Stability of Multisolitons for the Derivative Nonlinear Schrödinger Equation

Stefan Le Coz ${ }^{1, *}$ and Yifei Wu ${ }^{2}$
${ }^{1}$ Institut de Mathématiques de Toulouse; UMR5219, Université de Toulouse; CNRS, UPS IMT, F-31062 Toulouse Cedex 9, France, and
${ }^{2}$ Center for Applied Mathematics, Tianjin University, Tianjin 300072, China
*Correspondence to be sent to: e-mail: slecoz@math.univ-toulouse.fr

The nonlinear Schrödinger equation with derivative cubic nonlinearity admits a family of solitons, which are orbitally stable in the energy space. In this work, we prove the orbital stability of multisolitons configurations in the energy space, under suitable assumptions on the speeds and frequencies of the composing solitons. The main ingredients of the proof are modulation theory, energy coercivity, and monotonicity properties.

1 Introduction

We consider the nonlinear Schrödinger equation with derivative nonlinearity:

$$
\begin{equation*}
i u_{t}+u_{x x}+i|u|^{2} u_{x}=0 \tag{dNLS}
\end{equation*}
$$

The unknown function u is a complex-valued function of time $t \in \mathbb{R}$ and space $x \in \mathbb{R}$.
The derivative nonlinear Schrödinger equation was originally introduced in Plasma Physics as a simplified model for Alfvén waves propagation (see [41, 47]). Since then, it has attracted a lot of attention from the mathematical community. Let us give few examples. It was first studied using integrable methods by Kaup and Nevel [25].

Received September 19, 2016; Revised December 19, 2016; Accepted January 17, 2017

[^0]Later on, Hayashi and Ozawa [21, 22] obtained local well-posedness in the energy space $H^{1}(\mathbb{R})$. Local well-posedness in low-regularity spaces $H^{s}(\mathbb{R}), s \geqslant 1 / 2$ was investigated by Takaoka [48]. The problem of global well-posedness for small mass initial data in low-regularity spaces has attracted the attention of a number of authors (see e.g., $[8,9,20,40]$). When considered on the torus, local existence in $H^{s}(\mathbb{T})$ was proved by Herr [23] for $s \geqslant 1 / 2$. Results for $s<1 / 2$ were recently obtained by Takaoka [49]. A probabilistic approach to local existence was initiated by Thomann and Tzvetkov [50]. Recently, Wu [53,54] proved global existence in $H^{1}(\mathbb{R})$ for initial data u_{0} having mass $M\left(u_{0}\right)=\frac{1}{2}\left\|u_{0}\right\|_{L^{2}}^{2}$ less than threshold 2π. The method introduced by Wu was extended to the torus by Mosincat and Oh [42]. Despite the amount of studies devoted to (dNLS), existence of blowing up solutions remains an open problem. Global existence was recently investigated using integrability techniques by Liu et al. [30,32] and by Pelinovsky and Shimabukuro [44]. Analysis of singular profiles in a supercritical version of (dNLS) was performed by Cher et al. [6].

Before presenting our results, we start with some preliminaries.
Under gauge transformations, (dNLS) may take various (equivalent) forms. In particular, if

$$
v(t, x)=\exp \left(-\frac{i}{2} \int_{-\infty}^{x}|u(t, y)|^{2} \mathrm{~d} y\right) u(t, x)
$$

then v solves

$$
\begin{equation*}
i v_{t}+v_{X X}+i\left(|v|^{2} v\right)_{x}=0 \tag{1}
\end{equation*}
$$

Alternatively, setting

$$
w(t, x)=\exp \left(\frac{i}{2} \int_{-\infty}^{x}|u(t, y)|^{2} \mathrm{~d} y\right) u(t, x)
$$

then w solves

$$
\begin{equation*}
i w_{t}+w_{x x}-i w^{2} \bar{w}_{x}+\frac{1}{2}|w|^{4} w=0 . \tag{2}
\end{equation*}
$$

Under the form (dNLS), the derivative nonlinear Schrödinger equation is sometimes referred to as the Chen-Liu-Lee equation [5]. The form (1) might be called the KaupNewell equation [25]. The form (2) is the Gerdzhikov-Ivanov equation [18]. Yet another notable (but apparently not christened) form of (dNLS) is obtained setting

$$
z(t, x)=\exp \left(\frac{i}{4} \int_{-\infty}^{x}|u(t, y)|^{2} \mathrm{~d} y\right) u(t, x)
$$

Then z solves

$$
\begin{equation*}
i z_{t}+z_{X x}-\frac{i}{2}|z|^{2} z_{X}+\frac{i}{2} z^{2} \bar{z}_{X}+\frac{3}{16}|z|^{4} z=0 . \tag{3}
\end{equation*}
$$

The equation (3) played a central role in the papers on global well-posedness [53,54]. Since all these derivative nonlinear Schrödinger equations are related via gauge transformations, any result on one of the forms can a priori be transferred to the other forms. Depending on the aim, some form usually turns out to be much easier to work with than the others. In this article, we will mostly use the form (dNLS).

Interestingly, given a solution u of (dNLS) and $\lambda>0$, then

$$
u_{\lambda}(t, x)=\frac{1}{\sqrt{\lambda}} u\left(\frac{t}{\lambda^{2}}, \frac{x}{\lambda}\right)
$$

is also a solution of (dNLS). In particular, (dNLS) is L^{2}-critical. However, its behavior widely differs from the one of its celebrated power-type counter part, the $1 d$ quintic nonlinear Schrödinger equation. In particular, (dNLS) is not invariant by the pseudoconformal transformation and no explicit (and in fact not at all) blow-up solution is known for (dNLS). Another main difference between (dNLS) and quintic NLS is that the former one is not invariant by a Galilean transform.

The equation (dNLS) can be written in Hamiltonian form as

$$
i u_{t}=E^{\prime}(u),
$$

where the Hamiltonian (or energy) is given by

$$
E(u)=\frac{1}{2}\left\|u_{x}\right\|_{L^{2}}^{2}+\frac{1}{4} \mathcal{I}_{m} \int_{\mathbb{R}}|u|^{2} \bar{u} u_{x} \mathrm{~d} x .
$$

At least formally, the Hamiltonian E is conserved along the flow of (dNLS). In addition, two other quantities are conserved: the mass and the momentum, defined by

$$
M(u)=\frac{1}{2}\|u\|_{L^{2}}^{2}, \quad P(u)=\frac{1}{2} \mathcal{I} m \int_{\mathbb{R}} u \bar{u}_{x} \mathrm{~d} x .
$$

Note that (dNLS) is an integrable equation (see e.g., [25]) and there exists in fact an infinity of conservation laws (see e.g., [51]). However, our goal here is to study the properties of the solutions of (dNLS) with a robust method not relying on its algebraic peculiarities. Our approach may be applied to other similar non-integrable equations, e.g., the generalized derivative nonlinear Schrödinger equations considered in [1, 16, 33, 34, 43].

As is now well known, given real parameters $\omega>0$ and $-2 \sqrt{\omega}<c \leqslant 2 \sqrt{\omega}$, there exist traveling waves solutions of (dNLS) of the form

$$
R_{\omega, c}(t, x)=e^{i \omega t} \phi_{\omega, c}(x-c t) .
$$

The profiles $\phi_{\omega, c}$ are unique up to phase shifts and translations (see e.g., [7]) and are given by an explicit formula (see Section 2 for details). The stability of the solitary waves of (dNLS) was considered in [7, 19, 26]. In particular, in [7], Colin and Ohta proved that for any $(\omega, c) \in \mathbb{R}^{2}$ with $c^{2}<4 \omega$, the solitary wave $R_{\omega, c}$ is orbitally stable. The orbital stability of the lump soliton in the case $c=2 \sqrt{\omega}$ was considered very recently by Kwon and Wu in [26]. The stability theory for a more general version of (dNLS) was developed in [34] by Liu, Simpson and Sulem.

Multisolitons are solutions to (dNLS) that behave at large time like a sum of solitons. They can be proved to exist by inverse scattering transform (see [25] for (dNLS) or [55] for the cubic nonlinear Schrödinger equation) using energy methods (see [11, 12, 35] for the nonlinear Schrödinger equation or e.g., [14, 24] for Schrödinger systems) or with fixed point arguments (see [11, 28, 29] for the nonlinear Schrödinger equation).

As each individual solitary wave of (dNLS) is stable, it is reasonable to investigate the stability of a sum of solitary waves; this will be our goal in this article. Precisely, we want to show that, under some conditions, if the initial data is close to a sum of solitons profiles then the associated solution of (dNLS) will behave for any positive time as a sum of solitons. To our knowledge, no information was available so far on the stability of these multisolitons configurations.

To study the stability of multisolitons, several approaches are possible. One can work in weighted spaces and get asymptotic stability results for multisolitons configurations $[45,46]$. An alternative approach, when the underlying equation is integrable, is to take advantage of the integrable structure to obtain stability (in a relatively restricted class of functions), see e.g., [17]. Finally, one can work in the energy space, and this is what will be done in this article. We will prove a result in the same family as the results obtained by Martel, Merle, and Tsai for the Kortweg-de Vries equation [36] and the twisted nonlinear Schrödinger equation [37]. This approach was later extended to the Gross-Pitaevskii equation by Bethuel, Gravejat, and Smets [3] and to the Landau-Lifshitz equation by de Laire and Gravejat [13]. Instability results are available in [10, 11].

Our main result is the following.
Theorem 1.1. Let $N \in \mathbb{N}$. For $j=1, \ldots, N$ let $\omega_{j} \in(0, \infty), c_{j} \in\left(-2 \sqrt{\omega_{j}}, 2 \sqrt{\omega_{j}}\right), x_{j} \in \mathbb{R}$ and $\theta_{j} \in \mathbb{R}$. Let $\left(\phi_{j}\right)=\left(\phi_{\omega_{j}, c_{j}}\right)$ be the corresponding solitary wave profiles given by the explicit
formula (6). For $j=2, \ldots, N$, let

$$
\sigma_{j}=2 \frac{\omega_{j}-\omega_{j-1}}{c_{j}-c_{j-1}}
$$

Assume that for $j=2, \ldots, N$ we have

$$
\begin{equation*}
\sigma_{j}>0 \quad \text { and } \quad c_{j-1}<\sigma_{j}<c_{j} \tag{4}
\end{equation*}
$$

Then there exist $\alpha>0, L_{0}>0, A_{0}>0$ and $\delta_{0}>0$ such that for any $u_{0} \in H^{1}(\mathbb{R}), L>L_{0}$ and $0<\delta<\delta_{0}$, the following property is satisfied. If

$$
\left\|u_{0}-\sum_{j=1}^{N} e^{i \theta_{j}} \phi_{j}\left(\cdot-x_{j}\right)\right\|_{H^{1}} \leqslant \delta
$$

and if for all $j=1, \ldots, N-1$,

$$
x_{j+1}-x_{j}>L
$$

the solution u of (dNLS) with $u(0)=u_{0}$ is globally defined in $H^{1}(\mathbb{R})$ for $t \geqslant 0$, and there exist functions $\tilde{X}_{1}(t), \ldots, \tilde{X}_{N}(t) \in \mathbb{R}$, and $\tilde{\theta}_{1}(t), \ldots, \tilde{\theta}_{N}(t) \in \mathbb{R}$, such that for all $t \geqslant 0$,

$$
\left\|u(t)-\sum_{j=1}^{N} e^{i \tilde{\theta}_{j}(t)} \phi_{j}\left(\cdot-\tilde{x}_{j}(t)\right)\right\|_{H^{1}} \leqslant A_{0}\left(\delta+e^{-\alpha L}\right)
$$

The functions $\tilde{\theta}_{j}$ and \tilde{x}_{j} are of class \mathcal{C}^{1} and verify

$$
\left|\partial_{t} \tilde{x}_{j}-c_{j}\right|+\left|\partial_{t} \tilde{\theta}_{j}-\omega_{j}\right| \leqslant A_{0}\left(\delta+e^{-\alpha L}\right) .
$$

Remark 1.2. An example of a range of parameters verifying (4) is given by

$$
\omega_{j}=j^{2}+1, \quad c_{j}=2 j, \quad j=1, \ldots, N .
$$

It is not hard to construct many other examples.

Remark 1.3. Since $\partial_{t} \tilde{x}_{j} \sim c_{j}$ and $\partial_{t} \tilde{\theta}_{j} \sim \omega_{j}$, the behavior of $e^{i \tilde{\theta}_{j}(t)} \phi_{j}\left(\cdot-\tilde{x}_{j}(t)\right)$ is close to the one of $R_{\omega_{j}, c_{j}}(t)$.

Remark 1.4. As we are trying to prove a stability result for the multisolitons configuration, it is natural to assume that we start with well-ordered solitary waves, i.e.

$$
\begin{equation*}
c_{1}<c_{2}<\cdots<c_{N}, \quad \text { and } \quad x_{1}<x_{2}<\cdots<x_{N} . \tag{5}
\end{equation*}
$$

This prevents the crossing of solitary waves at a later time.
As in [37], the stronger condition (4) that we impose on the parameters of the waves is needed for technical purposes. Indeed, to obtain monotonicity properties for functionals \mathcal{I}_{j} (see Proposition 5.3) combining mass and momentum for u, one is lead to apply a Galilean transform to u to obtain a new unknown v for which the functionals \mathcal{I}_{j} are only of momentum type. The new unknown v satisfies a derivative nonlinear Schrödinger equation with an additional nonlinearity which is defocusing if $\sigma_{j}>0$ and focusing if $\sigma_{j}<0$. The functionals \mathcal{I}_{j} can be proved to satisfy the desired monotonicity property only in the defocusing case, hence condition (4).

A consequence of (4) is that

$$
\omega_{1}<\omega_{2}<\cdots<\omega_{N}
$$

In other words, the larger the amplitude is, the faster the soliton should travel. This is somehow reminiscent from what happens in the context of the Korteweg-de Vries (KdV) equation, where speed and amplitude are controlled by the same parameter [36]. Another similitude with the KdV equation, consequence of (4), is that our solitons should all be traveling to the right (i.e., with positive speeds), except for the first one, which is allowed to travel to the left (i.e., with negative speed).

The speed/frequency ratio condition is different from the equivalent one in [37, condition (A3)]. In particular, [37, condition (A3)] allows for the solitary waves to have equal frequencies, in which case the only condition for the speeds is to be strictly increasing. This is ruled out by (4).

Finally, we conjecture that condition (4) is only technical and stability of multisolitary waves configurations should hold only under the natural condition (5), as it is the case for the Korteweg-de Vries equation [36] or the Gross-Pitaevskii equation [3].

Remark 1.5. The constant α in Theorem 1.1 can be made explicit: $\alpha=\frac{1}{32} \omega_{\star}$, where ω_{\star} is the minimal decay rate of the solitons defined in (19).

Remark 1.6. Our theorem does not cover the case where one of the solitons is a lump soliton, i.e., when $c_{j}=2 \sqrt{\omega_{j}}$ for some $j=1, \ldots, N$. Indeed, lump solitons are significantly different from the other solitons (algebraic decay instead of exponential decay, weaker stability, etc.), which prevent to include them in our analysis.

Remark 1.7. The main technical differences between (NLS) and (dNLS) are that the later one is not any more Galilean invariant and there is no scaling between solitons. Nevertheless, the proof of our result is largely inspired by the proof of [37, Theorem 1]. As far as possible, we have tried to keep the same (or similar) notations.

Our strategy for the proof of Theorem 1.1 is, as in [36, 37], the following. We use a bootstrap argument, which goes as follows. Assume that an initial data u_{0} is located close enough to a sum of soliton profiles, and that the associated solution u to (dNLS) stays until some time T in a neighborhood of size ε of a sum of (modulated) solitons profiles. The bootstrap argument tells us that, in fact, u stays until the same time T in a neighborhood of size $\varepsilon / 2$ of a sum of (modulated) solitons profiles. This allows us to extend the time T up to ∞ and proves the stability of the configuration. To obtain the bootstrap result, we rely on several ingredients. First, we need a modulation result around the soliton profiles. As usual, modulation is obtained via the Implicit Function Theorem, with here the particularity that we rely on explicit calculations to prove invertibility of the Jacobian. This is a specific feature of (dNLS) which allows us to modulate in a more natural way than in [37]. The second ingredient is a coercivity property for a linearized action functional. The functional is based on the linearized action around each soliton, which we prove to be coercive (up to some orthogonality conditions). The third ingredient is a series of monotonicity properties for suitably localized mass/momentum functionals. These monotonicity properties are involved in a crucial way in the control of the modulation parameters.

The rest of the article is organized as follows. In Section 2, we review and develop the stability theory for a single solitary wave. In particular, we obtain a coercivity property for the linearized action functional around a single soliton using variational characterizations. In Section 3, we state the bootstrap argument and prove Theorem 1.1. Section 4 is devoted to the modulation result. In Section 5, we derive the monotonicity properties of localized mass/momentum functionals. Section 6 deals with the construction of the action-like linearized functional for the sum of solitons and its coercivity properties. In Section 7, we control the modulation parameters using the monotonicity properties. Finally, in Section 8 we prove the bootstrap result.

Notation. The space $L^{2}(\mathbb{R})$ is considered as a real Hilbert space with the scalar product

$$
(u, v)_{2}=\mathcal{R e} \int_{\mathbb{R}} u \bar{v} \mathrm{~d} x .
$$

Whenever an inequality is true up to a positive constant, we use the notation \gtrsim or \lesssim. Throughout the article, the letter C will denote various positive constants whose exact value may vary from line to line but is of no importance in the analysis.

Remark 1.8. After completion of this work, we have learned that the stability of a twosoliton solution of (dNLS) has been obtained independently by Miao, Tang and Xu [39]. One main difference is that Miao, Tang and Xu [39] work using mainly the form (3), whereas our article is based on the form (dNLS). Another significant difference, having consequences on the whole proof, is that Miao, Tang and Xu obtain coercivity of the action functional up to a set of four orthogonality conditions (see [39, Proposition 2.2]), whereas we work only with three orthogonality conditions (see Proposition 2.1).

2 Solitary Waves and Stability Theory

We will need for the study of the stability of a sum of solitary waves some tools coming from the stability theory of a single solitary wave. These tools are however not immediately available in the literature and we need to introduce them ourselves in this section. We believe that the results presented in this section are of independent interest and may be useful for further studies of (dNLS).

Recall that given parameters $\omega>0$ and $|C|<2 \sqrt{\omega}$, there exist traveling waves solutions of (dNLS) of the form

$$
R_{\omega, c}(t, x)=e^{i \omega t} \phi_{\omega, c}(x-c t) .
$$

The profile $\phi_{\omega, c}$ is unique up to phase shifts and translations (see e.g., [7]) and is given by the explicit formula

$$
\begin{equation*}
\phi_{\omega, c}(x)=\varphi_{\omega, c}(x) \exp \left(\frac{c}{2} i x-\frac{i}{4} \int_{-\infty}^{x}\left|\varphi_{\omega, c}(\xi)\right|^{2} \mathrm{~d} \xi\right) \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi_{\omega, c}(x)=\left(\frac{\sqrt{\omega}}{4 \omega-c^{2}}\left(\cosh \left(x \sqrt{4 \omega-c^{2}}\right)-\frac{c}{2 \sqrt{\omega}}\right)\right)^{-\frac{1}{2}} \tag{7}
\end{equation*}
$$

The profile is also the unique (up to phase shifts and translations) solution to the elliptic ordinary differential equation

$$
\begin{equation*}
-\phi_{x x}-i|\phi|^{2} \phi_{x}+\omega \phi+i c \phi_{x}=0 \tag{8}
\end{equation*}
$$

and it is also a critical point of the action functional S,

$$
S=S_{\omega, c}=E+\omega M+c P .
$$

For future reference, note that the function $\varphi_{\omega, c}$ verifies the equation

$$
-\varphi_{X X}+\left(\omega-\frac{c^{2}}{4}\right) \varphi-\frac{1}{2} \mathcal{I} m\left(\varphi \bar{\varphi}_{X}\right) \varphi+\frac{c}{2}|\varphi|^{2} \varphi-\frac{3}{16}|\varphi|^{4} \varphi=0,
$$

or, since $\varphi_{\omega, c}$ is real,

$$
\begin{equation*}
-\varphi_{x x}+\left(\omega-\frac{c^{2}}{4}\right) \varphi+\frac{c}{2}|\varphi|^{2} \varphi-\frac{3}{16}|\varphi|^{4} \varphi=0 . \tag{9}
\end{equation*}
$$

From the explicit formula (6), we see that $\phi_{\omega, c}$ is exponentially decaying. Precisely, we have

$$
\begin{equation*}
\left|\partial_{X} \phi_{\omega, c}(x)\right|+\left|\phi_{\omega, c}(x)\right| \leqslant e^{-\sqrt{\omega-\frac{c^{2}}{4}}|x|} . \tag{10}
\end{equation*}
$$

Note that this decay is not affected by a Gauge transform or a Galilean transform.
The main result of this section is the following coercivity property.

