j
N

]

f(ζ)dζ +

∫
[A,D]

f(ζ)dζ +

∫
[D,C]

f(ζ)dζ,

Ω is a simply connected domain by the induction hypothesis (2). The tetragon
(A,B,C,D) and its inside are contained in the disc D(A, δ) ⊂ Ω, so once again
using the fact that any holomorphic function admits an antiderivative on a disc,∫

[A,D]

f(ζ)dζ +

∫
[D,C]

f(ζ)dζ =

∫
[A,B]

f(ζ)dζ +

∫
[B,C]

f(ζ)dζ.

Finally∫
γ̂ k+1
N
|
[0,
j+1
N

]

f(ζ)dζ =

∫
γ̂ k
N
|
[0,

j
N

]

f(ζ)dζ +

∫
[A,B]

f(ζ)dζ +

∫
[B,C]

f(ζ)dζ

=

∫
γ̂ k
N
|
[0,
j+1
N

]

f(ζ)dζ +

∫
[
γ̂ k
N

( j+1
N

),γ̂ k+1
N

( j+1
N

)

] f(ζ)dζ.

The property (2) is proved, so we apply it with j = N . Then the fact that the
homotopy fixes the endpoints implies that γ̂ k

N
(1) = γ̂ k+1

N
(1), so the integral term on

a line segment disappears and we have proved that when we integrate over the whole
interval [0, 1], (1) holds. �

Corollary 2.8. Let Ω be a simply connected domain. Let f ∈ O(Ω) satisfy f(z) 6= 0,
for any z ∈ Ω. Then there exist g ∈ O(Ω) and hm ∈ O(Ω) such that eg(z) = f(z) and
hmm(z) = f(z), for z ∈ Ω, m ∈ N∗.

Proof. Since f does not vanish, then f ′

f
∈ O(Ω). Choose z0 ∈ Ω and α ∈ C such that

eα = f(z0) (this is possible since f(z0) 6= 0). Let g be the unique antiderivative of f ′

f

such that g(z0) = α. Then eg(z0) = f(z0), and(
eg

f

)′
=

(g′f − f ′)eg

f 2
= 0,

so eg

f
is constant, and this constant must be 1 = eg(z0)

f(z0)
.

Then it is enough to take hm(z) := e
1
m
g(z). �

2.4. Another look at Cauchy’s Theorem. You will recall that in Jasmin Raissy’s
course, Cauchy’s theorem on the boundary of a (P )-domain was proved under the
assumption that the function f was of class C1. This is stronger than just assuming
that the complex derivative exists. In order to close the gap in the (long) proof that
any complex-differentiable function is indeed analytic (i.e. locally expandable as a
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power series), it is enough to prove Cauchy’s theorem on a polygonal contour when
the whole inside of it is contained in the domain where the function f is holomorphic,
and this can be reduced to the case of a triangle (by decomposing into triangles).

Theorem 2.9. Let f be complex-differentiable on a domain Ω which contains the
closed triangle T (boundary and inside). Then∫

∂T

f(ζ)dζ = 0.

Here ∂T must be understood as the sum of the three line segments making up the
boundary of T , oriented so that it is run through in the trigonometric direction.

Proof. Given any triangle ∆ with vertices A,B,C, let A′, B′, C ′ be the midpoints of
[B,C], [C,A], [A,B] respectively. Then we have four subtriangles ∆(1) with vertices
(A,C ′, B′), ∆(2) with vertices (B,A′, C ′), ∆(3) with vertices (C,B′, A′), ∆(4) with
vertices (A′, B′, C ′), each of which has a perimeter half of that of ∆ and a diameter
half of that of ∆.

Note, too, that for any integrable function defined on the whole of ∆, because of
cancellations along the line segments [A′, B′], [B′, C ′], [C ′, A′],∫

∂∆

f(ζ)dζ =
4∑
i=1

∫
∂∆(i)

f(ζ)dζ.