Proposition 2.1 (Coercivity for one solitary wave). For any $\omega, c \in \mathbb{R}$ with $4 \omega>c^{2}$, there exists $\mu \in \mathbb{R}$ such that for any $\varepsilon \in H^{1}(\mathbb{R})$ verifying the orthogonality conditions

$$
\left(\varepsilon, i \phi_{\omega, c}\right)_{2}=\left(\varepsilon, \partial_{x} \phi_{\omega, c}\right)_{2}=\left(\varepsilon, \phi_{\omega, c}+i \mu \partial_{x} \phi_{\omega, c}\right)_{2}=0
$$

we have

$$
H_{\omega, c}(\varepsilon):=\left\langle S_{\omega, c}^{\prime \prime}\left(\phi_{\omega, c}\right) \varepsilon, \varepsilon\right\rangle \gtrsim\|\varepsilon\|_{H^{1}}^{2} .
$$

Remark 2.2. If $c<0$, then we can choose $\mu=0$.

Remark 2.3. Following the classical approach by Weinstein [52] (see e.g., [27] for an introduction), one obtains as a corollary of Proposition 2.1 the orbital stability of solitary waves.

Notation. Many quantities defined in this article will depend on ω and c. For the sake of clarity in notation, we shall very often drop the subscript ω, c and dependency in ω and c will be only understood.

For future reference, we give the explicit expression of $S^{\prime \prime}(\phi) \varepsilon$:

$$
\begin{equation*}
S^{\prime \prime}(\phi) \varepsilon=-\partial_{X X} \varepsilon-i|\phi|^{2} \partial_{x} \varepsilon-2 i \operatorname{Re}(\phi \bar{\varepsilon}) \phi_{x}+\omega \varepsilon+i c \partial_{x} \varepsilon, \tag{11}
\end{equation*}
$$

and the explicit expression of H :

$$
H(\varepsilon)=\left\|\varepsilon_{X}\right\|_{L^{2}}^{2}+\mathcal{I} m \int_{\mathbb{R}}|\phi|^{2} \bar{\varepsilon} \varepsilon_{x} \mathrm{~d} x+2 \int_{\mathbb{R}} \mathcal{R e}(\phi \bar{\varepsilon}) \operatorname{Im}\left(\phi_{x} \bar{\varepsilon}\right) \mathrm{d} x+\omega\|\varepsilon\|_{L^{2}}^{2}+c \mathcal{I}_{m} \int_{\mathbb{R}} \varepsilon \bar{\varepsilon}_{x} \mathrm{~d} x .
$$

The proof of Proposition 2.1 makes use of the following minimization result. Define for $v \in H^{1}(\mathbb{R})$ the Nehari functional corresponding to (8) by

$$
I(V)=I_{\omega, c}(V)=\left\|V_{X}\right\|_{L^{2}}^{2}+\mathcal{I} m \int_{\mathbb{R}}|V|^{2} \bar{v} V_{X} \mathrm{~d} x+\omega\|V\|_{L^{2}}^{2}+c \mathcal{I} m \int_{\mathbb{R}} V \bar{V}_{x} \mathrm{~d} x .
$$

Remark that $I(v)=\frac{\partial}{\partial t} S(t v)_{\mid t=0}$. Define the minimum of the action S on the Nehari manifold by

$$
m_{\mathcal{N}}=\inf \left\{S(v) ; v \in H^{1}(\mathbb{R}) \backslash\{0\}, I(v)=0\right\}
$$

and let the set of minimizers be denoted by

$$
\mathcal{G}_{\mathcal{N}}:=\left\{V \in H^{1}(\mathbb{R}) \backslash\{0\} ; I(v)=0, S(v)=m_{\mathcal{N}}\right\}
$$

Proposition 2.4. Let $\omega, c \in \mathbb{R}$ be such that $4 \omega>c^{2}$. Then $m_{\mathcal{N}}>0$ and $\phi_{\omega, c}$ is up to phase shift and translation the unique minimizer for $m_{\mathcal{N}}$, that is

$$
\mathcal{G}_{\mathcal{N}}=\left\{e^{i \theta} \phi_{\omega, c}(x-y) ; \theta, y \in \mathbb{R}\right\} .
$$

Proposition 2.4 was first obtained by Colin and Ohta [7, Lemma 10]. As the proof is not relevant for the main purpose of this paper, we omit it.

With Proposition 2.4 in hand, we can now proceed to the proof of Proposition 2.1.

Proof of Proposition 2.1. For simplicity in notation we drop the subscript ω, c in $\phi_{\omega, c}$ and simply write ϕ instead. We shall follow more or less the scheme of proof already used
in [2]. We start by rewriting $S^{\prime \prime}(\phi)$ (see (11)) as a two by two matrix operator depending on $(\mathcal{R e}(\phi), \mathcal{I m}(\phi))$ and acting on $(\mathcal{R e}(\varepsilon), \mathcal{I m}(\varepsilon))^{T}$:

$$
S^{\prime \prime}(\phi)=\left(\begin{array}{cc}
-\partial_{x x}+\omega+2 \operatorname{Re}(\phi) \operatorname{Im}\left(\phi_{X}\right) & 2 \operatorname{Im}(\phi) \operatorname{Im}\left(\phi_{x}\right)+|\phi|^{2} \partial_{X}-c \partial_{x} \\
-2 \operatorname{Re}(\phi) \operatorname{Re}\left(\phi_{x}\right)-|\phi|^{2} \partial_{x}+c \partial_{x} & -\partial_{x x}+\omega-2 \operatorname{Im}(\phi) \operatorname{Re}\left(\phi_{x}\right)
\end{array}\right) .
$$

Step 1: Global spectral picture. Since ϕ is exponentially localized, $S^{\prime \prime}(\phi)$ can be considered as compact perturbation of

$$
\left(\begin{array}{cc}
-\partial_{x x}+\omega & -c \partial_{x} \\
c \partial_{x} & -\partial_{x x}+\omega
\end{array}\right) .
$$

Therefore its essential spectrum is $\left[\omega-\frac{c^{2}}{4}, \infty\right)$ and by Weyl's Theorem its spectrum in $\left(-\infty, \omega-\frac{c^{2}}{4}\right)$ consists of isolated eigenvalues. Due to the variational characterization Proposition 2.4, $S^{\prime \prime}(\phi)$ admits at most one negative eigenvalue. Using that ϕ satisfies to the Nehari constraint $I(\phi)=0$, we have

$$
\left\langle S^{\prime \prime}(\phi) \phi, \phi\right\rangle=2 \mathcal{I} m \int_{\mathbb{R}}|\phi|^{2} \bar{\phi} \phi_{x} \mathrm{~d} x=-2 L(\phi)<0
$$

This implies that the operator $S^{\prime \prime}(\phi)$ has exactly one negative eigenvalue.
Step 2: Non-degeneracy of the kernel. We claim that $\operatorname{ker}\left(S^{\prime \prime}(\phi)\right)=\operatorname{span}\left\{i \phi, \phi_{x}\right\}$. Write

$$
\varepsilon=\exp \left(i\left(\frac{c}{2} x-\frac{1}{4} \int_{-\infty}^{x}|\phi|^{2} \mathrm{~d} y\right)\right)\left(k-\frac{i \varphi}{2} \int_{-\infty}^{x} \varphi \operatorname{Re}(k) \mathrm{d} y\right),
$$

where $\varphi=\varphi_{\omega, c}$ is the modulus part of ϕ given explicitly in formula (7). The idea behind the construction of ε in terms of k is to expand

$$
\exp \left(i\left(\frac{c}{2} x-\frac{1}{4} \int_{-\infty}^{x}|\varphi+k|^{2} \mathrm{~d} y\right)\right)(\varphi+k)
$$

in powers of k and take ε as the first order in k. We need to verify that ε and k are in a one-to-one correspondence. Arguing as before, one can expand

$$
\exp \left(-i\left(\frac{c}{2} x-\frac{1}{4} \int_{-\infty}^{x}|\phi+\varepsilon|^{2} \mathrm{~d} y\right)\right)(\phi+\varepsilon),
$$

in terms of ε and guess that the formula for k terms of ε should be

$$
k=\exp \left(-i\left(\frac{c}{2} x-\frac{1}{4} \int_{-\infty}^{x}|\phi|^{2} \mathrm{~d} y\right)\right)\left(\varepsilon+\frac{i \phi}{2} \int_{-\infty}^{x} \mathcal{R e}(\phi \bar{\varepsilon}) \mathrm{d} y\right) .
$$

Direct calculations show that this is indeed the correct formula.

Then

$$
\begin{aligned}
S^{\prime \prime}(\phi) \varepsilon=-k_{x x} & +\left(\omega-\frac{c^{2}}{4}\right) k+i \frac{1}{2} \varphi \varphi_{x} \operatorname{Im}(k)-i \frac{1}{2} \varphi^{2} \mathcal{I} m\left(k_{x}\right) \\
& +\frac{c}{2} \varphi^{2} k+c \varphi^{2} \operatorname{Re}(k)-\frac{3}{16} \varphi^{4} k-\frac{12}{16} \varphi^{4} \operatorname{Re}(k) .
\end{aligned}
$$

Separating in real and imaginary part, we obtain

$$
S^{\prime \prime}(\phi) \varepsilon=L_{+} \operatorname{Re}(k)+i L_{-} \mathcal{I}_{m}(k),
$$

where

$$
\begin{aligned}
& L_{+}=-\partial_{x x}+\left(\omega-\frac{c^{2}}{4}\right)+\frac{3 c}{2} \varphi^{2}-\frac{15}{16} \varphi^{4}, \\
& L_{-}=-\partial_{x x}+\left(\omega-\frac{c^{2}}{4}\right)+\frac{c}{2} \varphi^{2}-\frac{3}{16} \varphi^{4}+\frac{\varphi \varphi_{x}}{2}-\frac{\varphi^{2}}{2} \partial_{x} .
\end{aligned}
$$

Hence proving non-degeneracy for $S^{\prime \prime}(\phi)$ amounts to proving non-degeneracy of L_{+}and L_{-}. That is, we want to prove that

$$
\operatorname{ker}\left(L_{+}\right)=\operatorname{span}\left\{\varphi_{x}\right\}, \quad \operatorname{ker}\left(L_{-}\right)=\operatorname{span}\{\varphi\} .
$$

Since φ satisfies (9), it is clear that $L_{-} \varphi=0$. Let $v \in H^{2}(\mathbb{R}) \backslash\{0\}$ be such that $L_{-} V=0$. Consider the Wronskian of φ and v :

$$
W=\varphi_{x} V-\varphi V_{x} .
$$

It verifies the equation

$$
W^{\prime}=-\frac{\varphi^{2}}{2} W
$$

and therefore it is of the form

$$
W(x)=C e^{-\frac{1}{2} \int_{0}^{x} \varphi^{2}(y) \mathrm{d} y}
$$

Since $\varphi, V \in H^{2}(\mathbb{R})$, we have

$$
\lim _{x \rightarrow \pm \infty} \varphi(x)=\lim _{x \rightarrow \pm \infty} \varphi_{X}(x)=\lim _{x \rightarrow \pm \infty} V(x)=\lim _{x \rightarrow \pm \infty} V_{X}(x)=0
$$

Therefore,

$$
\lim _{x \rightarrow \pm \infty} W(x)=0,
$$

which is possible only if $W \equiv 0$. Therefore $v \in \operatorname{span}\{\varphi\}$ and this proves non-degeneracy of L_{-}. The non-degeneracy of L_{+}follows from similar arguments.
Step 3: Construction of a negative direction. From explicit calculations using (7)-(8), we find that the mass, momentum and energy are given by

$$
\begin{align*}
M\left(\phi_{\omega, c}\right) & =4 \arctan \sqrt{\frac{2 \sqrt{\omega}+c}{2 \sqrt{\omega}-c}} \tag{12}\\
P\left(\phi_{\omega, c}\right) & =\sqrt{4 \omega-c^{2}} \tag{13}\\
E\left(\phi_{\omega, c}\right) & =-\frac{c}{2} \sqrt{4 \omega-c^{2}} . \tag{14}
\end{align*}
$$

Moreover, we have

$$
\begin{align*}
\partial_{\omega} M\left(\phi_{\omega, c}\right) & =-\frac{c}{\omega \sqrt{4 \omega-c^{2}}}, \tag{15}\\
\partial_{c} M\left(\phi_{\omega, c}\right)=\partial_{\omega} P\left(\phi_{\omega, c}\right) & =\frac{2}{\sqrt{4 \omega-c^{2}}}, \tag{16}\\
\partial_{c} P\left(\phi_{\omega, c}\right) & =-\frac{c}{\sqrt{4 \omega-c^{2}}} . \tag{17}
\end{align*}
$$

Differentiating (8) with respect to ω and c, we observe that

$$
S^{\prime \prime}(\phi) \partial_{\omega} \phi=-\phi, \quad S^{\prime \prime}(\phi) \partial_{c} \phi=-i \phi_{x} .
$$

Let $\mu \in \mathbb{R}$ to be chosen later and define

$$
\psi=\partial_{\omega} \phi+\mu \partial_{c} \phi
$$

We have

$$
\left\langle S^{\prime \prime}(\phi) \psi, \psi\right\rangle=-\left\langle\phi, \partial_{\omega} \phi\right\rangle-\mu\left\langle\phi, \partial_{c} \phi\right\rangle-\mu\left\langle i \phi_{x}, \partial_{\omega} \phi\right\rangle-\mu^{2}\left\langle i \phi_{x}, \partial_{c} \phi\right\rangle .
$$

Moreover, using (15)-(17), we get

$$
\left.\begin{array}{rlrl}
\left\langle\phi, \partial_{\omega} \phi\right\rangle & =\frac{\partial}{\partial \omega} M\left(\phi_{\omega, c}\right) & =\frac{-\frac{c}{\omega}}{\sqrt{4 \omega-c^{2}}}, & \left\langle\phi, \partial_{c} \phi\right\rangle
\end{array}\right)=\frac{\partial}{\partial c} M\left(\phi_{\omega, c}\right)=\frac{2}{\sqrt{4 \omega-c^{2}}}, ~=\left\langle i \phi_{x}, \partial_{c} \phi\right\rangle=\frac{\partial}{\partial c} P\left(\phi_{\omega, c}\right)=\frac{-c}{\sqrt{4 \omega-c^{2}}} .
$$

This gives

$$
\begin{equation*}
\left\langle S^{\prime \prime}(\phi) \psi, \psi\right\rangle=\left(\frac{c}{\omega}-4 \mu+c \mu^{2}\right) \frac{1}{\sqrt{4 \omega-c^{2}}} \tag{18}
\end{equation*}
$$

Therefore, since $4 \omega-c^{2}>0$, there always exists μ such that

$$
\left\langle S^{\prime \prime}(\phi) \psi, \psi\right\rangle<0 .
$$

Let such a μ be fixed now. If $c<0$, we can choose $\mu=0$. If $c=0$, we can choose $\mu=1$ and if $c>0$ we can choose $\mu=\frac{2}{c}$.
Step 4: Positivity. Let us now denote by $-\lambda$ and ξ the negative eigenvalue of $S^{\prime \prime}(\phi)$ and its corresponding normalized eigenvector, i.e.,

$$
S^{\prime \prime}(\phi) \xi=-\lambda \xi, \quad\|\xi\|_{L^{2}}=1
$$

We write the decomposition of ψ along the spectrum of $S^{\prime \prime}(\phi)$:

$$
\psi=\alpha \xi+\zeta+\eta
$$

with $\alpha \in \mathbb{R}, \alpha \neq 0, \zeta \in \operatorname{ker}\left(S^{\prime \prime}(\phi)\right)$ and η in the positive eigenspace of $S^{\prime \prime}(\phi)$. In particular, we have

$$
\left\langle S^{\prime \prime}(\phi) \eta, \eta\right\rangle \gtrsim\|\eta\|_{L^{2}}^{2} .
$$

Take $\varepsilon \in H^{1}(\mathbb{R}) \backslash\{0\}$ such that the following orthogonality conditions hold

$$
(\varepsilon, i \phi)_{2}=\left(\varepsilon, \partial_{x} \phi\right)_{2}=\left(\varepsilon, \phi+i \mu \phi_{x}\right)_{2}=0 .
$$

We also write the decomposition of ε along the spectrum of $S^{\prime \prime}(\phi)$:

$$
\varepsilon=\beta \xi+\rho,
$$

with ρ in the positive eigenspace of $S^{\prime \prime}(\phi)$. Since

$$
-\phi-i \mu \phi_{x}=S^{\prime \prime}(\phi) \psi=-\alpha \lambda \xi+S^{\prime \prime}(\phi) \eta
$$

we have

$$
0=-\left(\phi+i \mu \phi_{x}, \varepsilon\right)_{2}=\left\langle S^{\prime \prime}(\phi) \psi, \varepsilon\right\rangle=-\alpha \beta \lambda+\left\langle S^{\prime \prime}(\phi) \eta, \rho\right\rangle,
$$

thus

$$
\left\langle S^{\prime \prime}(\phi) \eta, \rho\right\rangle=\alpha \beta \lambda .
$$

From Cauchy-Schwarz inequality, we have

$$
(\alpha \beta \lambda)^{2}=\left\langle S^{\prime \prime}(\phi) \eta, \rho\right\rangle^{2} \leqslant\left\langle S^{\prime \prime}(\phi) \eta, \eta\right\rangle\left\langle S^{\prime \prime}(\phi) \rho, \rho\right\rangle .
$$

In addition, since $\left\langle S^{\prime \prime}(\phi) \psi, \psi\right\rangle<0$, we have

$$
\left\langle S^{\prime \prime}(\phi) \eta, \eta\right\rangle<\alpha^{2} \lambda .
$$

Therefore,

$$
\left\langle S^{\prime \prime}(\phi) \varepsilon, \varepsilon\right\rangle=-\beta^{2} \lambda+\left\langle S^{\prime \prime}(\phi) \rho, \rho\right\rangle \geqslant-\beta^{2} \lambda+\frac{(\alpha \beta \lambda)^{2}}{\left\langle S^{\prime \prime}(\phi) \eta, \eta\right\rangle}>-\beta^{2} \lambda+\frac{(\alpha \beta \lambda)^{2}}{\alpha^{2} \lambda}=0 .
$$

Step 5: Coercivity. To obtain the desired coercivity property, we argue by contradiction. Let ε_{n} be such that $\left\|\varepsilon_{n}\right\|_{H^{1}}=1$, for each $n \in \mathbb{N}$ the orthogonality conditions

$$
\left(\varepsilon_{n}, i \phi\right)_{2}=\left(\varepsilon_{n}, \partial_{x} \phi\right)_{2}=\left(\varepsilon_{n}, \phi+i \mu \phi_{x}\right)_{2}=0
$$

are satisfied, and

$$
\lim _{n \rightarrow \infty}\left\langle S^{\prime \prime}(\phi) \varepsilon_{n}, \varepsilon_{n}\right\rangle=0
$$

By boundedness, there exists $\varepsilon_{\infty} \in H^{1}(\mathbb{R})$ such that

$$
\varepsilon_{n} \rightharpoonup \varepsilon_{\infty} \text { weakly in } H^{1}(\mathbb{R})
$$

On one hand, by weak convergence, ε_{∞} verifies the orthogonality conditions

$$
\left(\varepsilon_{\infty}, i \phi_{\omega, c}\right)_{2}=\left(\varepsilon_{\infty}, \partial_{x} \phi_{\omega, c}\right)_{2}=\left(\varepsilon_{\infty}, \phi_{\omega, c}+i \mu \phi_{x}\right)_{2}=0 .
$$

In particular, if $\varepsilon_{\infty} \not \equiv 0$, then, by Step 4 , we have

$$
\left\langle S^{\prime \prime}(\phi) \varepsilon_{\infty}, \varepsilon_{\infty}\right\rangle>0
$$

On the other hand, we remark that $\left\langle S^{\prime \prime}(\phi) \varepsilon, \varepsilon\right\rangle=H(\varepsilon)$ can be written

$$
H(\varepsilon)=\left\|\varepsilon_{X}-i \frac{C}{2} \varepsilon\right\|_{L^{2}}^{2}+\left(\omega-\frac{c^{2}}{4}\right)\|\varepsilon\|_{L^{2}}^{2}+\mathcal{I} m \int_{\mathbb{R}}|\phi|^{2} \bar{\varepsilon} \varepsilon_{X} \mathrm{~d} x+2 \int_{\mathbb{R}} \operatorname{Re}(\phi \bar{\varepsilon}) \mathcal{I} m\left(\phi_{x} \bar{\varepsilon}\right) \mathrm{d} x .
$$

By weak convergence of ε_{n}, exponential localization of ϕ and ϕ_{x} and compactness of the injection of H^{1} into L^{2} for bounded domain, we have

$$
\left\langle S^{\prime \prime}(\phi) \varepsilon_{\infty}, \varepsilon_{\infty}\right\rangle \leqslant \lim _{n \rightarrow \infty}\left\langle S^{\prime \prime}(\phi) \varepsilon_{n}, \varepsilon_{n}\right\rangle=0
$$

Therefore we must have $\varepsilon_{\infty}=0$. Since $\left\|\varepsilon_{n}\right\|_{H^{1}}=1$, there exists $\delta>0$ such that

$$
\left\|\partial_{x} \varepsilon_{n}-i \frac{c}{2} \varepsilon_{n}\right\|_{L^{2}}^{2}+\left(\omega-\frac{c^{2}}{4}\right)\left\|\varepsilon_{n}\right\|_{L^{2}}^{2}>\delta .
$$

Moreover, since $\lim _{n \rightarrow \infty}\left\langle S^{\prime \prime}(\phi) \varepsilon_{n}, \varepsilon_{n}\right\rangle=0$, we have

$$
\mathcal{I} m \int_{\mathbb{R}}|\phi|^{2} \varepsilon_{\infty}\left(\bar{\varepsilon}_{\infty}\right)_{x} \mathrm{~d} x+2 \int_{\mathbb{R}} \operatorname{Re}\left(\phi \bar{\varepsilon}_{\infty}\right) \operatorname{Im}\left(\bar{\phi}_{x} \varepsilon_{\infty}\right) \mathrm{d} x<-\delta<0 .
$$

However, it is a contradiction with $\varepsilon_{\infty}=0$. Hence the coercivity result Proposition 2.1 holds.

3 The Bootstrap Argument

This section is devoted to the proof of Theorem 1.1 using a bootstrap argument which will be proved later.

Let $c_{1}<\cdots<c_{N}$ and $0<\omega_{1}<\cdots<\omega_{N}$ be such that $c_{j}^{2}<4 \omega_{j}$ for $j=1, \ldots, N$ and the speed-frequency ratio assumption (4) is verified. Let $\left(\phi_{j}\right)=\left(\phi_{\omega_{j}, c_{j}}\right)$ be the corresponding solitons profiles. We define the minimal decay rate of the profiles by

$$
\begin{equation*}
\omega_{\star}=\min \left\{\sqrt{\omega_{j}-\frac{c_{j}^{2}}{4}} ; j=1, \ldots, N\right\} . \tag{19}
\end{equation*}
$$

Define also the minimal relative speed c_{\star} by

$$
\begin{equation*}
c_{\star}=\min \left\{\left|c_{j}-c_{k}\right| ; j, k=1, \ldots, N, j \neq k\right\} . \tag{20}
\end{equation*}
$$

Given $A_{0}, L, \delta>0$, define a tubular neighborhood of the N-soliton profiles by

$$
\begin{aligned}
& \mathcal{V}\left(\delta, L, A_{0}\right) \\
& \quad=\left\{u \in H^{1}(\mathbb{R}) ; \inf _{\substack{x_{j}>x_{j}-1 \\
\theta_{j} \in \mathbb{R}}}\left\|u-\sum_{j=1}^{N} \mathrm{e}^{i \theta_{j}} \phi_{j}\left(\cdot-x_{j}\right)\right\|_{H^{1}}<A_{0}\left(\delta+\mathrm{e}^{-\frac{1}{32} \omega_{\star} L}\right)\right\} .
\end{aligned}
$$

Theorem 1.1 is a straightforward consequence of the following bootstrap result.

Proposition 3.1 (Bootstrap). There exist $A_{0}>1$, fixed, and $L_{0}>0$ and $\delta_{0}>0$ such that for all $L>L_{0}, 0<\delta<\delta_{0}$ the following property is satisfied. If $u_{0} \in H^{1}(\mathbb{R})$ verifies

$$
u_{0} \in \mathcal{V}(\delta, L, 1)
$$

and if $t^{\star}>0$ is such that for all $t \in\left[0, t^{\star}\right]$ the solution u of (dNLS) with $u(0)=u_{0}$ verifies

$$
u(t) \in \mathcal{V}\left(\delta, L, A_{0}\right)
$$

then for all $t \in\left[0, t^{\star}\right]$ we have

$$
u(t) \in \mathcal{V}\left(\delta, L, \frac{A_{0}}{2}\right)
$$

Before performing the proof of Proposition 3.1, let us indicate how it implies Theorem 1.1.

Proof of Theorem 1.1. Since $u_{0} \in \mathcal{V}(\delta, L, 1)$, and u is continuous in $H^{1}(\mathbb{R})$, there exists a maximal time $t^{\star} \in(0, \infty]$ such that for all $t \in\left[0, t^{\star}\right)$ we have

$$
u(t) \in \mathcal{V}\left(\delta, L, A_{0}\right)
$$

Arguing by contradiction, we assume that $t^{\star}<\infty$. By Proposition 3.1, for all $t \in\left[0, t^{\star}\right)$ we have

$$
u(t) \in \mathcal{V}\left(\delta, L, \frac{A_{0}}{2}\right)
$$

By continuity of u in $H^{1}(\mathbb{R})$, there must exist $t^{\star \star}>t^{\star}$ such that for all $t \in\left[0, t^{\star \star}\right)$ we have

$$
u(t) \in \mathcal{V}\left(\delta, L, A_{0}\right)
$$

This however contradicts the maximality of t^{\star}. Hence $t^{\star}=\infty$. This concludes the proof.

The rest of this article is devoted to the proof of Proposition 3.1. From now on, we assume that we are given $A_{0}>1, L>L_{0}=L_{0}\left(A_{0}\right)>0$ and $0<\delta<\delta_{0}=\delta_{0}\left(A_{0}\right)$ such that

$$
u_{0} \in \mathcal{V}(\delta, L, 1)
$$

and there exists $t^{\star}>0$ such that for all $t \in\left[0, t^{\star}\right]$ the solution u of (dNLS) with $u(0)=u_{0}$ verifies

$$
u(t) \in \mathcal{V}\left(\delta, L, A_{0}\right)
$$

In the sequel, we shall always assume $t \in\left[0, t^{\star}\right]$.

4 Modulation

We first explain how to decompose u close to the sum of solitons. Roughly speaking, we project u on the manifold of the sum of soliton profiles modulated in phase, speed, space and scaling. Since we impose the modulated speed and scaling to have the same ratio as the original speed and scaling, we in fact modulate on a family of $3 N$ parameters.

Proposition 4.1 (Modulation). For δ and $1 / L$ small enough, the following property is verified. For $j=1, \ldots, N$ there exist (unique) \mathcal{C}^{1}-functions

$$
\tilde{\theta}_{j}:\left[0, t^{\star}\right] \rightarrow \mathbb{R}, \quad \tilde{\omega}_{j}:\left[0, t^{\star}\right] \rightarrow(0, \infty), \quad \tilde{x}_{j}:\left[0, t^{\star}\right] \rightarrow \mathbb{R}, \quad \tilde{c}_{j}:\left[0, t^{\star}\right] \rightarrow \mathbb{R}
$$

such that if we define modulated solitons \tilde{R}_{j} and ε by

$$
\tilde{R}_{j}(t)=e^{i \tilde{\theta}(t)} \phi_{\tilde{\omega}_{j}(t), \tilde{c}_{j}(t)}\left(\cdot-\tilde{x}_{j}(t)\right), \quad \varepsilon(t)=u(t)-\sum_{j=1}^{N} \tilde{R}_{j}(t),
$$

then ε satisfies for all $t \in\left[0, t^{\star}\right]$ the orthogonality conditions

$$
\begin{equation*}
\left(\varepsilon, i \tilde{R}_{j}\right)_{2}=\left(\varepsilon, \partial_{x} \tilde{R}_{j}\right)_{2}=\left(\varepsilon, \tilde{R}_{j}+\mu_{j} i \partial_{x} \tilde{R}_{j}\right)_{2}=0, \quad j=1, \ldots, N . \tag{21}
\end{equation*}
$$

Here, the constants $\mu_{j}=\mu_{j}\left(\omega_{j}, c_{j}\right)$ are given by Proposition 2.1 ; in particular, they are independent of t. The scaling and speed parameters verify for all $t \in\left[0, t^{\star}\right]$ and for any $j=1, \ldots, N$ the relationship

$$
\begin{equation*}
\tilde{c}_{j}(t)-c_{j}=\mu_{j}\left(\tilde{\omega}_{j}(t)-\omega_{j}\right) . \tag{22}
\end{equation*}
$$

Moreover, there exists $\tilde{C}>0$ such that for all $t \in\left[0, t^{\star}\right]$ we have

$$
\begin{gather*}
\|\varepsilon(t)\|_{H^{1}}+\sum_{j=1}^{N}\left(\left|\tilde{\omega}_{j}(t)-\omega_{j}\right|+\left|\tilde{c}_{j}(t)-c_{j}\right|\right) \leqslant \tilde{C} A_{0}\left(\delta+e^{-\frac{1}{4} \omega_{\star} L}\right), \tag{23}\\
\tilde{x}_{j+1}(t)-\tilde{x}_{j}(t)>\frac{L}{2}, \quad \text { for } j=1, \ldots, N-1, \tag{24}
\end{gather*}
$$

and the derivatives in time verify

$$
\begin{equation*}
\sum_{j=1}^{N}\left|\partial_{t} \tilde{c}_{j}\right|+\left|\partial_{t} \tilde{\omega}_{j}\right|+\left|\partial_{t} \tilde{\theta}_{j}-\tilde{\omega}_{j}\right|+\left|\partial_{t} \tilde{x}_{j}-\tilde{c}_{j}\right| \leqslant \tilde{C}\|\varepsilon(t)\|_{H^{1}}+\tilde{C} e^{-\frac{1}{4} \omega_{\star} L} \tag{25}
\end{equation*}
$$

Finally, at $t=0$ the estimate does not depend on A_{0} and we have

$$
\begin{equation*}
\|\varepsilon(0)\|_{H^{1}}+\sum_{j=1}^{N}\left(\left|\tilde{\omega}_{j}(0)-\omega_{j}\right|+\left|\tilde{c}_{j}(0)-c_{j}\right|\right) \leqslant \tilde{C}\left(\delta+\mathrm{e}^{-\frac{1}{4} \omega_{\star} L}\right) . \tag{26}
\end{equation*}
$$

Remark 4.2. We modulate here in a different way as in [37].
First, we also make speeds vary, whereas in [37] the speeds were fixed and modulation was only on phase, position and scaling. However, we do not really modulate the speeds; instead, we introduce the condition (22) on the speed frequency ratio. This condition is linked to the orthogonality conditions which are themselves dictated to us by our coercivity result Proposition 2.1.

Second, we modulate in position on the full profile $\phi_{\omega, c}$, whereas in [37] modulation in position was done only on the modulus of the profile (the equivalent of $\varphi_{\omega, c}$ in our setting). The way we modulate is more natural, but it introduces a technical difficulty in the proof of the modulation result. Precisely, the Jacobian given by (32) is not diagonal and its invertibility is not obvious. We are able to overcome this difficulty in our setting thanks to our knowledge of the explicit expressions of the profiles.

Proof of Proposition 4.1. The existence and regularity of the functions $\left(\tilde{\theta}_{j}, \tilde{x}_{j}, \tilde{\omega}_{j}, \tilde{c}_{j}\right)$ follow from classical arguments involving the Implicit Function Theorem. The main difficulty here is that we have a non-diagonal Jacobian, and proving its invertibility requires an additional argument compare to the usual setting. The modulation estimates (25) are obtained via the combination of the equation verified by ε with the orthogonality conditions (21). We only give the important steps of the proof.

Let

$$
q=\left(\tilde{\theta}_{1}, \ldots, \tilde{\theta}_{N} ; \tilde{x}_{1}, \ldots, \tilde{X}_{N} ; \tilde{\omega}_{1}, \ldots, \tilde{\omega}_{N} ; v\right) \in \mathbb{R}^{3 N} \times H^{1}(\mathbb{R})
$$

and

$$
q_{0}=\left(\theta_{1}, \ldots, \theta_{N} ; x_{1}, \ldots, x_{N} ; \omega_{1}, \ldots, \omega_{N} ; \sum_{j=1}^{N} e^{i \theta_{j}} \phi_{j}\left(\cdot-x_{j}\right)\right) .
$$

For a given q, define the speeds \tilde{c}_{j} by

$$
\begin{equation*}
\tilde{c}_{j}=c_{j}+\mu_{j}\left(\tilde{\omega}_{j}-\omega_{j}\right) . \tag{27}
\end{equation*}
$$

Define also the modulated profiles \tilde{R}_{j} and the difference ε by

$$
\tilde{R}_{j}=e^{i \tilde{\theta}} \phi_{\tilde{\omega}_{j}, \tilde{c}_{j}}\left(\cdot-\tilde{x}_{j}\right), \quad \varepsilon=V-\sum_{j=1}^{N} \tilde{R}_{j} .
$$

Consider the function $\Phi: \mathbb{R}^{3 N} \times H^{1}(\mathbb{R}) \rightarrow \mathbb{R}^{3 N}$ defined by $\Phi=\left(\Phi^{1}, \Phi^{2}, \Phi^{3}\right)$ with

$$
\Phi_{j}^{1}=\left(\varepsilon, i \tilde{R}_{j}\right)_{2}, \quad \Phi_{j}^{2}=\left(\varepsilon, \partial_{X} \tilde{R}_{j}\right)_{2}, \quad \Phi_{j}^{3}=\left(\varepsilon, \tilde{R}_{j}+i \mu_{j} \partial_{X} \tilde{R}_{j}\right)_{2} .
$$

Note that

$$
\left.\frac{\partial \varepsilon}{\partial \tilde{\theta}_{j}}\right|_{q=q_{0}}=-i R_{j},\left.\quad \frac{\partial \varepsilon}{\partial \tilde{x}_{j}}\right|_{q=q_{0}}=\partial_{x} R_{j},
$$

and by the relationship (27), we have

$$
\left.\frac{\partial \varepsilon}{\partial \tilde{\omega}_{j}}\right|_{q=q_{0}}=-\left(\partial_{\omega} R_{j}+\mu_{j} \partial_{c} R_{j}\right)
$$

Using the explicit formula (6)-(7) for $\phi_{\omega, c}$, we have

$$
\begin{align*}
& \left\|\phi_{\omega, c}\right\|_{L^{2}}^{2}=8 \arctan \sqrt{\frac{2 \sqrt{\omega}+c}{2 \sqrt{\omega}-c}} \tag{2}\\
& \left\|\phi_{\omega, c}\right\|_{L^{4}}^{4}=16 c \arctan \sqrt{\frac{2 \sqrt{\omega}+c}{2 \sqrt{\omega}-c}}+8 \sqrt{4 \omega-c^{2}} \tag{29}\\
& \left\|\phi_{\omega, c}\right\|_{L^{6}}^{6}=32\left(c^{2}+2 \omega\right) \arctan \sqrt{\frac{2 \sqrt{\omega}+c}{2 \sqrt{\omega}-c}}+24 c \sqrt{4 \omega-c^{2}} \tag{30}
\end{align*}
$$

We also have

$$
\begin{equation*}
\left\|\partial_{x} \phi_{\omega, c}\right\|_{L^{2}}^{2}=8 \omega \arctan \sqrt{\frac{2 \sqrt{\omega}+c}{2 \sqrt{\omega}-c}} \tag{31}
\end{equation*}
$$

Then,

$$
\begin{aligned}
& \left.\frac{\mathrm{d} \Phi_{j}^{1}}{\mathrm{~d} \tilde{\theta}_{j}}\right|_{q=q_{0}}=-\left\|R_{j}\right\|_{L^{2}}^{2}=-8 \arctan \left(\sqrt{\frac{2 \sqrt{\omega_{j}}+c_{j}}{2 \sqrt{\omega_{j}}-c_{j}}}\right), \\
& \left.\frac{\mathrm{d} \Phi_{j}^{2}}{\mathrm{~d} \tilde{X}_{j}}\right|_{q=q_{0}}=\left\|\partial_{X} R_{j}\right\|_{L^{2}}^{2}=8 \omega_{j} \arctan \left(\sqrt{\frac{2 \sqrt{\omega_{j}}+c_{j}}{2 \sqrt{\omega_{j}}-c_{j}}}\right),
\end{aligned}
$$

where the explicit values come from the formulas in (28) and (31). Using

$$
R_{j}+i \mu_{j} \partial_{x} R_{j}=M^{\prime}\left(R_{j}\right)+\mu_{j} P^{\prime}\left(R_{j}\right)
$$

and (15)-(17), we have

$$
\begin{aligned}
\left.\frac{\mathrm{d} \Phi_{j}^{3}}{\mathrm{~d} \tilde{\omega}_{j}}\right|_{q=q_{0}} & =-\left(\partial_{\omega} R_{j}+\mu_{j} \partial_{c} R_{j}, R_{j}+i \mu_{j} \partial_{X} R_{j}\right)_{2} \\
& =-\left(\partial_{\omega} M\left(R_{j}\right)+\mu_{j}\left(\partial_{c} M\left(R_{j}\right)+\partial_{\omega} P\left(R_{j}\right)\right)+\mu_{j}^{2} \partial_{c} P\left(R_{j}\right)\right) \\
& =\left(\frac{c_{j}}{\omega_{j}}-4 \mu_{j}+c_{j} \mu_{j}^{2}\right) \frac{1}{\sqrt{4 \omega_{j}-c_{j}^{2}}}<0,
\end{aligned}
$$

where at the last inequality we recalled (18) and the choice of μ_{j}. Moreover, since $x_{j+1}-$ $x_{j}>L$, when $j \neq k$, for $l=1,2,3$ we have

$$
\left.\frac{\mathrm{d} \Phi_{j}^{l}}{\mathrm{~d} \tilde{\theta}_{k}}\right|_{q=q_{0}}=\left.\frac{\mathrm{d} \Phi_{j}^{l}}{\mathrm{~d} \tilde{x}_{k}}\right|_{q=q_{0}}=\left.\frac{\mathrm{d} \Phi_{j}^{l}}{\mathrm{~d} \tilde{\omega}_{k}}\right|_{q=q_{0}}=O\left(\mathrm{e}^{-\frac{1}{2} \omega_{*} L}\right)
$$

We easily verify that

$$
\begin{aligned}
& \left(\left.\frac{\mathrm{d} \Phi_{j}^{3}}{\mathrm{~d} \tilde{\theta}_{j}}\right|_{q=q_{0}}\right)=\left(-i R_{j}, R_{j}+i \mu_{j} \partial_{X} R_{j}\right)_{2}=0, \\
& \left(\left.\frac{\mathrm{~d} \Phi_{j}^{3}}{\mathrm{~d} \tilde{x}_{j}}\right|_{q=q_{0}}\right)=\left(\partial_{X} R_{j}, R_{j}+i \mu_{j} \partial_{x} R_{j}\right)_{2}=0 .
\end{aligned}
$$

Furthermore, using the explicit expression of ϕ_{j} as well as the formulas (28) and (29), we have

$$
\begin{aligned}
\left.\frac{\mathrm{d} \Phi_{j}^{1}}{\mathrm{~d} \tilde{x}_{j}}\right|_{q=q_{0}} & =-\left.\frac{\mathrm{d} \Phi_{j}^{2}}{\mathrm{~d} \tilde{\theta}_{j}}\right|_{q=q_{0}}=\left(\partial_{x} R_{j}, i R_{j}\right)_{2} \\
& =\left(\partial_{x} \phi_{j}, i \phi_{j}\right)_{2}=\left(\partial_{x} \varphi_{j}+\frac{i c}{2} \varphi_{j}-\frac{i}{4}\left|\varphi_{j}\right|^{2} \varphi_{j}, i \varphi_{j}\right)_{2}=\frac{c}{2}\left\|\varphi_{j}\right\|_{L^{2}}^{2}-\frac{1}{4}\left\|\varphi_{j}\right\|_{L^{4}}^{4} \\
& =-2 \sqrt{4 \omega_{j}-c_{j}^{2}}
\end{aligned}
$$

The Jacobian matrix of the derivative of the function $q \mapsto \Phi(q)$ with respect to $\left(\tilde{\theta}_{j}, \tilde{x}_{j}, \tilde{\omega}_{j}\right)$ is the 3×3 block matrix

$$
D \Phi=\left.\left(\begin{array}{lll}
\frac{d \Phi_{j}^{1}}{d \tilde{\theta}_{k}} & \frac{d \Phi_{j}^{1}}{d \tilde{x}_{k}} & \frac{d \Phi_{j}^{1}}{d \tilde{\omega}_{k}} \tag{32}\\
\frac{d \Phi_{j}^{2}}{d \tilde{\theta}_{k}} & \frac{d \Phi_{j}^{2}}{d \tilde{x}_{k}} & \frac{d \Phi_{j}^{2}}{d \tilde{\omega}_{k}} \\
\frac{d \Phi_{j}^{j}}{d \tilde{\theta}_{k}} & \frac{d \Phi_{j}^{j}}{d \tilde{x}_{k}} & \frac{d \Phi_{j}^{3}}{d \tilde{\omega}_{k}}
\end{array}\right)\right|_{q=q_{0}} .
$$

Each block is diagonal up to $O\left(\mathrm{e}^{-\frac{1}{2} \omega_{*} L}\right)$. All terms on the main diagonal are non-zero and have been explicitly computed. The block terms at $(3,1)$ and $(3,2)$ are of order $O\left(\mathrm{e}^{-\frac{1}{2} \omega_{\star} L}\right)$. Therefore, the determinant of the matrix is

$$
\begin{aligned}
\operatorname{det}(D \Phi)= & \prod_{j=1}^{N} \frac{\left(\frac{c_{j}}{\omega_{j}}-4 \mu_{j}+c_{j} \mu_{j}^{2}\right)}{\sqrt{4 \omega_{j}-c_{j}^{2}}} . \\
& \cdot \prod_{j=1}^{N}\left(-64 \omega_{j}\left(\arctan \left(\sqrt{\frac{2 \sqrt{\omega_{j}}+c_{j}}{2 \sqrt{\omega_{j}}-c_{j}}}\right)\right)^{2}+\left(2 \sqrt{4 \omega_{j}-c_{j}^{2}}\right)^{2}\right)+O\left(\mathrm{e}^{-\frac{1}{2} \omega_{*} L}\right) .
\end{aligned}
$$

Consider the function $f(\omega, c)$ defined by

$$
f(\omega, c)=8 \sqrt{\omega} \arctan \left(\sqrt{\frac{2 \sqrt{\omega}+c}{2 \sqrt{\omega}-c}}\right)-2 \sqrt{4 \omega-c^{2}}
$$

By explicit calculations, we have

$$
\partial_{c} f(\omega, c)=\frac{2(c+2 \sqrt{\omega})}{\sqrt{4 \omega-c^{2}}}>0 .
$$

Moreover, at $c=-2 \sqrt{\omega}$ the function starts with $f(\omega,-2 \sqrt{\omega})=0$. This implies that $f(\omega, c)>0$ for all $(\omega, c) \in \mathbb{R}^{2}$ with $4 \omega>c^{2}$. As a consequence, for any $j=1, \ldots, N$ we have

$$
\begin{equation*}
64 \omega_{j} \arctan \left(\sqrt{\frac{2 \sqrt{\omega_{j}}+c_{j}}{2 \sqrt{\omega_{j}}-c_{j}}}\right)>\left(2 \sqrt{4 \omega_{j}-c_{j}^{2}}\right)^{2} \tag{33}
\end{equation*}
$$

and we infer that

$$
\operatorname{det}(D \Phi) \neq 0
$$

Hence we can apply the Implicit Function Theorem to Φ to obtain the existence of a function $\tilde{q}_{1}=\left(\tilde{\theta}_{j}, \tilde{x}_{j}, \tilde{\omega}_{j}\right)$ from $\left[0, t^{\star}\right]$ to $\mathbb{R}^{3 N}$ such that for any $t \in\left[0, t^{\star}\right]$ we have

$$
\Phi\left(\tilde{q}_{1}(t), u(t)\right)=0 .
$$

It is clear that the modulation parameters are continuous in time. To prove that they are \mathcal{C}^{1}, one uses the equation of ε and regularization arguments. We refer the reader to [37] for details. This concludes the first part of the proof.