We define a sequence of triangles Tn in the following way: T0 := T ; given Tn, applying
the triangle inequality to the relation above with ∆ = Tn, there exists i0 ∈ {1, 2, 3, 4}
such that ∣∣∣∣∫

∂T
(i0)
n

f(ζ)dζ

∣∣∣∣ ≥ 1

4

∣∣∣∣∫
∂T

f(ζ)dζ

∣∣∣∣ .
We choose Tn+1 := T

(i0)
n . An immediate induction shows that∣∣∣∣∫

∂T
(i0)
n

f(ζ)dζ

∣∣∣∣ ≥ 4−n
∣∣∣∣∫
∂T

f(ζ)dζ

∣∣∣∣ .
Also, the perimeter of Tn, i.e. the length of ∂Tn, verifies `(∂Tn) = 2−n`(∂T ), and
diam (Tn) = 2−ndiam (T ).

Since T is compact and diamTn → 0,
⋂
n Tn = {z0} for some z0 ∈ T . The function

f is complex differentiable at z0, so

f(z) = f(z0) + f ′(z0)(z − z0) + r(z), with r(z) = o(|z − z0|).
Since f(z0) + f ′(z0)(z − z0) is a polynomial, with an explicit antiderivative,∫

∂Tn

f(ζ)dζ =

∫
∂Tn

r(ζ)dζ.

Let ε > 0. There exists n0 such that for n ≥ n0, ζ ∈ Tn, |r(ζ)| ≤ ε|ζ − z0| ≤
εdiamTn ≤ 2−ndiam (T )ε. Finally∣∣∣∣∫
∂T

f(ζ)dζ

∣∣∣∣ ≤ 4n
∣∣∣∣∫
∂Tn

r(ζ)dζ

∣∣∣∣ ≤ 4n`(∂Tn)2−ndiam (T )ε ≤ 4n2−n`(∂T )2−ndiam (T )ε ≤ Cε.

Since this is true for any ε > 0,
∫
∂T
f(ζ)dζ = 0. �
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3. Sequences of holomorphic functions

3.1. Weierstrass’ Theorem. We know that a uniform limit of differentiable func-
tions (or even real-analytic functions) has no reason to be differentiable. Take for

instance fn(x) :=
√
x2 + 1

n2 on the real line.

The situation is strikingly different for holomorphic functions. First recall the
notion of convergence that we will be using.

Definition 3.1. We say that a sequence (fn)n ⊂ O(Ω) converges uniformly on compact
sets if for any K b Ω, (fn)n converges uniformly on K.

We sometimes talk about “compact convergence”.
Observe that the sequence (zn)n converges to 0 uniformly on compact sets of D, but

not uniformly on D. What are the sequence of entire functions (fn)n which converge
uniformly on C? (hint: there are very few). Those two examples should convince you
that uniform convergence on the whole of the domain Ω is not the correct notion for
convergence of sequences of holomorphic functions.

Note that we can restrict attention to a countable sequence of compact sets.

Proposition 3.2. For any domain Ω ⊂ C, there exists a countable exhaustion by
compact sets, i.e. a sequence of compact sets (Kn)n≥1 with

• Kn ⊂ Ω;
• Kn ⊂ K◦n+1 (the interior of Kn+1);
•
⋃
nKn = Ω;

• for any compact subset K ⊂ Ω, there exists n such that K ⊂ Kn.

Proof. We can choose

Kn :=

{
z ∈ Ω : dist (z,C \ Ω) ≥ 1

n
, |z| ≤ n

}
.

The properties are easily checked (exercise). The last one can be obtained by consid-
ering the covering of K by the open sets K◦n, or by using the fact that dist(K,C\Ω) >
0. �

Theorem 3.3. (Weierstrass)
If (fn)n ⊂ O(Ω) converges on compact sets to f , then f ∈ O(Ω).

Proof. Let a ∈ Ω, and r > 0 such that D(a, r) ⊂ Ω. By Cauchy’s formula, for any
z ∈ D(a, r), any n ∈ N,

fn(z)− 1

2πi

∫
∂D(a,r)

fn(ζ)

ζ − z
dζ = 0.

Since ∂D(a, r) is compact in Ω, and |ζ − z| ≥ r − |za| > 0 for any ζ ∈ ∂D(a, r), we
can pass to the limit under the integral sign, and we get

f(z)− 1

2πi

∫
∂D(a,r)

f(ζ)

ζ − z
dζ = 0.