We now want to obtain the modulation estimates (25). Recall first that u is a solution of (dNLS), hence it verifies

$$
i u_{t}=E^{\prime}(u)
$$

Since $u=\sum_{j=1}^{N} \tilde{R}_{j}+\varepsilon$, the equation verified by ε is

$$
i \varepsilon_{t}+\sum_{j=1}^{N}\left(-\partial_{t} \tilde{\theta}_{j} \tilde{R}_{j}-i \partial_{t} \tilde{x}_{j} \partial_{x} \tilde{R}_{j}+i \partial_{t} \tilde{\omega}_{j}\left(\partial_{\omega} \tilde{R}_{j}+i \mu_{j} \partial_{c} \tilde{R}_{j}\right)\right)=E^{\prime}\left(\sum_{j=1}^{N} \tilde{R}_{j}+\varepsilon\right) .
$$

By exponential localization of the solitons and (24), we have

$$
E^{\prime}\left(\sum_{j=1}^{N} \tilde{R}_{j}+\varepsilon\right)=\sum_{j=1}^{N}\left(E^{\prime}\left(\tilde{R}_{j}\right)+E^{\prime \prime}\left(\tilde{R}_{j}\right) \varepsilon\right)+O\left(\mathrm{e}^{-\frac{1}{4} \omega_{x} L}\right)+O\left(\|\varepsilon\|_{H^{1}}^{2}\right) .
$$

Recall that each \tilde{R}_{j} verifies the equation

$$
E^{\prime}\left(\tilde{R}_{j}\right)+\tilde{\omega}_{j} M^{\prime}\left(R_{j}\right)+\tilde{c}_{j} P^{\prime}\left(R_{j}\right)=0
$$

Therefore, the equation for ε can be written as

$$
\begin{aligned}
i \varepsilon_{t} & +\sum_{j=1}^{N}\left(\left(\tilde{\omega}_{j}-\partial_{t} \tilde{\theta}_{j}\right) \tilde{R}_{j}+\left(\tilde{c}_{j}-\partial_{t} \tilde{X}_{j}\right) i \partial_{x} \tilde{R}_{j}+i \partial_{t} \tilde{\omega}_{j}\left(\partial_{\omega} \tilde{R}_{j}+\mu_{j} \partial_{c} \tilde{R}_{j}\right)\right) \\
& =\sum_{j=1}^{N} E^{\prime \prime}\left(\tilde{R}_{j}\right) \varepsilon+O\left(\mathrm{e}^{-\frac{1}{4} \omega_{*} L}\right)+O\left(\|\varepsilon\|_{H^{1}}^{2}\right) .
\end{aligned}
$$

One can see already the modulation estimates appearing. For convenience, we denote by $\operatorname{Mod}(t)$ the vector of modulation equations, i.e.

$$
\operatorname{Mod}(t)=\left(\tilde{\omega}_{j}-\partial_{t} \tilde{\theta}_{j}, \tilde{c}_{j}-\partial_{t} \tilde{x}_{j}, i \partial_{t} \tilde{\omega}_{j}\right)_{j=1, \ldots, N}
$$

Differentiating with respect to time the orthogonality conditions (21), we obtain

$$
\begin{align*}
& 0=-\left(i \varepsilon_{t}, \tilde{R}_{j}\right)_{2}+\left(\varepsilon, i \partial_{t} \tilde{R}_{j}\right)_{2} \tag{34}\\
& 0=\left(i \varepsilon_{t}, i \partial_{x} \tilde{R}_{j}\right)_{2}+\left(\varepsilon, \partial_{t} \partial_{x} \tilde{R}_{j}\right)_{2} \tag{35}\\
& 0=\left(i \varepsilon_{t}, i \tilde{R}_{j}-\mu_{j} \partial_{x} \tilde{R}_{j}\right)_{2}+\left(\varepsilon, \partial_{t}\left(\tilde{R}_{j}+i \mu_{j} \partial_{x} \tilde{R}_{j}\right)\right)_{2} \tag{36}
\end{align*}
$$

We have

$$
\begin{aligned}
\left|\left(\varepsilon, i \partial_{t} \tilde{R}_{j}\right)_{2}\right|+\left|\left(\varepsilon, \partial_{t} \partial_{X} \tilde{R}_{j}\right)_{2}\right| & +\left|\left(\varepsilon, \partial_{t}\left(\tilde{R}_{j}+i \mu_{j} \partial_{X} \tilde{R}_{j}\right)\right)_{2}\right| \\
& \lesssim(1+|\operatorname{Mod}(t)|)\|\varepsilon\|_{L^{2}} .
\end{aligned}
$$

Using the equation for ε, for the first term in the left hand side of (34), we get

$$
\begin{array}{r}
-\left(i \varepsilon_{t}, \tilde{R}_{j}\right)_{2}=\left(\tilde{\omega}_{j}-\partial_{t} \tilde{\theta}_{j}\right)\left\|\tilde{R}_{j}\right\|_{L^{2}}^{2}+\left(\tilde{c}_{j}-\partial_{t} \tilde{X}_{j}\right)\left(i \partial_{x} \tilde{R}_{j}, \tilde{R}_{j}\right)_{2} \\
+\partial_{t} \tilde{\omega}_{j}\left(i\left(\partial_{\omega} \tilde{R}_{j}+\mu_{j} \partial_{c} \tilde{R}_{j}\right), \tilde{R}_{j}\right)_{2}+(1+|\operatorname{Mod}(t)|) O\left(e^{-\frac{1}{4} \omega_{\star} L}\right)+O\left(\|\varepsilon\|_{H^{1}}\right) .
\end{array}
$$

For the first term in the left-hand side of (35), we get

$$
\begin{array}{r}
-\left(i \varepsilon_{t}, i \partial_{x} \tilde{R}_{j}\right)_{2}=\left(\tilde{\omega}_{j}-\partial_{t} \tilde{\theta}_{j}\right)\left(\tilde{R}_{j}, i \partial_{x} \tilde{R}_{j}\right)_{2}+\left(\tilde{c}_{j}-\partial_{t} \tilde{x}_{j}\right)\left\|\partial_{x} \tilde{R}_{j}\right\|_{L^{2}}^{2} \\
+\partial_{t} \tilde{\omega}_{j}\left(i\left(\partial_{\omega} \tilde{R}_{j}+\mu_{j} \partial_{C} \tilde{R}_{j}\right), i \partial_{x} \tilde{R}_{j}\right)_{2}+(1+|\operatorname{Mod}(t)|) O\left(e^{-\frac{1}{4} \omega_{\star} L}\right)+O\left(\|\varepsilon\|_{H^{1}}\right) .
\end{array}
$$

For the first term in the left-hand side of (36), there are some cancellations, and we get

$$
\begin{aligned}
-\left(i \varepsilon_{t}, i \tilde{R}_{j}-\mu_{j} \partial_{X} \tilde{R}_{j}\right)_{2}= & \partial_{t} \tilde{\omega}_{j}\left(i\left(\partial_{\omega} \tilde{R}_{j}+\mu_{j} \partial_{c} \tilde{R}_{j}\right), i \tilde{R}_{j}-\mu_{j} \partial_{X} \tilde{R}_{j}\right)_{2} \\
& +(1+|\operatorname{Mod}(t)|) O\left(\mathrm{e}^{-\frac{1}{4} \omega_{*} L}\right)+O\left(\|\varepsilon\|_{H^{1}}\right) .
\end{aligned}
$$

Remark that, in contrary to what happens in [37], the ε term is still of order 1 and not of order 2 (unless $\mu=0$, but this is ruled out by our assumptions on the $\left(c_{j}\right)$). The attentive reader will have noticed the appearance of the same elements as in the matrix $D \Phi$. We have indeed

$$
M\left(\begin{array}{c}
\tilde{\omega}_{j}-\partial_{t} \tilde{\theta}_{j} \\
\tilde{c}_{j}-\partial_{t} \tilde{X}_{j} \\
\partial_{t} \tilde{\omega}_{j}
\end{array}\right)=(1+\operatorname{Mod}(t))\left(O\left(\|\varepsilon\|_{L^{2}}\right)+O\left(\mathrm{e}^{-\frac{1}{4} \omega_{\star} L}\right)\right),
$$

for $M=\left(m_{k l}\right)$, where

$$
\begin{array}{ll}
m_{11}=\left\|\tilde{R}_{j}\right\|_{L^{2}}^{2}, & m_{12}=\left(i \partial_{x} \tilde{R}_{j}, \tilde{R}_{j}\right)_{2} \\
m_{21}=\left(\tilde{R}_{j}, i \partial_{x} \tilde{R}_{j}\right)_{2}, & m_{22}=\left\|\partial_{x} \tilde{R}_{j}\right\|_{L^{2}}^{2} \\
m_{31}=\left(i \tilde{R}_{j}-\mu_{j} \partial_{x} \tilde{R}_{j}, \tilde{R}_{j}\right)_{2}, & m_{32}=\left(i \tilde{R}_{j}-\mu_{j} \partial_{x} \tilde{R}_{j}, i \partial_{x} \tilde{R}_{j}\right)_{2} \\
m_{13}=\left(i\left(\partial_{\omega} \tilde{R}_{j}+\mu_{j} \partial_{c} \tilde{R}_{j}\right), \tilde{R}_{j}\right)_{2}, & m_{23}=\left(i\left(\partial_{\omega} \tilde{R}_{j}+\mu_{j} \partial_{c} \tilde{R}_{j}\right), i \partial_{x} \tilde{R}_{j}\right)_{2}, \\
m_{33}=\left(i\left(\partial_{\omega} \tilde{R}_{j}+\mu_{j} \partial_{c} \tilde{R}_{j}\right), i \tilde{R}_{j}-\mu_{j} \partial_{x} \tilde{R}_{j}\right)_{2} . &
\end{array}
$$

Using the explicit values of the coefficients $\left(m_{k l}\right)$ (see above calculations for $D \Phi$), we obtain

$$
M=\left(\begin{array}{ccc}
8 \arctan \left(\sqrt{\frac{2 \sqrt{\omega_{j}}+c_{j}}{2 \sqrt{\omega_{j}}-c_{j}}}\right) & 2 \sqrt{4 \omega_{j}-c_{j}^{2}} & * \\
2 \sqrt{4 \omega_{j}-c_{j}^{2}} & 8 \omega_{j} \arctan \left(\sqrt{\frac{2 \sqrt{\omega_{j}}+c_{j}}{2 \sqrt{\omega_{j}}-c_{j}}}\right) & * \\
0 & 0 & \frac{-\left(\frac{\tilde{c}_{j}}{\tilde{\omega}_{j}}-4 \mu_{j}+\tilde{c}_{j} \mu_{j}^{2}\right)}{\sqrt{4 \tilde{\omega}_{j}-\tilde{c}_{j}^{2}}}
\end{array}\right)
$$

Hence M is invertible using the same arguments as to prove that $D \Phi$ is, see in particular (33), and we can infer that

$$
\sum_{j=1}^{N}\left|\tilde{\omega}_{j}-\partial_{t} \tilde{\theta}_{j}\right|+\left|\tilde{c}_{j}-\partial_{t} \tilde{x}_{j}\right|+\left|\partial_{t} \tilde{\omega}_{j}\right| \lesssim\|\varepsilon\|_{H^{1}}+\mathrm{e}^{-\frac{1}{4} \omega_{\star} L}
$$

This concludes the proof.
We complete this section by giving estimates on the interaction between \tilde{R}_{j} and \tilde{R}_{k} when $j \neq k$.

Lemma 4.3 (Interaction estimates One). If δ and $1 / L$ are small enough, then there exists a function $g \in L_{t}^{\infty} L_{x}^{1}\left(\mathbb{R}, \mathbb{R}^{d}\right) \cap L_{t}^{\infty} L_{x}^{\infty}\left(\mathbb{R}, \mathbb{R}^{d}\right)$ such that for all $j, k=1, \ldots, N$ such that $j \neq k$, we have

$$
\begin{aligned}
\left|\tilde{R}_{j}\right|+\left|\partial_{X} \tilde{R}_{j}\right|+\left|\partial_{\omega} \tilde{R}_{j}\right|+\left|\partial_{C} \tilde{R}_{j}\right| & \lesssim \mathrm{e}^{-\omega_{\star}\left|x-\tilde{x}_{j}\right|} . \\
\mathrm{e}^{-\omega_{\star}\left|x-\tilde{x}_{j}\right|} e^{-\omega_{\star}\left|x-\tilde{x}_{k}\right|} & \leqslant \mathrm{e}^{-\frac{1}{2} \omega_{\star}\left|\tilde{x}_{j}-\tilde{x}_{k}\right|} g(t, x) .
\end{aligned}
$$

Moreover, if (23)-(25) hold, then

$$
\left|\tilde{x}_{j}-\tilde{x}_{k}\right| \geqslant \frac{1}{2}\left(L+c_{\star} t\right) .
$$

Proof. We first remark that, by the exponential decay of the soliton profiles (10) and the definition (19) of ω_{\star}, for $j=1, \ldots, N$, we have

$$
\left|\tilde{R}_{j}\right|+\left|\partial_{x} \tilde{R}_{j}\right|+\left|\partial_{\omega} \tilde{R}_{j}\right|+\left|\partial_{c} \tilde{R}_{j}\right| \lesssim \mathrm{e}^{-\omega_{*}\left|x-\tilde{x}_{j}\right|}
$$

There exists $g \in L_{t}^{\infty} L_{x}^{1}\left(\mathbb{R}, \mathbb{R}^{d}\right) \cap L_{t}^{\infty} L_{x}^{\infty}\left(\mathbb{R}, \mathbb{R}^{d}\right)$ such that

$$
\mathrm{e}^{-\omega_{\star}\left|x-\tilde{x}_{j}\right|} \mathrm{e}^{-\omega_{\star}\left|x-\tilde{x}_{k}\right|} \leqslant \mathrm{e}^{-\frac{1}{2} \omega_{\star}\left|\tilde{x}_{j}-\tilde{x}_{k}\right|} g(t, x),
$$

Indeed, let

$$
g_{j k}(t, x)=\mathrm{e}^{-\frac{1}{2} \omega_{*}\left(\left|x-\tilde{x}_{j}\right|+\left|x-\tilde{x}_{k}\right|\right)} .
$$

One can then take

$$
g(t, x)=\sum_{j \neq k} g_{j, k}(t, x) .
$$

In view of (23)-(25), we can chose δ and $1 / L$ small enough such that for any $j \neq k$ we have

$$
\left|\tilde{x}_{j}-\tilde{x}_{k}\right| \geqslant \frac{L}{2}+\frac{1}{2} c_{\star} t .
$$

This concludes the proof.

5 Monotonicity of Localized Conservations Laws

We are using an energy technique to control the main difference ε between u and the sum of modulated solitons $\sum \tilde{R}_{j}$. The energy technique consists in using the coercivity of a linearized action functional related to the conservation laws and the solitons. It can be viewed as a generalization of the method used to prove stability of a single soliton. The main difference when considering a sum of solitons is that we need to introduce a localization procedure around each soliton. We recover this way the desired coercivity property, but the price to pay is that the quantities involved are no longer conserved. Controlling their variations in time becomes a main issue, which is dealt with using monotonicity properties.

The localization procedure is the following. Let $\psi: \mathbb{R} \rightarrow[0,1]$ be a smooth cut-off function such that

$$
\begin{gathered}
\psi(x)=0 \text { for } x \leqslant-1, \quad \psi(x)=1 \text { for } x \geqslant 1, \quad \psi^{\prime}(x)>0 \text { for } x \in(-1,1), \\
\left(\psi^{\prime}(x)\right)^{2} \lesssim \psi(x), \quad\left(\psi^{\prime \prime}(x)\right)^{2} \lesssim \psi^{\prime}(x), \quad \text { for all } x \in \mathbb{R} .
\end{gathered}
$$

For $j=2, \ldots, N$, set

$$
\begin{equation*}
\tilde{\sigma}_{j}=2 \frac{\tilde{\omega}_{j}(0)-\tilde{\omega}_{j-1}(0)}{\tilde{c}_{j}(0)-\tilde{c}_{j-1}(0)} . \tag{37}
\end{equation*}
$$

Recall that $\left(\omega_{j}\right)$ and (c_{j}) verify the speed-frequency ratio assumption (4). Therefore, for δ and $1 / L$ small enough and by the estimate on the modulation parameters at initial
time (26) we have

$$
\max \left(c_{j-1}, \tilde{c}_{j-1}(0)\right)<\tilde{\sigma}_{j}<\min \left(c_{j}, \tilde{c}_{j}(0)\right), \quad j=2, \ldots, N .
$$

Set

$$
x_{j}^{\sigma}=\frac{\tilde{x}_{j-1}(0)+\tilde{x}_{j}(0)}{2}, \quad a=\frac{L^{2}}{64},
$$

and define

$$
\psi_{1} \equiv 1, \quad \psi_{j}(t, x)=\psi\left(\frac{x-x_{j}^{\sigma}-\tilde{\sigma}_{j} t}{\sqrt{t+a}}\right), j=2, \ldots, N, \quad \psi_{N+1} \equiv 0
$$

We define the cut-off functions around the j-th solitary wave by

$$
\chi_{j}(t, x)=\psi_{j}(t, x)-\psi_{j+1}(t, x), \quad j=1, \ldots, N .
$$

The reason for the introduction of cut-off functions of this form will become clear in the proof of the monotonicity properties.

We define the following functional, which is made by the combination of localized masses and momenta around each solitary wave, weighted with the corresponding modulated parameters $\tilde{\omega}_{j}(0)$ and $\tilde{c}_{j}(0)$ at $t=0$:

$$
\begin{equation*}
\mathcal{I}(t)=\frac{1}{2} \sum_{j=1}^{N} \int_{\mathbb{R}}\left(\tilde{\omega}_{j}(0)|u|^{2}+\tilde{c}_{j}(0) \mathcal{I} m\left(u \bar{u}_{x}\right)\right) \chi_{j} \mathrm{~d} x . \tag{38}
\end{equation*}
$$

The following monotonicity property for \mathcal{I} will be a key feature of the proof of Theorem 1.1.

Proposition 5.1 (Monotonicity One). If δ and $1 / L$ are small enough, then for all $t \in\left[0, t^{\star}\right]$, we have

$$
\mathcal{I}(t)-\mathcal{I}(0) \lesssim \frac{1}{L} \sup _{s \in[0, t]}\|\varepsilon(s)\|_{L^{2}}^{2}+\mathrm{e}^{-\frac{1}{16} \omega_{\star} L}
$$

To prove Proposition 5.1, it is convenient to rewrite \mathcal{I} using the functionals defined for $j=2, \ldots, N$ by

$$
\mathcal{I}_{j}(t)=\frac{1}{2} \int_{\mathbb{R}}\left(\frac{\tilde{\sigma}_{j}}{2}|u|^{2}+\mathcal{I} m\left(u \bar{u}_{x}\right)\right) \psi_{j} \mathrm{~d} x .
$$

Lemma 5.2 (Decomposition of the functional I). We have

$$
\mathcal{I}(t)=\tilde{\omega}_{1}(0) M(u)+\tilde{c}_{1}(0) P(u)+\sum_{j=2}^{N}\left(\tilde{c}_{j}(0)-\tilde{c}_{j-1}(0)\right) \mathcal{I}_{j}(t)
$$

The proof of Lemma 5.2 consists in a simple rearrangement of the sum in the definition (38) of \mathcal{I} using the definition (37) of $\tilde{\sigma}_{j}$. We omit the details.