Since
1

ζ − z
=

1

(ζ − a)− (z − a)
=

1

(ζ − a)

∑
n≥0

(
(z − a)

(ζ − a)

)n
,
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we easily prove that f is expandable in power series on the open disc D(a, r), and
therefore holomorphic on it. �

3.2. Normal families. First we need to recall a general fact about uniform conver-
gence. We need a definition.

Definition 3.4. Let (X, dX), (Y, dY ) be two metric spaces. Let F ⊂ C(X, Y ) be a
family of continuous map from X to Y . We say that F is equicontinuous if for any
x ∈ X, for any ε > 0, there exists δ > 0 such that for any f ∈ F , dX(x, x′) < δ ⇒
dY (f(x), f(x′)) < ε.

Comment: uniform continuity is when, for a given ε, the δ doesn’t depend on
the point x where continuity is tested. Here δ may depend on x, but it must be
independent of f ∈ F . In practice, when X is a compact set, δ won’t depend on x
either.

Of course any subfamily of an equicontinuous family is also equicontinuous.
You will see a proof of the following theorem in Pascale Roesch’s topology class.

Theorem 3.5. (Ascoli)
If X is a compact metric space, Y a metric space, if F ⊂ C(X, Y ) is an equicon-

tinuous family such that for any x ∈ X, the set {f(x) : f ∈ F} is relatively compact
in Y , then for any sequence (fn)n ⊂ F , there exists a subsequence (fnk)k which is
uniformly convergent on X.

Quite often, the family F which we consider is itself a sequence of functions.
We also recall a special case of Cauchy’s inequalities, which you saw in Jasmin

Raissy’s second year complex analysis class.

Proposition 3.6. Let f ∈ O(Ω), and a ∈ Ω, r > 0 such that D(a, r) ⊂ Ω. Then

|f ′(a)| ≤ 1

r
max
D(a,r)

|f |.

Proof. Derivating the Cauchy formula under the integral sign, we have

f ′(a) =
1

2πi

∫
∂D(a,r)

f(ζ)

(ζ − a)2
dζ,

and we bound the modulus of the integral from above in the usual way, by the product
of the length of the path by the maximum of the modulus of the integrand. �

Theorem 3.7. (Montel)
Let F ⊂ O(Ω) verify

∀K b Ω, sup
F

max
z∈K
|f(z)| =: cK <∞.

Then for any sequence (fn)n ⊂ F , there exists a subsequence (fnk)k which is uniformly
convergent on compact sets of Ω.

This conclusion is usually expressed by saying that F is a normal family.

Proof. Let (fn)n ⊂ F . We first show that given any compact subset K ⊂ Ω, we can
find a subsequence (fnk)k which is uniformly convergent on K. A priori, it depends
on K.
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We verify the hypotheses of Ascoli’s Theorem (3.5) in this case. For any a ∈ K,
{f(a) : f ∈ F} ⊂ D(0, c{a}), so that set of values is relatively compact in C.

Now we prove equicontinuity. Let δ := dist(K,C \ Ω) > 0 (if Ω = C, we take
δ = 1). Let

K1 :=
⋃
z∈K

D(z,
δ

2
) =

{
z ∈ C : dist(z,K) ≤ δ

2

}
.

Then K1 is closed as the pre-image of a closed interval under the continuous function
dist(·, K), and bounded since diamK1 ≤ δ + diamK, so it is compact. Let

K2 :=
⋃
z∈K

D(z,
δ

4
) =

{
z ∈ C : dist(z,K) ≤ δ

4

}
.

For z ∈ K2, D(z, δ
4
) ⊂ K1.

By Cauchy’s inequality (Proposition 3.6), for f ∈ F , z ∈ K2,

|f ′(z)| ≤ 4

δ
max

z∈D(z, δ
4

)
|f(z)| ≤ 4

δ
max
z∈K1

|f(z)| ≤ 4cK1

δ
.