Proposition 5.1 is a consequence of Lemma 5.2, the conservation of mass and momentum, and the following monotonicity result for each of the functionals \mathcal{I}_{j}.

Proposition 5.3 (Monotonicity Two). If δ and $1 / L$ are small enough, then for any $j=2, \ldots, N$ and $t \in\left[0, t^{\star}\right]$ we have

$$
\mathcal{I}_{j}(t)-\mathcal{I}_{j}(0) \lesssim \frac{1}{L} \sup _{s \in[0, t]}\|\varepsilon(s)\|_{L^{2}}^{2}+\mathrm{e}^{-\frac{1}{16} \omega_{\star} L}
$$

Proof of Proposition 5.3. Fix $j \in\{2, \ldots, N\}$. To express the time derivative of \mathcal{I}_{j} in a form to which we can give a sign, we will use a Galilean transformation. We define v by

$$
u(t, x)=\mathrm{e}^{i \frac{\tilde{\sigma}_{j}}{2}\left(x-x_{j}^{\sigma}-\frac{\tilde{\sigma}_{j}}{2} t\right)} V\left(t, x-x_{j}^{\sigma}-\tilde{\sigma}_{j} t\right)
$$

We insist on the fact that since (dNLS) is not Galilean invariant, v is not a solution of (dNLS) anymore. It satisfies the modified equation

$$
i v_{t}+v_{X x}+i|v|^{2} v_{x}-\frac{\tilde{\sigma}_{j}}{2}|v|^{2} v=0
$$

and we have

$$
\mathcal{I}_{j}(t)=\frac{1}{2} \int_{\mathbb{R}} \mathcal{I} m\left(V \bar{V}_{x}\right) \psi\left(\frac{x}{\sqrt{t+a}}\right) \mathrm{d} x .
$$

One realizes that the advantage of introducing \mathcal{I}_{j} is that there is now no mass factor in the expression of \mathcal{I}_{j} in terms of v. Computing the time derivative, we obtain

$$
\begin{aligned}
\frac{\partial}{\partial t} \mathcal{I}_{j}(t)= & -\frac{1}{\sqrt{t+a}} \int_{\mathbb{R}}\left(\left|V_{x}\right|^{2}+\frac{1}{2} \mathcal{I} m\left(|V|^{2} \bar{V} V_{x}\right)+\frac{\tilde{\sigma}_{j}}{8}|V|^{4}\right) \psi_{x}\left(\frac{x}{\sqrt{t+a}}\right) \mathrm{d} x \\
& +\frac{1}{4(t+a)^{\frac{3}{2}}} \int_{\mathbb{R}}|V|^{2} \psi_{x x x}\left(\frac{x}{\sqrt{t+a}}\right) \mathrm{d} x \\
& -\frac{1}{4(t+a)^{\frac{3}{2}}} \int_{\mathbb{R}} \operatorname{Im}\left(x V \bar{V}_{x}\right) \psi_{x}\left(\frac{x}{\sqrt{t+a}}\right) \mathrm{d} x .
\end{aligned}
$$

We distribute the last term between the quadratic terms. Using Young's inequality, we have

$$
\begin{aligned}
& \left|\frac{1}{4(t+a)^{\frac{3}{2}}} \int_{\mathbb{R}} \operatorname{Im}\left(x V \bar{V}_{X}\right) \psi_{x}\left(\frac{x}{\sqrt{t+a}}\right) \mathrm{d} x\right| \\
& \leqslant \frac{1}{8 \sqrt{t+a}} \int_{\mathbb{R}}\left|V_{X}\right|^{2} \psi_{x}\left(\frac{x}{\sqrt{t+a}}\right) d x+\frac{1}{8(t+a)^{\frac{3}{2}}} \int_{\mathbb{R}}|V|^{2}\left(\frac{x}{\sqrt{t+a}}\right)^{2} \psi_{x}\left(\frac{x}{\sqrt{t+a}}\right) \mathrm{d} x .
\end{aligned}
$$

In addition, since ψ_{x} is supported on $[-1,1]$, we have

$$
\frac{1}{8(t+a)^{\frac{3}{2}}} \int_{\mathbb{R}}|V|^{2}\left(\frac{x}{\sqrt{t+a}}\right)^{2} \psi_{x}\left(\frac{x}{\sqrt{t+a}}\right) \mathrm{d} x \leqslant \frac{1}{8(t+a)^{\frac{3}{2}}} \int_{\mathbb{R}}|V|^{2} \psi_{x}\left(\frac{x}{\sqrt{t+a}}\right) \mathrm{d} x .
$$

We also apply Young's inequality to the derivative part of the nonlinear term:

$$
\begin{aligned}
& \left|\frac{1}{\sqrt{t+a}} \int_{\mathbb{R}} \frac{1}{2} \mathcal{I} m\left(|v|^{2} \bar{V} V_{x}\right) \psi_{x}\left(\frac{x}{\sqrt{t+a}}\right) \mathrm{d} x\right| \leqslant \\
& \frac{1}{8 \sqrt{t+a}} \int_{\mathbb{R}}\left|V_{x}\right|^{2} \psi_{x}\left(\frac{x}{\sqrt{t+a}}\right) \mathrm{d} x+\frac{1}{2 \sqrt{t+a}} \int_{\mathbb{R}}|V|^{6} \psi_{x}\left(\frac{x}{\sqrt{t+a}}\right) \mathrm{d} x .
\end{aligned}
$$

Summarizing, we have obtained that

$$
\begin{align*}
\frac{\partial}{\partial t} \mathcal{I}_{j}(u) \leqslant & -\frac{1}{\sqrt{t+a}} \int_{\mathbb{R}}\left(\frac{3}{4}\left|V_{x}\right|^{2}-\frac{1}{2}|V|^{6}+\frac{\tilde{\sigma}_{j}}{8}|V|^{4}\right) \psi_{x}\left(\frac{x}{\sqrt{t+a}}\right) \mathrm{d} x \\
& +\frac{1}{4(t+a)^{\frac{3}{2}}} \int_{\mathbb{R}}|V|^{2}\left(\frac{1}{2} \psi_{x}+\psi_{x x x}\right)\left(\frac{x}{\sqrt{t+a}}\right) \mathrm{d} x . \tag{39}
\end{align*}
$$

By assumption (4) we have $\sigma_{j}>0$, thus we also have $\tilde{\sigma}_{j}>0$ (for δ and $1 / L$ small enough). Therefore, to obtain the (quasi)-monotonicity of \mathcal{I}_{j}, it is sufficient to bound the L^{2}-term and the nonlinear term with power 6 . This is allowed by the following claims.

Claim 5.4. For δ and $1 / L$ small enough and for any $t \in\left[0, t^{\star}\right]$, we have

$$
\int_{|x|<\sqrt{t+a}}|V|^{2} d x \leqslant 2\|\varepsilon\|_{L^{2}}^{2}+O\left(\mathrm{e}^{-\frac{1}{16} \omega_{\star}\left(c_{\star}^{\sigma} t+L\right)}\right)
$$

Claim 5.5. For δ and $1 / L$ small enough and for any $t \in\left[0, t^{\star}\right]$, we have

$$
\begin{aligned}
& \int_{\mathbb{R}}|V|^{6} \psi_{x}\left(\frac{x}{\sqrt{t+a}}\right) \mathrm{d} x \\
& \quad \leqslant \frac{1}{4} \int_{\mathbb{R}}\left|V_{x}\right|^{2} \psi_{x}\left(\frac{x}{\sqrt{t+a}}\right) \mathrm{d} x+\frac{1}{t+a}\|\varepsilon\|_{L^{2}}^{2}+O\left(\mathrm{e}^{-\frac{1}{16} \omega_{*}\left(c_{\star}^{\sigma} t+L\right)}\right)
\end{aligned}
$$

Proof of Claim 5.4. By definition of v as a Galilean transform of u, we have

$$
\begin{align*}
|v(t, x)|^{2} & =\left|u\left(t, x+x_{j}^{\sigma}+\tilde{\sigma}_{j} t\right)\right|^{2} \\
& \leqslant 2 \sum_{k=1}^{N}\left|\tilde{R}_{k}\left(t, x+x_{j}^{\sigma}+\tilde{\sigma}_{j} t\right)\right|^{2}+2\left|\varepsilon\left(t, x+x_{j}^{\sigma}+\tilde{\sigma}_{j} t\right)\right|^{2} . \tag{40}
\end{align*}
$$

By exponential decay of the solitons profiles and the control (23) on the modulation parameters ($\tilde{\omega}_{k}$) and (\tilde{c}_{k}), we have

$$
\sum_{k=1}^{N}\left|\tilde{R}_{k}\left(t, x+x_{j}^{\sigma}+\tilde{\sigma}_{j} t\right)\right|^{2} \lesssim \sum_{k=1}^{N} \mathrm{e}^{-\omega_{\star}\left|x-\tilde{x}_{k}(t)+x_{j}^{\sigma}+\tilde{\sigma}_{j} t\right|}
$$

Assume that $|x|<\sqrt{t-a}$. We have

$$
\left|x-\tilde{x}_{k}(t)+x_{j}^{\sigma}+\tilde{\sigma}_{j} t\right| \geqslant\left|\tilde{x}_{k}(t)-x_{j}^{\sigma}-\tilde{\sigma}_{j} t\right|-|x|,
$$

which for $|x|<\sqrt{t+a}<\sqrt{t}+\sqrt{a}=\sqrt{t}+\frac{L}{8}$ gives

$$
\left|x-\tilde{x}_{k}(t)+x_{j}^{\sigma}+\tilde{\sigma}_{j} t\right| \geqslant\left|\tilde{x}_{k}(t)-x_{j}^{\sigma}-\tilde{\sigma}_{j} t\right|-\sqrt{t}-\frac{L}{8} .
$$

If $k \geqslant j$, then using the dynamical system (25) verified by the modulation parameters we get

$$
\partial_{t} \tilde{X}_{k} \geqslant \partial_{t} \tilde{X}_{j} \geqslant c_{j}-\frac{c_{\star}^{\sigma}}{8} .
$$

Since in addition $\tilde{X}_{k}(0) \geqslant \tilde{x}_{j}(0)$, we have

$$
\tilde{x}_{k}(t)-x_{j}^{\sigma}-\tilde{\sigma}_{j} t \geqslant\left(c_{j}-\frac{c_{\star}^{\sigma}}{8}\right) t+\tilde{x}_{j}(0)-x_{j}^{\sigma}-\tilde{\sigma}_{j} t \geqslant \frac{c_{\star}^{\sigma}}{8} t+\frac{\tilde{x}_{j}(0)-\tilde{x}_{j-1}(0)}{2},
$$

where for the last inequality we have used $x_{j}^{\sigma}=\left(\tilde{x}_{j}(0)+\tilde{x}_{j-1}(0)\right) / 2$ and $c_{j}-\sigma_{j} \geqslant \frac{c_{\pi}^{\sigma}}{4}$. Therefore, using $\tilde{x}_{j}(0)>\tilde{x}_{j-1}(0)+L / 2$, we get

$$
\begin{equation*}
\left|x-\tilde{x}_{k}(t)+x_{j}^{\sigma}+\tilde{\sigma}_{j} t\right| \geqslant \frac{c_{\star}^{\sigma}}{8} t-\sqrt{t}+\frac{L}{8} . \tag{41}
\end{equation*}
$$

Choose now L large enough so that $\min _{t \geqslant 0}\left(\frac{c_{土}^{\sigma}}{16} t-\sqrt{t}+\frac{L}{16}\right)>0$. Then

$$
\frac{C_{\star}^{\sigma}}{8} t-\sqrt{t}+\frac{L}{8}=\frac{C_{\star}^{\sigma}}{16} t+\frac{L}{16}+\left(\frac{C_{\star}^{\sigma}}{16} t-\sqrt{t}+\frac{L}{16}\right) \geqslant \frac{C_{\star}^{\sigma}}{16} t+\frac{L}{16},
$$

and we infer from (41) that

$$
\left|x-\tilde{x}_{k}(t)+x_{j}^{\sigma}+\tilde{\sigma}_{j} t\right| \geqslant \frac{c_{\star}^{\sigma}}{16} t+\frac{L}{16} .
$$

Arguing in a similar fashion for $k \leqslant j-1$ allows us to obtain, for L large enough,

$$
\begin{equation*}
\sum_{k=1}^{N}\left|\tilde{R}_{k}\left(t, x+x_{j}^{\sigma}+\tilde{\sigma}_{j} t\right)\right|^{2} \lesssim \sum_{k=1}^{N} \mathrm{e}^{-\frac{1}{16} \omega_{\star}\left(c_{\star}^{\sigma} t+L\right)} \tag{42}
\end{equation*}
$$

Combining (40) and (42) gives the desired conclusion.

For further reference, we state here a Lemma which can be obtained using similar arguments as in Claim 5.4.

Lemma 5.6 (Interaction Estimates Two). There exists a function $g \in L_{t}^{\infty} L_{x}^{1}\left(\mathbb{R}, \mathbb{R}^{d}\right) \cap$ $L_{t}^{\infty} L_{x}^{\infty}\left(\mathbb{R}, \mathbb{R}^{d}\right)$ such that for all $j, k=1, \ldots, N$ such that $j \neq k$, we have

$$
\mathrm{e}^{-\omega_{\star}\left|x-\tilde{x}_{j}\right|} \chi_{k}(t, x) \leqslant \mathrm{e}^{-\frac{1}{32} \omega_{\star}\left(c_{\star}^{\sigma} t+L\right)} g(t, x),
$$

where

$$
\begin{equation*}
c_{\star}^{\sigma}=\min \left\{\left|\tilde{\sigma}_{j}-c_{k}\right| ; j, k=1, \ldots, N, j \neq 1\right\} . \tag{43}
\end{equation*}
$$

Let us recall without proof the following technical lemma from $[37,38]$ that is used for the proof of Claim 5.5.

Lemma 5.7. Let $w \in H^{1}(\mathbb{R})$ and let $h \geqslant 0$ be a \mathcal{C}^{2} bounded function such that \sqrt{h} is \mathcal{C}^{1} and $\left(h_{x}\right)^{2} \lesssim h$. Then

$$
\int_{\mathbb{R}}|W|^{6} h \mathrm{~d} x \leqslant 8\left(\int_{\operatorname{supp}(h)}|W|^{2} \mathrm{~d} x\right)^{2}\left(\int_{\mathbb{R}}\left|w_{X}\right|^{2} h \mathrm{~d} x+\int_{\mathbb{R}}|W|^{2} \frac{\left(h_{x}\right)^{2}}{h} \mathrm{~d} x\right),
$$

where $\operatorname{supp}(h)$ denotes the support of h.
Proof of Claim 5.5. From the technical result Lemma 5.7, we infer that

$$
\begin{aligned}
& \int_{\mathbb{R}}|v|^{6} \psi_{x}\left(\frac{x}{\sqrt{t+a}}\right) \mathrm{d} x \leqslant 8\left(\int_{|x|<\sqrt{t+a}}|v|^{2} \mathrm{~d} x\right)^{2} \\
& \quad \times\left(\int_{\mathbb{R}}\left|v_{X}\right|^{2} \psi_{x}\left(\frac{x}{\sqrt{t+a}}\right) \mathrm{d} x+\frac{1}{t+a} \int_{\mathbb{R}}|v|^{2} \frac{\left(\psi_{x x}\right)^{2}}{\psi_{x}}\left(\frac{x}{\sqrt{t+a}}\right) \mathrm{d} x\right) .
\end{aligned}
$$

Using Claim 5.4 and the fact that by construction $\frac{\left(\psi_{x x}\right)^{2}}{\psi_{x}} \lesssim 1$, we get for δ and $1 / L$ small enough that

$$
\begin{aligned}
& \int_{\mathbb{R}}|V|^{6} \psi_{x}\left(\frac{x}{\sqrt{t+a}}\right) \mathrm{d} x \\
& \quad \leqslant \frac{1}{4} \int_{\mathbb{R}}\left|V_{X}\right|^{2} \psi_{x}\left(\frac{x}{\sqrt{t+a}}\right) \mathrm{d} x+\frac{1}{2(t+a)} \int_{|x|<\sqrt{t+a}}|V|^{2} \mathrm{~d} x \\
& \quad \leqslant \frac{1}{4} \int_{\mathbb{R}}\left|V_{X}\right|^{2} \psi_{x}\left(\frac{x}{\sqrt{t+a}}\right) \mathrm{d} x+\frac{1}{t+a}\|\varepsilon\|_{L^{2}}^{2}+O\left(\mathrm{e}^{-\frac{1}{16} \omega_{\star}\left(c_{\star}^{\sigma} t+L\right)}\right)
\end{aligned}
$$

This finishes the proof of Claim 5.5.

Let us now conclude the proof of Proposition 5.3. Coming back to (39) and using $\tilde{\sigma}_{j}>0$ and Claims 5.4 and 5.5 , we get

$$
\partial_{t} \mathcal{I}_{j}(t) \lesssim \frac{1}{(t+a)^{\frac{3}{2}}}\|\varepsilon(t)\|_{L^{2}}^{2}+\mathrm{e}^{-\frac{1}{16} \omega_{\star}\left(c_{\star}^{\sigma} t+L\right)}
$$

Integrating between 0 and t, we obtain (using in particular $a=L^{2} / 64$)

$$
\mathcal{I}_{j}(t)-\mathcal{I}_{j}(0) \lesssim \frac{1}{L} \sup _{s \in\left[0, t^{\star}\right]}\|\varepsilon(s)\|_{L^{2}}^{2}+\mathrm{e}^{-\frac{1}{16} \omega_{\star}\left(c_{\star}^{\sigma} t+L\right)}
$$

and this finishes the proof.

For convenience, we also introduce here functionals similar to \mathcal{I}_{j} but with a different parameter σ. They will be useful when we will control the modulation parameters. For $j=2, \ldots, N$, let τ_{j} be such that

$$
\tilde{c}_{j-1}(0)<\tau_{j}<\tilde{c}_{j}(0)
$$

For any $j=2, \ldots, N$, we define

$$
\psi_{j, \tau_{j}}(t, x)=\psi\left(\frac{x-x_{j}^{\sigma}-\tau_{j} t}{\sqrt{t+a}}\right), \quad \mathcal{I}_{j, \tau_{j}}(t)=\frac{1}{2} \int_{\mathbb{R}}\left(\frac{\tau_{j}}{2}|u|^{2}+\mathcal{I} m\left(u \bar{u}_{x}\right)\right) \psi_{j, \tau_{j}} \mathrm{~d} x
$$

Then following the same proof as for Proposition 5.3 we get the following result.

Proposition 5.8 (Monotonicity Three). If δ and $1 / L$ are small enough, then for any $j=$ $2, \ldots, N$ and $t \in\left[0, t^{\star}\right]$ we have

$$
\mathcal{I}_{j, \tau_{j}}(t)-\mathcal{I}_{j, \tau_{j}}(0) \lesssim \frac{1}{L} \sup _{s \in\left[0, t^{\star}\right]}\|\varepsilon(s)\|_{L^{2}}^{2}+\mathrm{e}^{-\frac{1}{16} \omega_{\star} L}
$$

where

$$
c_{\star}^{\tau}=\min \left\{\left|\tau_{j}-c_{k}\right| ; j, k=1, \ldots, N, j \neq 1\right\} .
$$

6 Linearized Action Functional and Coercivity for N Solitons

For $j=1, \ldots, N$, we define an action functional related to the j-th soliton by

$$
S_{j}(v)=E(v)+\tilde{\omega}_{j}(0) M(v)+\tilde{c}_{j}(0) P(v)
$$

For the sum of N solitons we define an action-like functional \mathcal{S} which will correspond to S_{j} locally around the j-th soliton. The functional \mathcal{S} is given by

$$
\mathcal{S}(t)=E(u(t))+\mathcal{I}(t)
$$

where \mathcal{I} is the functional composed of localized masses and momenta defined in (38).
It is classical when working with solitons and related solutions of nonlinear dispersive equations to introduce functionals related to the second variation of the action. In our context, we will work with the functional \mathcal{H}, obtained as follows.

Lemma 6.1 (Expansion of the action). For $t \in\left[0, t^{\star}\right]$, we have

$$
\begin{align*}
\mathcal{S}(t)= & \sum_{j=1}^{N} S_{j}\left(\phi_{\tilde{\omega}_{j}(0), \tilde{c}_{j}(0)}\right)+\frac{1}{2} \mathcal{H}(t) \\
& +\sum_{j=1}^{N} O\left(\left|\tilde{\omega}_{j}(t)-\tilde{\omega}_{j}(0)\right|^{2}\right)+o\left(\|\varepsilon\|_{H^{1}}^{2}\right)+O\left(\mathrm{e}^{-\frac{1}{32} \omega_{\star}\left(c_{\star}^{\sigma} t+L\right)}\right), \tag{44}
\end{align*}
$$

where

$$
\begin{aligned}
\mathcal{H}(t)= & \left\|\varepsilon_{x}\right\|_{L^{2}}^{2}+\sum_{j=1}^{N} \mathcal{I} m \int_{\mathbb{R}}\left(\left|\tilde{R}_{j}\right|^{2} \bar{\varepsilon} \varepsilon_{x}+\tilde{R}_{j} \partial_{x} \tilde{R}_{j}(\bar{\varepsilon})^{2}+\overline{\tilde{R}}_{j} \partial_{x} \tilde{R}_{j}|\varepsilon|^{2}\right) \mathrm{d} x \\
& +\sum_{j=1}^{N}\left(\tilde{\omega}_{j}(t) \int_{\mathbb{R}}|\varepsilon|^{2} \chi_{j} \mathrm{~d} x+\tilde{c}_{j}(t) \mathcal{I} m \int_{\mathbb{R}} \varepsilon \bar{\varepsilon}_{x} \chi_{j} \mathrm{~d} x\right)
\end{aligned}
$$

Proof. Writing $u=\sum_{j=1}^{N} \tilde{R}_{j}+\varepsilon$, we expand in the components of \mathcal{S}. For the energy, we have

$$
E(u)=E\left(\sum_{j=1}^{N} \tilde{R}_{j}\right)+E^{\prime}\left(\sum_{j=1}^{N} \tilde{R}_{j}\right) \varepsilon+\frac{1}{2}\left\langle E^{\prime \prime}\left(\sum_{j=1}^{N} \tilde{R}_{j}\right) \varepsilon, \varepsilon\right\rangle+o\left(\|\varepsilon\|_{H^{1}}^{2}\right) .
$$

From Lemma 4.3 (Interaction Estimates One), we have

$$
\begin{aligned}
& E\left(\sum_{j=1}^{N} \tilde{R}_{j}\right)=\sum_{j=1}^{N} E\left(\tilde{R}_{j}\right)+O\left(\mathrm{e}^{-\frac{1}{4} \omega_{\star}\left(c_{\star} t+L\right)}\right), \\
& E^{\prime}\left(\sum_{j=1}^{N} \tilde{R}_{j}\right) \varepsilon=\sum_{j=1}^{N} E^{\prime}\left(\tilde{R}_{j}\right) \varepsilon+O\left(\mathrm{e}^{-\frac{1}{4} \omega_{\star}\left(c_{*} t+L\right)}\right), \\
&\left\langle E^{\prime \prime}\left(\sum_{j=1}^{N} \tilde{R}_{j}\right) \varepsilon, \varepsilon\right\rangle= \sum_{j=1}^{N}\left\langle E^{\prime \prime}\left(\tilde{R}_{j}\right) \varepsilon, \varepsilon\right\rangle+O\left(\mathrm{e}^{-\frac{1}{4} \omega_{\star}\left(c_{\star} t+L\right)}\right) .
\end{aligned}
$$

From Lemma 5.6 (Interaction Estimates Two), we also have

$$
\begin{aligned}
\frac{1}{2} \int_{\mathbb{R}}|u|^{2} \chi_{j} \mathrm{~d} x & =M\left(\tilde{R}_{j}\right)+2 M^{\prime}\left(\tilde{R}_{j}\right) \varepsilon+\frac{1}{2} \int_{\mathbb{R}}|\varepsilon|^{2} \chi_{j} \mathrm{~d} x+O\left(\mathrm{e}^{-\frac{1}{32} \omega_{\star}\left(c_{\star}^{\sigma} t+L\right)}\right) \\
\frac{1}{2} \mathcal{I} m \int_{\mathbb{R}} u \bar{u}_{x} \chi_{j} \mathrm{~d} x & =P\left(\tilde{R}_{j}\right)+2 P^{\prime}\left(\tilde{R}_{j}\right) \varepsilon+\frac{1}{2} \mathcal{I} m \int_{\mathbb{R}} \varepsilon \bar{\varepsilon}_{x} \chi_{j} \mathrm{~d} x+O\left(\mathrm{e}^{-\frac{1}{32} \omega_{\star}\left(c_{\star}^{\sigma} t+L\right)}\right)
\end{aligned}
$$

Recall that, for $j=1, \ldots, N$, the function \tilde{R}_{j} verifies

$$
E^{\prime}\left(\tilde{R}_{j}\right)+\tilde{\omega}_{j}(t) M^{\prime}\left(\tilde{R}_{j}\right)+\tilde{c}_{j}(t) P^{\prime}\left(\tilde{R}_{j}\right)=0 .
$$

Therefore, we have

$$
\begin{align*}
\mathcal{S}(t)= & \sum_{j=1}^{N} S_{j}\left(\tilde{R}_{j}\right)+\sum_{j=1}^{N}\left(\tilde{\omega}_{j}(0)-\tilde{\omega}_{j}(t)\right) M^{\prime}\left(\tilde{R}_{j}\right) \varepsilon+\sum_{j=1}^{N}\left(\tilde{c}_{j}(0)-\tilde{c}_{j}(t)\right) P^{\prime}\left(\tilde{R}_{j}\right) \varepsilon \\
& +\frac{1}{2} \sum_{j=1}^{N}\left\langle E^{\prime \prime}\left(\tilde{R}_{j}\right) \varepsilon, \varepsilon\right\rangle+\sum_{j=1}^{N} \tilde{\omega}_{j}(0) \frac{1}{2} \int_{\mathbb{R}}|\varepsilon|^{2} \chi_{j} \mathrm{~d} x+\sum_{j=1}^{N} \tilde{c}_{j}(0) \frac{1}{2} \int_{\mathbb{R}} \varepsilon \bar{\varepsilon}_{x} \chi_{j} \mathrm{~d} x \\
& +O\left(\mathrm{e}^{-\frac{1}{32} \omega_{\star}\left(c_{\star}^{\sigma} t+L\right)}\right)+o\left(\|\varepsilon\|_{H^{1}}^{2}\right) . \tag{45}
\end{align*}
$$

A Taylor expansion in $\tilde{\omega}_{j}$ gives (using that $\tilde{R}_{j}(0)$ is a critical point of S_{j})

$$
\begin{equation*}
S_{j}\left(\tilde{R}_{j}(t)\right)=S_{j}\left(\tilde{R}_{j}(0)\right)+O\left(\left|\tilde{\omega}_{j}(t)-\tilde{\omega}_{j}(0)\right|^{2}\right) \tag{46}
\end{equation*}
$$

Moreover, using phase and translation invariances, we have

$$
\begin{equation*}
S_{j}\left(\tilde{R}_{j}(0)\right)=S_{j}\left(\phi_{\tilde{\omega}_{j}(0), \tilde{c}_{j}(0)}\right) \tag{4}
\end{equation*}
$$

Using the relation (22) between $\tilde{\omega}$ and \tilde{c} and the last orthogonality condition on ε in (21), for all $j=1, \ldots, N$ we obtain

$$
\begin{aligned}
& \left(\tilde{\omega}_{j}(0)-\tilde{\omega}_{j}(t)\right) M^{\prime}\left(\tilde{R}_{j}\right) \varepsilon+\left(\tilde{c}_{j}(0)-\tilde{c}_{j}(t)\right) P^{\prime}\left(\tilde{R}_{j}\right) \varepsilon \\
& \quad=\left(\tilde{\omega}_{j}(0)-\tilde{\omega}_{j}(t)\right)\left(M^{\prime}\left(\tilde{R}_{j}\right)+\mu_{j} P^{\prime}\left(\tilde{R}_{j}\right)\right) \varepsilon \\
& \quad=\left(\tilde{\omega}_{j}(0)-\tilde{\omega}_{j}(t)\right)\left(\tilde{R}_{j}+i \mu_{j} \partial_{x} \tilde{R}_{j}, \varepsilon\right)_{2}=0 .
\end{aligned}
$$

From Young's inequality and using again the relation (22) between $\tilde{\omega}$ and \tilde{c}, for all $j=1, \ldots, N$ we have

$$
\left.\left|\left(\tilde{\omega}_{j}(0)-\tilde{\omega}_{j}(t)\right) \frac{1}{2} \int_{\mathbb{R}}\right| \varepsilon\right|^{2} \chi_{j} \mathrm{~d} x+\left(\tilde{c}_{j}(0)-c_{j}(t)\right) \frac{1}{2} \int_{\mathbb{R}} \varepsilon \bar{\varepsilon}_{x} \chi_{j} \mathrm{~d} x|\lesssim| \tilde{\omega}_{j}(0)-\left.\tilde{\omega}_{j}(t)\right|^{2}+\|\varepsilon\|_{H^{1}}^{4}
$$

Therefore, the term in the second line of (45) becomes

$$
\begin{aligned}
\frac{1}{2} \sum_{j=1}^{N}\left\langle E^{\prime \prime}\left(\tilde{R}_{j}\right) \varepsilon, \varepsilon\right\rangle+ & \sum_{j=1}^{N} \tilde{\omega}_{j}(0) \frac{1}{2} \int_{\mathbb{R}}|\varepsilon|^{2} \chi_{j} \mathrm{~d} x+\sum_{j=1}^{N} \tilde{c}_{j}(0) \frac{1}{2} \int_{\mathbb{R}} \varepsilon \bar{\varepsilon}_{x} \chi_{j} \mathrm{~d} x \\
& =\frac{1}{2} \mathcal{H}(t)+\sum_{j=1}^{N} O\left(\left|\tilde{\omega}_{j}(t)-\tilde{\omega}_{j}(0)\right|^{2}\right)+o\left(\|\varepsilon\|_{H^{1}}^{2}\right)
\end{aligned}
$$

Together with (45)-(47), this gives the desired result (44).

As a consequence of the coercivity of each linearized action $S_{j}^{\prime \prime}$ given by Proposition 2.1, we have global coercivity for \mathcal{H}.

Lemma 6.2 (Coercivity). There exists $\kappa>0$ such that for all $t \in\left[0, t^{\star}\right]$ we have

$$
\mathcal{H}(t) \geqslant \kappa\|\varepsilon\|_{H^{1}}^{2}
$$

Before doing the proof, we explain how to control $\|\varepsilon\|_{H^{1}}$ using the coercivity property Lemma 6.2 and the first monotonicity result Proposition 5.1.

Lemma 6.3. For all $t \in\left[0, t^{\star}\right]$, we have

$$
\|\varepsilon(t)\|_{H^{1}}^{2} \lesssim \frac{1}{L} \sup _{s \in[0, t]}\|\varepsilon(s)\|_{L^{2}}^{2}+\|\varepsilon(0)\|_{H^{1}}^{2}+\sum_{j=1}^{N}\left|\tilde{\omega}_{j}(t)-\tilde{\omega}_{j}(0)\right|^{2}+\mathrm{e}^{-\frac{1}{32} \omega_{*} L}
$$

Proof. From the Taylor-like expansion of \mathcal{S} in Lemma 6.1 at 0 and $t \in\left[0, t^{\star}\right]$, we get

$$
\begin{aligned}
\mathcal{S}(t)-\mathcal{S}(0)= & \frac{1}{2}(\mathcal{H}(t)-\mathcal{H}(0)) \\
& +\sum_{j=1}^{N} O\left(\left|\tilde{\omega}_{j}(t)-\tilde{\omega}_{j}(0)\right|^{2}\right)+o\left(\|\varepsilon(t)\|_{H^{1}}^{2}\right)+o\left(\|\varepsilon(0)\|_{H^{1}}^{2}\right)+O\left(\mathrm{e}^{-\frac{1}{32} \omega_{*} L}\right) .
\end{aligned}
$$

By definition of \mathcal{S} and conservation of the energy, we have

$$
\mathcal{S}(t)-\mathcal{S}(0)=\mathcal{I}(t)-\mathcal{I}(0) .
$$

In addition, \mathcal{H} is quadratic in ε, hence

$$
\mathcal{H}(0) \lesssim\|\varepsilon(0)\|_{H^{1}}^{2} .
$$

Taking into account the coercivity of \mathcal{H} given by Lemma 6.2, we obtain

$$
\begin{equation*}
\|\varepsilon(t)\|_{H^{1}}^{2} \lesssim \mathcal{H}(t) \lesssim \mathcal{I}(t)-\mathcal{I}(0)+\sum_{j=1}^{N}\left|\tilde{\omega}_{j}(t)-\tilde{\omega}_{j}(0)\right|^{2}+\|\varepsilon(0)\|_{H^{1}}^{2}+\mathrm{e}^{-\frac{1}{32} \omega_{\star} L} \tag{48}
\end{equation*}
$$

The conclusion then follows from the first monotonicity result Proposition 5.1.

Proof of Lemma 6.2. We write $\mathcal{H}(t)$ as

$$
\begin{aligned}
\mathcal{H}(t)= & \sum_{j=1}^{N} \int\left(\left|\varepsilon_{X}\right|^{2}+\tilde{\omega}_{j}(t)|\varepsilon|^{2}+\tilde{c}_{j}(t) \mathcal{I} m\left(\varepsilon \bar{\varepsilon}_{X}\right)\right) \chi_{j}(t) \mathrm{d} x \\
& +\sum_{j=1}^{N} \mathcal{I}_{m} \int_{\mathbb{R}}\left(\left|\tilde{R}_{j}\right|^{2} \bar{\varepsilon} \varepsilon_{X}+\tilde{R}_{j} \partial_{X} \tilde{R}_{j}(\bar{\varepsilon})^{2}+\overline{\tilde{R}}_{j} \partial_{X} \tilde{R}_{j}|\varepsilon|^{2}\right) \mathrm{d} x \\
= & \sum_{j=1}^{N} \int\left(\left|\varepsilon_{x}\right|^{2}+\tilde{\omega}_{j}(t)|\varepsilon|^{2}+\tilde{c}_{j}(t) \mathcal{I} m\left(\varepsilon \bar{\varepsilon}_{X}\right)\right. \\
& \left.+\mathcal{I} m\left(\left|\tilde{R}_{j}\right|^{2} \bar{\varepsilon} \varepsilon_{X}+\tilde{R}_{j} \partial_{X} \tilde{R}_{j}(\bar{\varepsilon})^{2}+\overline{\tilde{R}}_{j} \partial_{X} \tilde{R}_{j}|\varepsilon|^{2}\right)\right) \chi_{j}(t) d x+O\left(\mathrm{e}^{-\frac{1}{16} \omega_{*} L}\right)\|\varepsilon\|_{H^{1}}^{2} \\
& \triangleq \sum_{j=1}^{N} \mathcal{H}_{j}(t)+O\left(\mathrm{e}^{-\frac{1}{16} \omega_{\star} L}\right)\|\varepsilon\|_{H^{1}}^{2} .
\end{aligned}
$$

Now we need another cut-off function defined as in [37]. Let Λ be a smooth positive function satisfying

$$
\Lambda=1 \text { on }[-1,1], \quad \mathrm{e}^{-|x|} \leqslant \Lambda(x) \leqslant 3 \mathrm{e}^{-|x|} \text { on } \mathbb{R}, \quad\left|\Lambda^{\prime}\right| \lesssim \Lambda .
$$

Moreover, we fix $B: 1 \ll B \ll L$, and denote $\Lambda_{j}(x)=\Lambda\left(\frac{x-\tilde{x}_{j}(t)}{B}\right)$. Then for some small $c>0$,

$$
\chi_{j} \geq \Lambda_{j}-\mathrm{e}^{-c L / B}, \quad \operatorname{supp}\left(\chi_{j}-\Lambda_{j}\right) \subset\left\{x:\left|x-\tilde{x}_{j}(t)\right| \geq B\right\}, \quad\left|\Lambda_{j}^{\prime}\right| \lesssim \frac{1}{B} \Lambda_{j}
$$

Let $z_{j}=\varepsilon \sqrt{\Lambda_{j}}$. Then

$$
\left|\partial_{x} \varepsilon\right|^{2} \Lambda_{j}=\left|\partial_{x} z_{j}\right|^{2}+\frac{1}{4}\left|z_{j}\right|^{2}\left(\frac{\Lambda_{j}^{\prime}}{\Lambda_{j}}\right)^{2}-\mathcal{R e}\left(z_{j} \partial_{x} \bar{z}_{j} \frac{\Lambda_{j}^{\prime}}{\Lambda_{j}}\right) .
$$

This implies

$$
\begin{align*}
& \int_{\mathbb{R}}\left|\partial_{X} z_{j}\right|^{2} \mathrm{~d} x-\frac{C}{B} \int_{R}\left(\left|\partial_{X} z_{j}\right|^{2}+\left|z_{j}\right|^{2}\right) \mathrm{d} x \\
& \quad \leqslant \int_{\mathbb{R}}\left|\partial_{X} \varepsilon\right|^{2} \Lambda_{j} \mathrm{~d} x \\
& \quad \leqslant \int_{\mathbb{R}}\left|\partial_{X} z_{j}\right|^{2} \mathrm{~d} x+\frac{C}{B} \int_{R}\left(\left|\partial_{X} z_{j}\right|^{2}+\left|z_{j}\right|^{2}\right) \mathrm{d} x . \tag{49}
\end{align*}
$$

Moreover, we have

$$
\varepsilon \partial_{x} \bar{\varepsilon}=\frac{z_{j} \partial_{X} \bar{z}_{j}}{\Lambda_{j}}-\left|z_{j}\right|^{2} \frac{\Lambda_{j}^{\prime}}{2 \Lambda_{j}^{2}}
$$

and therefore,

$$
\begin{equation*}
\mathcal{I m}\left(\varepsilon \partial_{x} \bar{\varepsilon}\right) \Lambda_{j}=\operatorname{Im}\left(z \partial_{x} \bar{z}_{j}\right) \tag{50}
\end{equation*}
$$

Now, using the localization of \tilde{R}_{j}, we rewrite \mathcal{H}_{j} as

$$
\begin{align*}
\mathcal{H}_{j}(t)= & \int\left[\left|\varepsilon_{X}\right|^{2}+\tilde{\omega}_{j}(t)|\varepsilon|^{2}+\tilde{c}_{j}(t) \operatorname{Im}\left(\varepsilon \bar{\varepsilon}_{X}\right)\right. \\
& \left.+\mathcal{I} m\left(\left|\tilde{R}_{j}\right|^{2} \bar{\varepsilon} \varepsilon_{X}+\tilde{R}_{j} \partial_{X} \tilde{R}_{j}(\bar{\varepsilon})^{2}+\bar{R}_{j} \partial_{X} \tilde{R}_{j}|\varepsilon|^{2}\right)\right] \Lambda_{j}(t) \mathrm{d} x \\
& +\int\left(\left|\varepsilon_{X}\right|^{2}+\tilde{\omega}_{j}(t)|\varepsilon|^{2}+\tilde{c}_{j}(t) \operatorname{Im}\left(\varepsilon \bar{\varepsilon}_{x}\right)\right)\left(\chi_{j}-\Lambda_{j}\right) \mathrm{d} x \\
& +O\left(\mathrm{e}^{-\frac{1}{16} \omega_{\star} B}\right)\|\varepsilon\|_{H^{1}}^{2} . \tag{51}
\end{align*}
$$

Using (49) and (50) we have

$$
\begin{align*}
\int & {\left[\left|\varepsilon_{X}\right|^{2}+\tilde{\omega}_{j}(t)|\varepsilon|^{2}+\tilde{c}_{j}(t) \operatorname{Im}\left(\varepsilon \bar{\varepsilon}_{X}\right)\right.} \\
& \left.+\operatorname{Im}\left(\left|\tilde{R}_{j}\right|^{2} \bar{\varepsilon} \varepsilon_{X}+\tilde{R}_{j} \partial_{x} \tilde{R}_{j}(\bar{\varepsilon})^{2}+\overline{\tilde{R}}_{j} \partial_{X} \tilde{R}_{j}|\varepsilon|^{2}\right)\right] \Lambda_{j}(t) \mathrm{d} x \\
\geq & \int\left[\left|\partial_{x} z_{j}\right|^{2}+\tilde{\omega}_{j}(t)\left|z_{j}\right|^{2}+\tilde{c}_{j}(t) \operatorname{Im}\left(z_{j} \partial_{x} \bar{z}_{j}\right)\right. \\
& \left.+\mathcal{I}_{m}\left(\left|\tilde{R}_{j}\right|^{2} \bar{z}_{j} \partial_{x} z_{j}+\tilde{R}_{j} \partial_{x} \tilde{R}_{j}\left(\overline{z_{j}}\right)^{2}+\overline{\tilde{R}}_{j} \partial_{x} \tilde{R}_{j}\left|z_{j}\right|^{2}\right)\right] \mathrm{d} x-\frac{C}{B} \int\left|z_{j}\right|^{2} \mathrm{~d} x \\
= & H_{\tilde{\omega}(t), \tilde{c}_{j}(t)}\left(z_{j}\right)-\frac{C}{B} \int\left|z_{j}\right|^{2} \mathrm{~d} x . \tag{52}
\end{align*}
$$