On the other hand, if z1, z2 ∈ K and |z1 − z2| ≤ δ
4
, then [z1, z2] ⊂ D(z1,

δ
4
) ⊂ K2, so

for f ∈ F ,

|f(z1)− f(z2)| ≤ |z1 − z2|max
[z1,z2]

|f ′| ≤ 4cK1

δ
|z1 − z2|.

Finally, for any ε > 0, if |z1 − z2| ≤ min
(
δ
4
, δ

4cK1
ε
)

, then |f(z1)− f(z2)| ≤ ε, so

equicontinuity is proved. By Ascoli’s Theorem, there exists a subsequence (fnk)k
which is uniformly convergent on K.

Now we must use this fact to obtain one subsequence that is unformly convergent
on all compact subsets of Ω. Consider the exhaustion (Kn)n of Ω by compact sets
given by Proposition 3.2. We proceed by “diagonal extraction” (as in the proof of
Ascoli’s Theorem). In what follows, ϕj always denotes a strictly increasing map from
N to N.

By the previous argument, there is a subsequence (fϕ1(n))n which is uniformly
convergent on K1. Suppose now that we have found a subsequence (fϕm(n))n which is
uniformly convergent on Km. By the previous argument, there is a subsequence of it,
(fψ◦ϕm(n))n which is uniformly convergent on Km+1. We write ϕm+1 := ψ ◦ ϕm, and
proceed by induction.

Finally we set nk := ϕk(k). If we omit the finite set {0, . . . ,m − 1} and consider
the terms with k ≥ m, we see that the sequence (fnk)k is a subsequence of (fϕm(n))n,
so it must be uniformly convergent on Km. This is true for any m. If we take an
arbitrary compact set K ⊂ Ω, then there exists m such that K ⊂ Km, so (fnk)k is
uniformly convergent on K. �

Exercise 3.8. Let F ⊂ O(Ω) verify
⋃
f∈F f(Ω) is not dense in C. Then F is a

normal family in the following extended sense: for any sequence (fn)n ⊂ F , there
exists a subsequence (fnk)k which is uniformly convergent on compact sets of Ω, or a
subsequence (fnk)k which is uniformly convergent to ∞ — i.e. (1/fnk)k is uniformly
convergent to 0 — on compact sets of Ω.

Hint: this begins as the proof of the Theorem 1.13 (Casorati-Weierstrass).
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3.3. Rouché’s and Hurwitz’s Theorems. We recall a simple form of a result
known as the argument principle. Recall that the multiplicity of a zero of f at a ∈ Ω
is

ma(f) := min
{
n : f (n)(a) = 0

}
.

If ma(f) = 0, f doesn’t have a zero at a, if ma(f) = 1, f has a simple zero, etc.

Proposition 3.9. Suppose that f ∈ O(Ω) and D(a, r) ⊂ Ω. Assume that f(z) 6= 0 for
all z ∈ ∂D(a, r). Then

1

2πi

∫
∂D(a,r)

f ′(ζ)

f(ζ)
dζ =

∑
z∈D(a,r)

ma(f).

The sum on the right hand side only has a finite number of nonzero terms, and
is usually described as “the number of zeros of f counted with multiplicities” inside
D(a, r). The equality is proved by applying the Residue Theorem (exercise).

Theorem 3.10. (Rouché)
Let f, g ∈ O(Ω) and D(a, r) ⊂ Ω. Suppose that |g(z)| < |f(z)| for all z ∈ ∂D(a, r).

Then f and f + g have the same number of zeros (counted with multiplicities) in
D(a, r).

Proof. For 0 ≤ t ≤ 1, z ∈ ∂D(a, r), then |f(z) + tg(z)| ≥ |f(z)| − |g(z)| > 0. So the
function

N(t) :=
1

2πi

∫
∂D(a,r)

f ′(ζ) + tg′(ζ)

f(ζ) + tg(ζ)
dζ

is well defined and continuous on [0, 1]. But it’s integer-valued, so it must be constant;
N(0) is the number of zeros of f in D(a, r), and N(1) is the number of zeros of f + g
in D(a, r). �

Theorem 3.11. (Hurwitz)
Let Ω be a domain. Let (fn)n ⊂ O(Ω) a sequence which converges to f uniformly

on compact sets. Suppose that fn(z) 6= 0 for all z ∈ Ω. Then either f ≡ 0 or f(z) 6= 0
for all z ∈ Ω.

Proof. Suppose that f does not vanish identically, but that f(a) = 0. Then, by the
Theorem of Isolated Zeros, there exists r > 0 such that f(z) 6= 0 on ∂D(a, r). By
compactness, |f(z)| ≥ δ > 0 on ∂D(a, r). For n large enough, by uniform convergence
on the compact set ∂D(a, r), |fn(z)−f(z)| < δ on ∂D(a, r). We then apply Rouché’s
Theorem with g = fn − f to conclude that fn = f + g must have at least one zero
inside D(a, r): contradiction. �

Corollary 3.12. Let Ω be a domain. Let (fn)n ⊂ O(Ω) a sequence which converges to
f uniformly on compact sets. Suppose that fn is a one-to-one map on Ω for each n.
Then either f is constant or it is a one-to-one map on Ω.

Proof. Let a ∈ Ω. Then Ω \ {a} is also a connected open set. Apply Hurwitz’s
Theorem to the sequence fn− fn(a) on Ω \ {a}. Either the limit vanishes identically,
thus f is constant, or it has no zero, so f doesn’t take the value f(a), except at a. �
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4. Riemann’s Mapping Theorem

4.1. The Mapping Theorem.

Theorem 4.1. (Riemann)
Let Ω $ C be a simply connected domain and z0 ∈ Ω, then there exists a unique

conformal bijection from Ω to D such that f(z0) = 0 and f ′(z0) > 0.

Proof. Uniqueness is easy to prove, using what we know about holomorphic bijections
of the disc. Let f1, f2 be two maps as in the theorem. Then ϕ := f1 ◦ f−1

2 is a
holomorphic bijection of the disc such that ϕ(0) = 0, so ϕ(z) = eiαz for some α ∈ R.
But ϕ′(0) = f ′1(z0)/f ′2(f−1

2 (0)) = f ′1(z0)/f ′2(z0) > 0, so ϕ(z) = z.
Notice that the argument above relies on the Schwarz Lemma. The proof of exis-

tence we are going to give (due to Koebe) also exploits the idea of the Schwarz Lemma
which can be partly restated in the following way: if f : D −→ D is holomorphic with
f(0) = 0, then |f ′(0)| ≤ 1, and if |f ′(0)| turns out to be maximal, then f is actually
a bijection of the disc.

We define a set of maps over which we will want to maximize a derivative.

S(Ω,D) := {f ∈ O(Ω,D) : f is one-to-one on Ω, f(z0) = 0, f ′(z0) > 0} .

Notice that if Ω = C this set is empty by Liouville’s Theorem (all functions in O(Ω,D)
are bounded, thus constants, thus not one-to-one).

The proof is organized in three steps:

(1) Prove that S(Ω,D) 6= ∅.
(2) Prove that the upper bound of f ′(z0) over S(Ω,D) exists and is attained by a

function of the class.
(3) Prove that that function is onto D.

Step 1. Let a ∈ C \ Ω. Because Ω is simply connected, and z − a 6= 0 for z ∈ Ω,
there exists h ∈ O(Ω) such that h(z)2 = z − a.

If z1, z2 ∈ Ω verify h(z1) = h(z2) or h(z1) = −h(z2), then h(z1)2 = h(z2)2, so
z1−a = z2−a, so z1 = z2. In particular h is one-to-one. By the open mapping theorem
for holomorphic functions (or even the easier version for holomorphic functions with
nonvanishing derivatives, which are local diffeomorphisms), there exists ρ > 0 such
that D(h(z0), ρ) ⊂ h(Ω). In particular ρ < |h(z0)| since 0 /∈ h(Ω).

If we take w ∈ D(−h(z0), ρ), then −w ∈ D(h(z0), ρ), so letting −w = h(z1), if
we had w = h(z2), it would follow that z1 = z2, so w = −w, which is excluded. So
h(Ω) ∩D(−h(z0), ρ) = ∅. Therefore

f(z) :=
ρ

h(z) + h(z0)
∈ S(Ω,D).