From the orthogonality conditions (21), we have for $j=1, \ldots, N$,

$$
\left|\left(z_{j}, i \tilde{R}_{j}\right)_{2}\right|=\left|\left(z_{j}, \partial_{x} \tilde{R}_{j}\right)_{2}\right|=\left|\left(z_{j}, M^{\prime}\left(\tilde{R}_{j}\right)+\mu_{j} P^{\prime}\left(\tilde{R}_{j}\right)\right)_{2}\right| \lesssim \mathrm{e}^{-\frac{1}{16} \omega_{*} B}\left\|z_{j}\right\|_{L^{2}},
$$

after suitable perturbation (e.g., let $\tilde{z}_{j}=z_{j}+a_{1} i \tilde{R}_{j}+a_{2} \partial_{x} \tilde{R}_{j}+a_{3}\left(M^{\prime}\left(\tilde{R}_{j}\right)+\mu_{j} P^{\prime}\left(\tilde{R}_{j}\right)\right)$ for $\left|a_{j}\right| \lesssim \mathrm{e}^{-\frac{1}{16} \omega_{\star} B}\|z\|_{L^{2}, j}=1,2,3$), we obtain from Proposition 2.1 and (49), that for some small constant $\kappa^{\prime}>0$,

$$
H_{\tilde{\omega}(t), \tilde{c}_{j}(t)}\left(z_{j}\right) \geq \kappa^{\prime} \int\left(\left|\partial_{x} z_{j}\right|^{2}+\left|z_{j}\right|^{2}\right) \mathrm{d} x \geq\left(\kappa^{\prime}-\frac{C}{B}\right) \int\left(\left|\partial_{x} \varepsilon\right|^{2}+|\varepsilon|^{2}\right) \Lambda_{j} \mathrm{~d} x .
$$

Hence, from (52), we obtain that

$$
\begin{align*}
& \mid \int\left[\left|\varepsilon_{X}\right|^{2}+\tilde{\omega}_{j}(t)|\varepsilon|^{2}+\tilde{c}_{j}(t) \operatorname{Im}\left(\varepsilon \bar{\varepsilon}_{X}\right)\right. \\
& \left.\quad+\mathcal{I}_{m}\left(\left|\tilde{R}_{j}\right|^{2} \bar{\varepsilon} \varepsilon_{X}+\tilde{R}_{j} \partial_{X} \tilde{R}_{j}(\bar{\varepsilon})^{2}+\bar{R}_{j} \partial_{X} \tilde{R}_{j}|\varepsilon|^{2}\right)\right] \Lambda_{j}(t) \mathrm{d} x \mid \\
& \quad \geq \kappa^{\prime \prime} \int\left(\left|\partial_{X} \varepsilon\right|^{2}+|\varepsilon|^{2}\right) \Lambda_{j} \mathrm{~d} x, \tag{53}
\end{align*}
$$

where $\kappa^{\prime \prime}=\kappa^{\prime}-\frac{2 C}{B}$. Furthermore, since $\tilde{c}_{j}^{2}<4 \tilde{\omega}_{j}$, we have

$$
\tilde{v}\left(\left|\partial_{X} \varepsilon\right|^{2}+|\varepsilon|^{2}\right) \geq\left|\partial_{x} \varepsilon\right|^{2}+\tilde{\omega}_{j}(t)|\varepsilon|^{2}+\tilde{c}_{j}(t) \mathcal{I} m\left(\bar{\varepsilon} \partial_{X} \varepsilon\right) \geq v\left(\left|\partial_{X} \varepsilon\right|^{2}+|\varepsilon|^{2}\right),
$$

for some small $v>0$ and $\tilde{v}=3\left(1+\omega_{j}^{2}\right)$. Hence, using $\chi_{j} \geq \Lambda_{j}-\mathrm{e}^{-c L / B}$, we find

$$
\begin{align*}
& \int\left[\left|\partial_{x} \varepsilon\right|^{2}+\tilde{\omega}_{j}(t)|\varepsilon|^{2}+\tilde{c}_{j}(t) \operatorname{Im}\left(\bar{\varepsilon} \partial_{x} \varepsilon\right)\right]\left(\chi_{j}-\Lambda_{j}\right) \mathrm{d} x \\
& \quad \geq v^{\prime} \int\left(\left|\partial_{x} \varepsilon\right|^{2}+|\varepsilon|^{2}\right)\left(\chi_{j}-\Lambda_{j}\right) \mathrm{d} x \tag{54}
\end{align*}
$$

where $v^{\prime}=v-\widetilde{v} e^{-c L / B}$. Choosing L large enough, we have $v^{\prime}>0$. Inserting (53) and (54) into (51), we obtain that

$$
\mathcal{H}_{j}(t) \geq 2 \kappa \int\left(\left|\partial_{x} \varepsilon\right|^{2}+|\varepsilon|^{2}\right) \chi_{j} \mathrm{~d} x
$$

where $\kappa=\frac{1}{2} \min \left\{v^{\prime}, \kappa^{\prime \prime}\right\}$. Since $\sum_{j=1}^{N} \chi_{j}=1$, this proves the lemma.

7 Control of the Modulation Parameters

With Lemma 6.3 in hands, the only thing left to control are the modulation parameters $\tilde{\omega}_{j}$. We prove the following result.

Lemma 7.1. For all $t \in\left[0, t^{\star}\right]$, we have

$$
\sum_{j=1}^{N}\left|\tilde{\omega}_{j}(t)-\tilde{\omega}_{j}(0)\right| \lesssim \sup _{s \in[0, t]}\|\varepsilon(s)\|_{H^{1}}^{2}+\mathrm{e}^{-\frac{1}{32} \omega_{\star} L}
$$

Getting control over the modulation parameters is not an easy task for Schrödinger like equations. Indeed, a useful tool for that aim are monotonicity properties of localized conservation laws. For the Korteweg-de Vries equation, the localized mass satisfies this monotonicity property and can be used directly to control the modulation parameters (see [36]). For (dNLS) and (NLS), the monotonicity is verified only for the momentum and nothing similar is available for the mass (or the energy). This is the reason why one has to use several cut-off functions, in order to transfer the information from the momentum to the conserved quantity Q_{j}, combining the mass and momentum, and defined as follows.

$$
Q_{j}(u)=M(u)+\mu_{j} P(u)
$$

This was one of the main ideas introduced in [37]. The argument here is however more involved due to our choice of orthogonality conditions.

We first make the following claim.

Claim 7.2. For all $t \in\left[0, t^{\star}\right]$, we have

$$
\sum_{j=2}^{N}\left|\mathcal{I}_{j}(t)-\mathcal{I}_{j}(0)\right| \lesssim \frac{1}{L} \sup _{s \in[0, t]}\|\varepsilon(s)\|_{H^{1}}^{2}+\|\varepsilon(0)\|_{H^{1}}^{2}+\sum_{j=1}^{N}\left|\tilde{\omega}_{j}(t)-\tilde{\omega}_{j}(0)\right|^{2}+\mathrm{e}^{-\frac{1}{32} \omega_{\star} L}
$$

Proof. From (48) in the proof of Lemma 6.3, the decomposition of \mathcal{I} from Lemma 5.2, and conservation of mass and momentum, we get

$$
\begin{align*}
\|\varepsilon(t)\|_{H^{1}}^{2} \lesssim & \sum_{j=2}^{N}\left(\tilde{c}_{j}(0)-\tilde{c}_{j-1}(0)\right)\left(\mathcal{I}_{j}(t)-\mathcal{I}_{j}(0)\right) \\
& +\sum_{j=1}^{N}\left|\tilde{\omega}_{j}(t)-\tilde{\omega}_{j}(0)\right|^{2}+\|\varepsilon(0)\|_{H^{1}}^{2}+\mathrm{e}^{-\frac{1}{32} \omega_{\star} L} \tag{55}
\end{align*}
$$

On one hand, for all $j=1, \ldots, N$ such that $\mathcal{I}_{j}(t)-\mathcal{I}_{j}(0) \geqslant 0$, by Proposition 5.3 we have

$$
\begin{equation*}
\left|\mathcal{I}_{j}(t)-\mathcal{I}_{j}(0)\right| \lesssim \frac{1}{L} \sup _{s \in[0, t]}\|\varepsilon(s)\|_{L^{2}}^{2}+\mathrm{e}^{-\frac{1}{16} \omega_{\star} L} . \tag{56}
\end{equation*}
$$

On the other hand, since by assumption $c_{j}>c_{j-1}$, we have for $\delta, 1 / L$ small enough that $\tilde{c}_{j}(0)-\tilde{c}_{j-1}(0)>0$ for all $j=1, \ldots, N$. Thus for all $j=1, \ldots, N$ such that $\mathcal{I}_{j}(t)-\mathcal{I}_{j}(0)<0$, (55) and (56) imply

$$
\left|\mathcal{I}_{j}(t)-\mathcal{I}_{j}(0)\right| \lesssim \frac{1}{L} \sup _{s \in[0, t]}\|\varepsilon(s)\|_{H^{1}}^{2}+\sum_{j=1}^{N}\left|\tilde{\omega}_{j}(t)-\tilde{\omega}_{j}(0)\right|^{2}+\|\varepsilon(0)\|_{H^{1}}^{2}+\mathrm{e}^{-\frac{1}{32} \omega_{\star} L}
$$

Combining these two facts gives the desired conclusion.

Remark that, due to the choice of μ_{j} after (18), and using the explicit calculations (15) and (16), we have

$$
\begin{equation*}
\left.\frac{\mathrm{d}}{\mathrm{~d} \tilde{\omega}_{j}} O_{j}\left(\phi_{\tilde{\omega}_{j}, \tilde{c}_{j}}\right)\right|_{\tilde{\omega}_{j}=\omega_{j}}=\left(\frac{c_{j}}{\omega_{j}}-4 \mu_{j}+c_{j} \mu_{j}^{2}\right) \frac{1}{\sqrt{4 \omega_{j}-c_{j}^{2}}}<0 \tag{57}
\end{equation*}
$$

Moreover, due to the orthogonality condition (21), we have

$$
Q_{j}\left(\tilde{R}_{j}(t)+\varepsilon\right)=Q_{j}\left(\tilde{R}_{j}(t)\right)+O\left(\|\varepsilon\|_{H^{1}}^{2}\right)
$$

Using $\left(Q_{j}\right)_{j=1, \ldots, N}$, we will be able to control the parameter $\left(\omega_{j}\right)_{j=1, \ldots, N}$. To do this, we first need the following claim.

Claim 7.3. For any $j=1, \ldots, N$ we have

$$
\left|Q_{j}\left(\tilde{R}_{j}(t)\right)-O_{j}\left(\tilde{R}_{j}(0)\right)\right| \lesssim \sup _{s \in[0, t]}\|\varepsilon(s)\|_{H^{1}}^{2}+\sum_{k=1}^{N}\left|\tilde{\omega}_{k}(t)-\tilde{\omega}_{k}(0)\right|^{2}+\mathrm{e}^{-\frac{1}{32} \omega_{\star} L}
$$

Proof. Let $j=1, \ldots, N$. We set the notations,

$$
m(u)=\frac{1}{2}|u|^{2} ; \quad p(u)=\frac{1}{2} \mathcal{I} m\left(u \bar{u}_{x}\right) ; \quad q_{j}(u)=m(u)+\mu_{j} p(u) .
$$

Then we can rewrite \mathcal{I}_{j} as

$$
\begin{align*}
\mathcal{I}_{j}(t) & =\int_{\mathbb{R}}\left(\frac{1}{2} \tilde{\sigma}_{j} m(u)+p(u)\right) \psi_{j} \mathrm{~d} x \\
& =\frac{1}{2} \tilde{\sigma}_{j}\left(2 \tilde{\sigma}_{j}^{-1}-\mu_{j}\right) \int_{\mathbb{R}}\left(\left(2 \tilde{\sigma}_{j}^{-1}-\mu_{j}\right)^{-1} q_{j}(u)+p(u)\right) \psi_{j} \mathrm{~d} x \tag{58}
\end{align*}
$$

We assume that $2 \tilde{\sigma}_{j}^{-1}-\mu_{j} \neq 0$ (otherwise, the formulas (60)-(63) can be obtained more simply). We introduce the constants

$$
\lambda_{j}=\left(\frac{1}{2} \tilde{\sigma}_{j}\left(2 \tilde{\sigma}_{j}^{-1}-\mu_{j}\right)\right)^{-1}, \quad a_{j}=\left(2 \tilde{\sigma}_{j}^{-1}-\mu_{j}\right)^{-1}
$$

Then (58) becomes

$$
\begin{equation*}
\lambda_{j} \mathcal{I}_{j}(t)=\int_{\mathbb{R}}\left(a_{j} q_{j}(u)+p(u)\right) \psi_{j} \mathrm{~d} x . \tag{59}
\end{equation*}
$$

Similarly, we rewrite $\mathcal{I}_{j, \tau_{j}}$ as

$$
\lambda_{j, \tau_{j}} \mathcal{I}_{j, \tau_{j}}(t)=\int_{\mathbb{R}}\left(a_{j, \tau_{j}} q_{j}(u)+p(u)\right) \psi_{j, \tau_{j}} \mathrm{~d} x,
$$

where we have set

$$
\lambda_{j, \tau_{j}}=\left(\frac{1}{2} \tau_{j}\left(2 \tau_{j}^{-1}-\mu_{j}\right)\right)^{-1}, \quad a_{j, \tau_{j}}=\left(2 \tau_{j}^{-1}-\mu_{j}\right)^{-1}
$$

In addition to (59), we also need another formula of $\mathcal{I}_{j}(t)$ based on q_{j-1} when $j \geqslant 2$.

$$
\mathcal{I}_{j}(t)=\frac{1}{2} \tilde{\sigma}_{j}\left(2 \tilde{\sigma}_{j}^{-1}-\mu_{j-1}\right) \int_{\mathbb{R}}\left(\left(2 \tilde{\sigma}_{j}^{-1}-\mu_{j-1}\right)^{-1} q_{j-1}(u)+p(u)\right) \psi_{j} \mathrm{~d} x .
$$

Here, we also assume that $2 \tilde{\sigma}_{j}^{-1}-\mu_{j-1} \neq 0$. Let

$$
\gamma_{j}=\left(\frac{1}{2} \tilde{\sigma}_{j}\left(2 \tilde{\sigma}_{j}^{-1}-\mu_{j-1}\right)\right)^{-1}, \quad b_{j}=\left(2 \tilde{\sigma}_{j}^{-1}-\mu_{j-1}\right)^{-1},
$$

then

$$
\gamma_{j} \mathcal{I}_{j}(t)=\int_{\mathbb{R}}\left(b_{j} q_{j-1}(u)+p(u)\right) \psi_{j} \mathrm{~d} x .
$$

Similarly, we also rewrite $\mathcal{I}_{j, \tau_{j}}$ as

$$
\gamma_{j, \tau_{j}} \mathcal{I}_{j, \tau_{j}}(t)=\int_{\mathbb{R}}\left(b_{j, \tau_{j}} q_{j-1}(u)+p(u)\right) \psi_{j, \tau_{j}} \mathrm{~d} x,
$$

where we have set

$$
\gamma_{j, \tau_{j}}=\left(\frac{1}{2} \tau_{j}\left(2 \tau_{j}^{-1}-\mu_{j-1}\right)\right)^{-1}, \quad b_{j, \tau_{j}}=\left(2 \tau_{j}^{-1}-\mu_{j-1}\right)^{-1}
$$

Take a small constant $\epsilon_{0}>0$, and set the constants $\tau_{j}^{1}, \ldots, \tau_{j}^{4}$ such that

$$
\begin{aligned}
a_{j, \tau_{j}^{1}} & =a_{j}+\epsilon_{0}, & a_{j, \tau_{j}^{2}} & =a_{j}-\epsilon_{0} \\
b_{j+1, \tau_{j}^{3}} & =b_{j+1}+\epsilon_{0}, & b_{j+1, \tau_{j}^{4}} & =b_{j+1}-\epsilon_{0}
\end{aligned}
$$

Then for $j=1, \ldots, N$ we have the following identity

$$
\lambda_{j, \tau_{j}^{1}} \mathcal{I}_{j, \tau_{j}^{1}}(t)-\lambda_{j} \mathcal{I}_{j}(t)=\epsilon_{0} \int_{\mathbb{R}} q_{j}(u) \psi_{j} \mathrm{~d} x+\int_{\mathbb{R}}\left(a_{j, \tau_{j}^{1}} q_{j}(u)+p(u)\right)\left(\psi_{j, \tau_{j}}-\psi_{j}\right) \mathrm{d} x .
$$

The function $\left(\psi_{j}-\psi_{j, \tau_{j}}\right)$ is zero for $x<\tilde{x}_{j-1}+\frac{\left(c_{j-1}+\min \left(\tau_{j}, \tilde{\sigma}_{j}\right)\right)}{2} t$ and for $x>\tilde{x}_{j}-\frac{\left(\max \left(\tau_{j}, \tilde{j}_{j}\right)+c_{j}\right)}{2} t$. Hence, due to the exponential localization of the solitons around each \tilde{x}_{k} and using the lower bound $L / 2$ on the distance between $\tilde{x}_{j}-\tilde{x}_{k}$ given by (24) we have

$$
\left|\int_{\mathbb{R}}\left(a_{j, \tau_{j}^{1}} q_{j}\left(\sum_{k=1}^{N} \tilde{R}_{k}\right)+p\left(\sum_{k=1}^{N} \tilde{R}_{k}\right)\right)\left(\psi_{j, \tau_{j}}-\psi_{j}\right) d x\right| \lesssim \mathrm{e}^{-\frac{1}{32} \omega_{*} L} .
$$

Similar estimates can be obtained replacing τ_{j}^{1} by $\tau_{j}^{l}, l=2,3,4$ and j by $j+1$. As a consequence, for $j=1, \ldots, N$ we have the following identities,

$$
\begin{align*}
& \lambda_{j, \tau_{j}^{1}} \mathcal{I}_{j, \tau_{j}^{1}}(t)-\lambda_{j} \mathcal{I}_{j}(t)=\epsilon_{0} \int_{\mathbb{R}} q_{j}(u) \psi_{j} \mathrm{~d} x+O\left(\mathrm{e}^{-\frac{1}{32} \omega_{\star} L}\right), \tag{60}\\
& \lambda_{j, \tau_{j}^{2}} \mathcal{I}_{j, \tau_{j}^{2}}(t)-\lambda_{j} \mathcal{I}_{j}(t)=-\epsilon_{0} \int_{\mathbb{R}} q_{j}(u) \psi_{j} \mathrm{~d} x+O\left(\mathrm{e}^{-\frac{1}{32} \omega_{\star} L}\right), \tag{61}
\end{align*}
$$

and for $j=1, \ldots, N-1$ we have

$$
\begin{align*}
& \gamma_{j+1, \tau_{j}^{3}} \mathcal{I}_{j+1, z_{j}^{3}}(t)-\gamma_{j+1} \mathcal{I}_{j+1}(t)=\epsilon_{0} \int_{\mathbb{R}} q_{j}(u) \psi_{j+1} \mathrm{~d} x+O\left(\mathrm{e}^{-\frac{1}{32} \omega_{\star} L}\right), \tag{62}\\
& \gamma_{j+1, \tau_{j}^{\mathcal{I}}} \mathcal{I}_{j+1, \tau_{j}^{4}}(t)-\gamma_{j+1} \mathcal{I}_{j+1}(t)=-\epsilon_{0} \int_{\mathbb{R}} q_{j}(u) \psi_{j+1} \mathrm{~d} x+O\left(\mathrm{e}^{-\frac{1}{32} \omega_{\star} L}\right) . \tag{63}
\end{align*}
$$

We assume that $\lambda_{j}, \gamma_{j+1}$ are both positive. The case where $\lambda_{j}, \gamma_{j+1}$ are both negative can be treated similarly. We will come back after to the case where $\lambda_{j}, \gamma_{j+1}$ have opposite signs.