Let a := f(z0) = ρ
2h(z0)

, then ϕa ◦ f ∈ O(Ω,D), is a one-to-one map by composition,

and ϕa ◦ f(z0) = 0, where as usual ϕa(z) := a−z
1−āz . We can choose α ∈ R such that

eiα(ϕa ◦ f)′(z0) > 0, then f0 := eiαϕa ◦ f ∈ S(Ω,D).
Step 2. Let r := dist(z0,C \ Ω, then by Cauchy’s inequalities |f ′(z0)| ≤ 1/r for

any f ∈ S(Ω,D). So the set of values of f ′(z0) when f ∈ S(Ω,D), being bounded
above, admits an upper bound s ∈ R∗+, so there exists a sequence (fn)n ⊂ S(Ω,D)
such that f ′n(z0)→ s.
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Since it is a bounded sequence, Montel’s Theorem applies. Let f := limn fn. Then
f(z0) = limn fn(z0) = 0. Because f ′(z0) = s > 0, f is not constant, so f(Ω) ⊂ D (and
not D). By Hurwitz’s Theorem, f must be one-to-one. So f ∈ S(Ω,D).

Step 3. We proceed by contradiction. Suppose that w0 ∈ D \ f(Ω). Because Ω is
simply connected, ϕw0 ◦ f admits a holomorphic square root in Ω, with values in D.
Let F ∈ O(Ω) verify F 2 = ϕw0 ◦ f , write

√
w0 := F (z0).

Let G := eiβϕ√w0 ◦ F , where β is chosen so that G′(z0) > 0. As before, we can

check that F is one-to-one, and so is G, G(z0) = eiβϕ√w0(F (z0)) = 0, so G ∈ S(Ω,D).
Reversing the compositions of maps, and recalling that all ϕa are involutions,

f = ϕw0 ◦ F 2 = ϕw0 ◦ σ ◦ ϕ√w0 ◦ r−β ◦G =: ψ ◦G,
where σ denoes the map w 7→ w2, and r−β the rotation of angle −β, in the unit disc.
The map ψ verifies ψ(D) ⊂ D and ψ(0) = ψ(G(z0)) = f(z0) = 0, so by the Schwarz
Lemma either |ψ′(0)| < 1 or ψ is a rotation. But σ is a two-to-one map outside
of 0 and all the other maps involved in the composition product that yields ψ are
bijections, so ψ cannot be a bijection, therefore

|f ′(z0)| = |ψ′(0)G′(z0)| < |G′(z0)|,
which contradict the maximality of f ′(z0): there cannot exist a w0 as assumed. �

4.2. Topological consequences. In the case of a domain in the plane, being simply
connected is equivalent to a simpler topological property, i.e. having a connected
complement in the sphere. Let us show why this property can be interesting from the
point of view of complex analysis with a simple fact.

Proposition 4.2. Suppose Ω ⊂ C is a domain such that S \ Ω is connected. Then for
any a ∈ C \ Ω, the index with respect to a of any closed path γ in Ω vanishes, i.e.

Inda(γ) :=
1

2πi

∫
γ

dζ

ζ − a
= 0.

Proof. The function a 7→ Inda(γ) is continuous on C\Ω and integer-valued, so that it
is constant on connected components. Letting a tend to∞, we see that Inda(γ)→ 0,
so this function can be extended by continuity to S \ Ω. This is connected, so the
function must be constant on it, and the constant must be the value at∞, i.e. 0. �

One must be careful in the above proof that the number of connected components of
C\Ω may differ from that of S \Ω. Take for instance the strip Ω = {−π < Im z < π},
then S \ Ω is connected, but C \ Ω is made up of two closed half-planes joined only
at ∞.

About the result : notice that fa(ζ) := 1
ζ−a defines a function of O(Ω). If we could

replace it by any f ∈ O(Ω), we would have the property we need. In some sense, all
such functions can indeed be represented by limits of combinations of the elementary
functions fa, as we will see below. But first we prove the converse.

Proposition 4.3. Suppose Ω ⊂ C is a domain such that S \ Ω has more than one
connected component. Then there exist a ∈ S \Ω and a closed path γ in Ω such that

1

2πi

∫
γ

dζ

ζ − a
6= 0.
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Corollary 4.4. If Ω ⊂ C is simply connected, then S \ Ω is connected.

Proof. Indeed, if the conclusion was false, then Proposition 4.3 shows that the function
f(ζ) = 1

ζ−a is holomorphic in Ω and admits no antiderivative, since its integral over

a closed path does not vanish. �

Proof of Proposition 4.3.
Since S \ Ω is not connected and closed, it can be written as the disjoint union

of two nonempty closed sets, say A and B. Without loss of generality, assume that
∞ ∈ B, so that there is a neighborhood U of ∞ such that A ∩ U = ∅. This means
that there exists R > 0 such that A ⊂ D̄(0, R), therefore A is actually compact in C.

Choose δ > 0 such that δ
√

2 < dist(A,B). For any x0, y0 ∈ R, j, k ∈ Z, we define

(3) ∆j,k := {x+ iy : x0 + jδ ≤ x ≤ x0 + (j + 1)δ, y0 + kδ ≤ y ≤ y0 + (k + 1)δ} .
Let a ∈ A. We choose x0, y0 such that there exists a (j0, k0) such that a ∈ ∆◦j0,k0 .
This square is unique since the open squares are disjoint.

For each (j, k), ∂∆j,k is the path made up of the four sides of the square, oriented
in the trigonometric direction. Clearly,∫

∂∆j0,k0

dζ

ζ − a
= 2πi,

∫
∂∆j,k

dζ

ζ − a
= 0 when (j, k) 6= (j0, k0).

Consider the cycle

Γ :=
∑

(j,k):∆j,k∩A 6=∅

∂∆j,k.

Then
∫

Γ
dζ
ζ−a = 2πi.

We claim that Γ is equivalent as a cycle (i.e. in its effect when you take a path
integral along it) to a union of closed paths γ ⊂ Ω. By the choice of δ, whenever
∆j,k ∩A 6= ∅, then ∆j,k ∩B = ∅, so the support of Γ does not meet B, where we call
support of a cycle the union of all the images of the paths that make it up.

On the other hand, consider Γ as a sum of oriented segments (the sides of the
squares ∆j,k). Let A be the family {∆j,k : ∆j,k ∩ A 6= ∅}.

Whenever a side [a, b] meets A, then each of the two squares are in A, so they both
enter the sum that defines Γ. But the orientations given by the two squares on their
common side are opposite to each other, because the squares are on each side of the
line segment [a, b]; so their sum as a cycle is equal to 0. We remove line segments
whenever their are bordered by two squares which meet A (this may also happen in
some cases when the line segment itself does not meet A).

Finally, Γ reduces to a cycle γ with support included in⋃
{σ side of ∆j,k s.t. ∆j,k ∩ A 6= ∅ and σ ∩ A = ∅} .

In particular, supp γ ∩ (A ∪B) = ∅, so supp γ ⊂ Ω.
Now we need to see that γ is a union of closed paths. For this, it is enough to

see that each extremity of a line segment [a, b] ⊂ supp γ, say a, must be contained in
another such line segment. Since [a, b] is included in the boundary of only one of the
squares which meet A, a can be contained in exactly one, two or three of the squares
in A. In each case it is easy to find another line segment in the support of γ that
has its extremity at a. In the case where there are more than one of them, which is
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exactly when a belongs to two squares with sides in the support of γ intersecting only
at a, then choose the other line segment that lies in the boundary of the same square
as [a, b]. In this way, we decompose γ in a finite union of polygonal paths that have
no endpoint, so closed polygonal paths. �

Theorem 4.5. A domain Ω ⊂ C is simply connected if and only if S \Ω is connected.

Proof. Because of Corollary 4.4, we only need to prove that if S \Ω is connected, Ω is
simply connected. If Ω = C, there is nothing left to prove (it is convex, for instance),
so we may assume Ω 6= C.

We will prove that any holomorphic function in Ω admits an antiderivative, there-
fore any nonvanishing holomorphic function admits a logarithm, thus a holomorphic
square root, and the proof of Riemann’s Mapping Theorem shows that Ω is in holo-
morphic bijection with the unit disc, so in particular homeomorphic to the unit disc,
and thus simply connected.

To have an antiderivative to any holomorphic function, it is enough to show that
for any closed path γ : [0, 1] −→ Ω and any f ∈ O(Ω),

∫
γ
f(ζ)dζ = 0.

Claim. Given γ, there exists a union of closed paths Γ ⊂ Ω \ supp γ such that for
any f ∈ O(Ω) and any ζ ∈ supp γ,

(4) f(ζ) =
1

2πi

∫
Γ

f(ξ)

ξ − ζ
dξ,

and for any ξ ∈ supp Γ, Indξ(γ) := 1
2πi

∫
γ

1
ζ−ξdζ = 0.

If we accept the Claim, then since dist(supp γ, supp Γ) > 0, we have a bounded
integrand and can apply Fubini’s Theorem:∫

γ

f(ζ)dζ =

∫
γ

(
1

2πi

∫
Γ

f(ξ)

ξ − ζ
dξ

)
dζ =

1

2πi

∫
Γ

f(ξ)

(∫
γ

1

ξ − ζ
dζ

)
dξ = 0.

Now we prove the Claim, in more or less the same way as we had proved Proposition
4.3.

Let δ > 0 be chosen so that δ
√

2 < dist(supp γ, S \ Ω).
Choose R > maxt |γ(t)|+ δ

√
2. We let

A := {∆j,k : ∆j,k ⊂ Ω ∩D(0, R)} , Γ1 :=
∑

∆j,k∈A

∂∆j,k.

For each ζ ∈ supp γ \
⋃
j,k ∂∆j,k, the choice of δ implies that ζ ∈ ∆◦j0,k0 , with ∆j0,k0 ⊂

Ω ∩D(0, R). So, as before, for any f ∈ O(Ω),

(5) f(ζ) =
1

2πi

∫
Γ1

f(ξ)

ξ − ζ
dξ.

By construction, supp Γ1 ⊂ Ω ∩D(0, R). We prove that Γ1 is equivalent to a cycle
Γ with a smaller support that does not intersect supp γ in exactly the same way as
in the proof of Proposition 4.3, by removing the sides that belong to two adjacent
squares.

We want to choose x0, y0 such that (5) holds for ζ = γ(t) with t in a dense subset
of [0, 1]. For x ∈ R, let Ux := γ−1

1 (x)◦ and B := {x ∈ R : Ux 6= ∅}. Then (Ux, x ∈ B)
is a family of disjoint nonempty open sets in [0, 1], therefore it is at most countable,
and so is B+δZ := ∪k∈Z(B+δk). Thus we can choose x0 /∈ B+δZ, which guarantees
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that {t ∈ [0, 1] : γ1(t) 6= x0 + δk,∀k ∈ Z} is dense in [0, 1]. We do the same thing for
y0 and γ2.

For this choice of x0, y0, (5) holds for a dense subset of ζ ∈ supp γ, and both sides
of the equation are continuous, since supp γ ∩ supp Γ = ∅, so the equality holds for
all ζ ∈ supp γ.

Now we must show that Indξ(γ) vanishes when ξ ∈ supp Γ. By Proposition 4.2,
when a ∈ S \Ω, Inda(γ) = 0. When a ∈ S \D(0, R), the same property is proved by
considering limt→∞,t>1

1
2πi

∫
γ

1
ζ−tadζ = 0.

Since ξ ∈ supp Γ, ξ ∈ ∆j,k with ∆j,k \ Ω 6= ∅ or ∆j,k \ D(0, R) 6= ∅. Let then
a ∈ ∆j,k \ (Ω ∩D(0, R)); the line segment [ξ; a] ⊂ ∆j,k ⊂ C \ supp γ, so the function
t 7→ Ind(1−t)ξ+ta(γ) is continuous and integer-valued on [0, 1]. Since it vanishes for
t = 1, it vanishes identically, and we are done. �
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