Choosing ϵ_{0} small enough, we can assume $\lambda_{j, \tau_{j}^{1}}, \lambda_{j, \tau_{j}^{2}}, \gamma_{j+1, \tau_{j}^{3},} \gamma_{j+1, \tau_{j}^{4}}$ are also positive. Then from (60)-(63) for $j=1, \ldots, N-1$, we have

$$
\begin{aligned}
\epsilon_{0} & \int_{\mathbb{R}} q_{j}(u) \chi_{j}(t, x) \mathrm{d} x \\
= & \left(\lambda_{j, \tau_{j}^{1}} \mathcal{I}_{j, \tau_{j}^{1}}(t)-\lambda_{j} \mathcal{I}_{j}(t)\right)+\left(\gamma_{j+1, \tau_{j}^{4}} \mathcal{I}_{j+1, \tau_{j}^{4}}(t)-\gamma_{j+1} \mathcal{I}_{j+1}(t)\right)+O\left(\mathrm{e}^{-\frac{1}{32} \omega_{\star} L}\right), \\
& -\epsilon_{0} \int_{\mathbb{R}} q_{j}(u) \chi_{j}(t, x) \mathrm{d} x \\
= & \left(\lambda_{j, \tau_{j}^{2}} \mathcal{I}_{j, \tau_{j}^{2}}(t)-\lambda_{j} \mathcal{I}_{j}(t)\right)+\left(\gamma_{j+1, \tau_{j}^{3}} \mathcal{I}_{j+1, \tau_{j}^{3}}(t)-\gamma_{j+1} \mathcal{I}_{j+1}(t)\right)+O\left(\mathrm{e}^{-\frac{1}{32} \omega_{\star} L}\right)
\end{aligned}
$$

Moreover, since $u=\sum_{k=1}^{N} \tilde{R}_{k}(t)+\varepsilon$, and the support of χ_{j} is far away from the center of the soliton $\tilde{R}_{k}(t)$ when $k \neq j$, we have

$$
\int_{\mathbb{R}} q_{j}(u) \chi_{j} \mathrm{~d} x=Q_{j}\left(\tilde{R}_{j}(t)\right)+O\left(\|\varepsilon\|_{H^{1}}^{2}\right)+O\left(\mathrm{e}^{-\frac{1}{32} \omega_{\star} L}\right)
$$

where we have used the orthogonality conditions (21) to cancel the first order term. Therefore,

$$
\begin{align*}
\epsilon_{0}\left(Q_{j}\left(\tilde{R}_{j}(t)\right)-Q_{j}\left(\tilde{R}_{j}(0)\right)\right)= & \epsilon_{0} \int_{\mathbb{R}} q_{j}(u(t)) \chi_{j}(t) \mathrm{d} x-\epsilon_{0} \int_{\mathbb{R}} q_{j}(u(0)) \chi_{j}(0) \mathrm{d} x \\
& +O\left(\|\varepsilon(t)\|_{H^{1}}^{2}+\|\varepsilon(0)\|_{H^{1}}^{2}+\mathrm{e}^{-\frac{1}{32} \omega_{\star} L}\right) \\
= & \lambda_{j, \tau_{j}^{1}}\left(\mathcal{I}_{j, \tau_{j}^{1}}(t)-\mathcal{I}_{j, \tau_{j}^{1}}(0)\right)+\gamma_{j+1, \tau_{j}^{4}}\left(\mathcal{I}_{j+1, \tau_{j}^{4}}(t)-\mathcal{I}_{j+1, \tau_{j}^{4}}(0)\right) \\
& -\lambda_{j}\left(\mathcal{I}_{j}(t)-\mathcal{I}_{j}(0)\right)-\gamma_{j+1}\left(\mathcal{I}_{j+1}(t)-\mathcal{I}_{j+1}(0)\right) \\
& +O\left(\sup _{s \in[0, t]}\|\varepsilon(s)\|_{H^{1}}^{2}+\mathrm{e}^{-\frac{1}{32} \omega_{\star} L}\right) \tag{64}
\end{align*}
$$

Now we use Proposition 5.8 to control the first and second terms, and we use Claim 7.2 to control the third and fourth terms. For $j=2, \ldots, N-1$, we obtain

$$
\begin{equation*}
Q_{j}\left(\tilde{R}_{j}(t)\right)-Q_{j}\left(\tilde{R}_{j}(0)\right) \lesssim \sup _{s \in[0, t]}\|\varepsilon(s)\|_{H^{1}}^{2}+\sum_{j=1}^{N}\left|\tilde{\omega}_{j}(t)-\tilde{\omega}_{j}(0)\right|^{2}+\mathrm{e}^{-\frac{1}{32} \omega_{\star} L} \tag{65}
\end{equation*}
$$

Similarly,

$$
\begin{aligned}
-\epsilon_{0}\left(Q_{j}\left(\tilde{R}_{j}(t)\right)-O_{j}\left(\tilde{R}_{j}(0)\right)\right)= & -\epsilon_{0} \int_{\mathbb{R}} q_{j}(u(t)) \chi_{j}(t) \mathrm{d} x+\epsilon_{0} \int_{\mathbb{R}} q_{j}(u(0)) \chi_{j}(0) \mathrm{d} x \\
& +O\left(\|\varepsilon(t)\|_{H^{1}}^{2}+\|\varepsilon(0)\|_{H^{1}}^{2}+\mathrm{e}^{-\frac{1}{32} \omega_{\star} L}\right) \\
= & \lambda_{j, \tau_{j}^{2}}\left(\mathcal{I}_{j, \tau_{j}^{2}}(t)-\mathcal{I}_{j, \tau_{j}^{2}}(0)\right)+\gamma_{j+1, \tau_{j}^{3}}\left(\mathcal{I}_{j+1, \tau_{j}^{3}}(t)-\mathcal{I}_{j+1, \tau_{j}^{3}}(0)\right) \\
& -\lambda_{j}\left(\mathcal{I}_{j}(t)-\mathcal{I}_{j}(0)\right)-\gamma_{j+1}\left(\mathcal{I}_{j+1}(t)-\mathcal{I}_{j+1}(0)\right) \\
& +O\left(\sup _{s \in[0, t]}\|\varepsilon(s)\|_{H^{1}}^{2}+\mathrm{e}^{-\frac{1}{32} \omega_{\star} L}\right) .
\end{aligned}
$$

Hence, arguing as before, for $j=2, \ldots, N-1$, we obtain

$$
\begin{equation*}
-\left(Q_{j}\left(\tilde{R}_{j}(t)\right)-Q_{j}\left(\tilde{R}_{j}(0)\right)\right) \lesssim \sup _{s \in[0, t]}\|\varepsilon(s)\|_{H^{1}}^{2}+\sum_{j=1}^{N}\left|\tilde{\omega}_{j}(t)-\tilde{\omega}_{j}(0)\right|^{2}+\mathrm{e}^{-\frac{1}{32} \omega_{\star} L} \tag{66}
\end{equation*}
$$

Now combining (65) and (66), we get for $j=2, \ldots, N-1$,

$$
\begin{equation*}
\left|Q_{j}\left(\tilde{R}_{j}(t)\right)-Q_{j}\left(\tilde{R}_{j}(0)\right)\right| \lesssim \sup _{s \in[0, t]}\|\varepsilon(s)\|_{H^{1}}^{2}+\sum_{j=1}^{N}\left|\tilde{\omega}_{j}(t)-\tilde{\omega}_{j}(0)\right|^{2}+\mathrm{e}^{-\frac{1}{32} \omega_{*} L} \tag{67}
\end{equation*}
$$

Now we remain to treat the case $j=1$ and $j=N$. For $j=N$, since

$$
\int_{\mathbb{R}} q_{N}(u) \psi_{N} d x=Q_{N}\left(\tilde{R}_{N}(t)\right)+O\left(\sup _{s \in[0, t]}\|\varepsilon(s)\|_{H^{1}}^{2}+\mathrm{e}^{-\frac{1}{32} \omega_{\star} L}\right)
$$

from (60), we have

$$
\begin{aligned}
& \epsilon_{0}\left(Q_{N}\left(\tilde{R}_{N}(t)\right)-Q_{N}\left(\tilde{R}_{N}(0)\right)\right) \\
& =\epsilon_{0} \int_{\mathbb{R}} q_{N}(u(t)) \psi_{N}(t) \mathrm{d} x-\epsilon_{0} \int_{\mathbb{R}} q_{N}(u(0)) \psi_{N}(0) \mathrm{d} x+O\left(\sup _{s \in[0, t]}\|\varepsilon(s)\|_{H^{1}}^{2}+\mathrm{e}^{-\frac{1}{32} \omega_{*} L}\right) \\
& =\left(\lambda_{N, \tau_{N}^{1}} \mathcal{I}_{N, \tau_{N}^{1}}(t)-\lambda_{N, \tau_{N}^{1}} \mathcal{I}_{N, \tau_{N}^{1}}(0)\right)-\left(\lambda_{N} \mathcal{I}_{N}(t)-\lambda_{N} \mathcal{I}_{N}(0)\right) \\
& \quad+O\left(\sup _{s \in[0, t]}\|\varepsilon(s)\|_{H^{1}}^{2}+\mathrm{e}^{-\frac{1}{32} \omega_{\star} L}\right) .
\end{aligned}
$$

Again, we use Proposition 5.8 to control the first term, and use Claim 7.2 to control the second term, we obtain

$$
Q_{N}\left(\tilde{R}_{N}(t)\right)-Q_{N}\left(\tilde{R}_{N}(t)\right) \lesssim \sup _{s \in[0, t]}\|\varepsilon(s)\|_{H^{1}}^{2}+\sum_{j=1}^{N}\left|\tilde{\omega}_{j}(t)-\tilde{\omega}_{j}(t)\right|^{2}+\mathrm{e}^{-\frac{1}{32} \omega_{\star} L}
$$

Using (61) instead, we obtain from similar arguments that

$$
-Q_{N}\left(\tilde{R}_{N}(0)\right)-Q_{N}\left(\tilde{R}_{N}(t)\right) \lesssim \sup _{s \in[0, t]}\|\varepsilon(s)\|_{H^{1}}^{2}+\sum_{j=1}^{N}\left|\tilde{\omega}_{j}(t)-\tilde{\omega}_{j}(0)\right|^{2}+\mathrm{e}^{-\frac{1}{32} \omega_{\star} L}
$$

Therefore, we get (67) when $j=N$.
At last, we consider the case $j=1$. We use (62) and (63) to get

$$
\begin{aligned}
&-\epsilon_{0} \int_{\mathbb{R}} q_{1}(u) \psi_{1} \mathrm{~d} x=-\epsilon_{0} Q_{1}(u)+\left(\gamma_{2, \tau_{1}^{3}} \mathcal{I}_{2, \tau_{1}^{3}}(t)-\gamma_{2} \mathcal{I}_{2}(t)\right), \\
& \epsilon_{0} \int_{\mathbb{R}} q_{1}(u) \psi_{1} \mathrm{~d} x=\epsilon_{0} Q_{1}(u)+\left(\gamma_{2, \tau_{1}^{4}} \mathcal{I}_{2, \tau_{1}^{4}}(t)-\gamma_{2} \mathcal{I}_{2}(t)\right)
\end{aligned}
$$

Then by mass and momentum conservation laws, and similar arguments as before, we also obtain (67) when $j=1$.

It remains to see that similar arguments apply when $\lambda_{j}, \gamma_{j+1}$ have opposite signs. Assume that $\lambda_{j}>0$ and $\gamma_{j+1}<0$. As before, choosing ϵ_{0} small enough, we can assume that $\lambda_{j, \tau_{j}^{1}}, \lambda_{j, \tau_{j}^{2}}$ are also positive and $\gamma_{j+1, \tau_{j}^{3}}, \gamma_{j+1, \tau_{j}^{4}}$ are also negative. From (60) and (63), and from (61) and (62), we have

$$
\begin{aligned}
\epsilon_{0} \int_{\mathbb{R}} & q_{j}(u) \chi_{j}(t, x) \mathrm{d} x \\
= & \left(\lambda_{j, \tau_{j}^{1}} \mathcal{I}_{j, \tau_{j}^{1}}(t)-\lambda_{j} \mathcal{I}_{j}(t)\right)-\left(\gamma_{j+1, \tau_{j}^{3}} \mathcal{I}_{j+1, \tau_{j}^{3}}(t)-\gamma_{j+1} \mathcal{I}_{j+1}(t)\right)+O\left(\mathrm{e}^{-\frac{1}{32} \omega_{\star} L}\right) \\
& -\epsilon_{0} \int_{\mathbb{R}} q_{j}(u) \chi_{j}(t, x) \mathrm{d} x \\
= & \left(\lambda_{j, \tau_{j}^{2}} \mathcal{I}_{j, \tau_{j}^{2}}(t)-\lambda_{j} \mathcal{I}_{j}(t)\right)-\left(\gamma_{j+1, \tau_{j}^{4}} \mathcal{I}_{j+1, \tau_{j}^{4}}(t)-\gamma_{j+1} \mathcal{I}_{j+1}(t)\right)+O\left(\mathrm{e}^{-\frac{1}{32} \omega_{\star} L}\right) .
\end{aligned}
$$

As for (64), we have

$$
\begin{aligned}
& \epsilon_{0}\left(Q_{j}\left(\tilde{R}_{j}(t)\right)-Q_{j}\left(\tilde{R}_{j}(0)\right)\right) \\
&= \lambda_{j, \tau_{j}^{1}}\left(\mathcal{I}_{j, \tau_{j}^{1}}(t)-\mathcal{I}_{j, \tau_{j}^{1}}(0)\right)-\gamma_{j+1, \tau_{j}^{3}}\left(\mathcal{I}_{j+1, \tau_{j}^{3}}(t)-\mathcal{I}_{j+1, \tau_{j}^{3}}(0)\right) \\
&-\lambda_{j}\left(\mathcal{I}_{j}(t)-\mathcal{I}_{j}(0)\right)+\gamma_{j+1}\left(\mathcal{I}_{j+1}(t)-\mathcal{I}_{j+1}(0)\right) \\
&+O\left(\sup _{s \in[0, t]}\|\varepsilon(s)\|_{H^{1}}^{2}+\mathrm{e}^{-\frac{1}{32} \omega_{\star} L}\right) .
\end{aligned}
$$

Since $\lambda_{j, \tau_{j}^{1}}>0$ and $-\gamma_{j+1, \tau_{j}^{3}}>0$, we can again use the (signed) control of Proposition 5.8 to control the first and second terms, and use Claim 7.2 to control the third and fourth terms, and we obtain (65) as before. The rest of the proof is similar to the case where λ_{j} and γ_{j+1} are both positive.

With these preliminaries out of the way, let us prove Lemma 7.1.

Proof of Lemma 7.1. From (57) and (26), we know that for all $\tilde{\omega}$ and \tilde{c} with the relationship (22), we have

$$
\frac{\mathrm{d}}{\mathrm{~d} \tilde{\omega}_{j}} Q_{j}\left(\phi_{\tilde{\omega}_{j} ; \tilde{c}_{j}}\right) \neq 0
$$

Consequently, for any $j=1, \ldots, N$ we have

$$
\left|\tilde{\omega}_{j}(t)-\tilde{\omega}_{j}(0)\right| \lesssim\left|Q_{j}\left(\tilde{R}_{j}(t)\right)-Q_{j}\left(\tilde{R}_{j}(0)\right)\right|
$$

Hence, from Claim 7.3, for $j=1, \ldots, N$, we obtain

$$
\left|\tilde{\omega}_{j}(t)-\tilde{\omega}_{j}(0)\right| \lesssim \sup _{s \in[0, t]}\|\varepsilon(s)\|_{H^{1}}^{2}+\sum_{k=1}^{N}\left|\tilde{\omega}_{k}(t)-\tilde{\omega}_{k}(0)\right|^{2}+\mathrm{e}^{-\frac{1}{32} \omega_{\star} L}
$$

This allows us to infer that for $j=1, \ldots, N$ we have

$$
\left|\tilde{\omega}_{j}(t)-\tilde{\omega}_{j}(0)\right| \lesssim \sup _{s \in[0, t]}\|\varepsilon(s)\|_{H^{1}}^{2}+\mathrm{e}^{-\frac{1}{32} \omega_{\star} L}
$$

and this concludes the proof of Lemma 7.1.

8 Proof of the Bootstrap Result

Proof of Proposition 3.1. With Lemmas 6.3 and 7.1 in hands, we can now conclude the proof of Proposition 3.1. For δ and $1 / L$ small enough, we have

$$
\|\varepsilon(t)\|_{H^{1}}^{2} \leqslant \frac{1}{2} \sup _{s \in[0, t]}\|\varepsilon(s)\|_{H^{1}}^{2}+C\|\varepsilon(0)\|_{H^{1}}^{2}+C \mathrm{e}^{-\frac{1}{32} \omega_{\star} L}
$$

Therefore, for all $t \in\left[0, t^{\star}\right]$, we have

$$
\begin{equation*}
\frac{1}{2} \sup _{s \in[0, t]}\|\varepsilon(s)\|_{H^{1}}^{2} \leqslant C\|\varepsilon(0)\|_{H^{1}}^{2}+C \mathrm{e}^{-\frac{1}{32} \omega_{\star} L} \tag{68}
\end{equation*}
$$

Plugging that back in the control on the modulation parameters Lemma 7.1 we obtain

$$
\sum_{j=1}^{N}\left|\tilde{\omega}_{j}(t)-\tilde{\omega}_{j}(0)\right| \leqslant C\|\varepsilon(0)\|_{H^{1}}^{2}+C \mathrm{e}^{-\frac{1}{32} \omega_{\star} L}
$$

From the modulation result Proposition 4.1 and the bootstrap assumption we also have at time $t=0$ the following estimate,

$$
\sum_{j=1}^{N}\left|\tilde{\omega}_{j}(0)-\omega_{j}\right| \leqslant \tilde{C} \delta
$$

Recall also that

$$
\begin{equation*}
\|\varepsilon(0)\|_{H^{1}} \leqslant \delta \tag{69}
\end{equation*}
$$

We combine now (68)-(69) to conclude the proof:

$$
\begin{aligned}
\| u & -\sum_{j=1}^{N} \mathrm{e}^{\tilde{\theta}_{j}} \phi_{j}\left(\cdot-\tilde{x}_{j}\right) \|_{H^{1}} \\
& \leqslant\left\|u-\sum_{j=1}^{N} \tilde{R}_{j}\right\|_{H^{1}}+\left\|\sum_{j=1}^{N} \tilde{R}_{j}-\sum_{j=1}^{N} \mathrm{e}^{\tilde{\theta}_{j}} \phi_{j}\left(\cdot-\tilde{x}_{j}\right)\right\|_{H^{1}} \\
& \leqslant\|\varepsilon\|_{H^{1}}+C \sum_{j=1}^{N}\left|\tilde{\omega}_{j}(t)-\omega_{j}\right| \\
& \leqslant\|\varepsilon\|_{H^{1}}+C \sum_{j=1}^{N}\left|\tilde{\omega}_{j}(t)-\tilde{\omega}_{j}(0)\right|+C \sum_{j=1}^{N}\left|\tilde{\omega}_{j}(0)-\omega_{j}\right| \leqslant C_{0}\left(\delta+\mathrm{e}^{-\frac{1}{32} \omega_{*} L}\right) .
\end{aligned}
$$

Note that this last constant C_{0} is independent of A_{0}. Hence we may chose $A_{0}=2 C_{0}$ and this concludes the proof.

Funding

The work of S. L. C. is partially supported by ANR-11-LABX-0040-CIMI within the program ANR-11-IDEX-0002-02 and ANR-14-CE25-0009-01 and Y. W. was partially supported by the NSF of China (No.11626250; 11571118).

References

[1] Abou Salem, W. K., X. Liu, and C. Sulem. "Numerical simulation of resonant tunneling of fast solitons for the nonlinear Schrödinger equation." Discrete and Continuous Dynamical Systems. Series A 29, no. 4 (2011): 1637-49.
[2] Bellazzini, J., M. Ghimenti, and S. Le Coz. "Multi-solitary waves for the nonlinear KleinGordon equation." Communications in Partial Differential Equations 39, no. 8 (2014): 1479-522.
[3] Béthuel, F., P. Gravejat, and D. Smets. "Stability in the energy space for chains of solitons of the one-dimensional Gross-Pitaevskii equation." Université de Grenoble. Annales de l'Institut Fourier 64, no. 1 (2014): 19-70.
[4] Brézis, H. and E. Lieb. "A relation between pointwise convergence of functions and convergence of functionals." Proceedings of the American Mathematical Society 88, no. 3 (1983): 486-90.
[5] Chen, H. H., Y. C. Lee, and C. S. Liu. Integrability of nonlinear Hamiltonian systems by inverse scattering method. Physica Scripta 20(3-4): 490-2, 1979. Special issue on solitons in physics.
[6] Cher, Y., G. Simpson, and C. Sulem. "Local structure of singular profiles for a Derivative Nonlinear Schrödinger Equation." arXiv preprint arXiv:1602.02381, 2016.
[7] Colin, M. and M. Ohta. "Stability of solitary waves for derivative nonlinear Schrödinger equation." Annales de l'Institut Henri Poincaré. Analyse Non Linéaire 23, no. 5 (2006): 753-64.
[8] Colliander, J., M. Keel, G. Staffilani, H. Takaoka, and T. Tao. "Global well-posedness for Schrödinger equations with derivative." SIAM Journal on Mathematical Analysis 33, no. 3 (2001): 649-69 (electronic).
[9] Colliander, J., M. Keel, G. Staffilani, H. Takaoka, and T. Tao. "A refined global well-posedness result for Schrödinger equations with derivative." SIAM Journal on Mathematical Analysis 34, no. 1 (2002): 64-86 (electronic).
[10] Combet, V. "Multi-existence of multi-solitons for the supercritical nonlinear Schrödinger equation in one dimension." Discrete and Continuous Dynamical Systems. Series A 34, no. 5 (2014): 1961-93.
[11] Côte, R. and S. Le Coz. "High-speed excited multi-solitons in nonlinear Schrödinger equations." Journal de Mathématiques Pures et Appliquées. Neuvième Série 96, no. 2 (2011): 135-66.
[12] Côte, R., Y. Martel, and F. Merle. "Construction of multi-soliton solutions for the L^{2} supercritical gKdV and NLS equations." Revista Mathemática Iberoamericana 27, no. 1 (2011): 273-302.
[13] de Laire, A. and P. Gravejat. "Stability in the energy space for chains of solitons of the Landau-Lifshitz equation." Journal of Differential Equations 258, no. 1 (2015): 1-80.
[14] Delebecque, F., S. Le Coz, and R. M. Weishäupl. "Multi-speed solitary waves of nonlinear Schrödinger systems: theoretical and numerical analysis." Communications in Mathematical Sciences 14, no. 6 (2016): 1599-624.
[15] Fröhlich, J., E. H. Lieb, and M. Loss. "Stability of Coulomb systems with magnetic fields. I. The one-electron atom." Communications in Mathematical Physics 104, no. 2 (1986): 251-70.
[16] Fukaya, N. "Instability of solitary waves for a generalized derivative nonlinear Schrödinger equation in a borderline case." arXiv preprint arXiv:1604.07945, 2016.
[17] Gérard, P. and Z. Zhang. "Orbital stability of traveling waves for the one-dimensional GrossPitaevskii equation." Journal de Mathématiques Pures et Appliquées. Neuvième Série 91, no. 2 (2009): 178-210.
[18] Gerdzhikov, V. S. and M. I. Ivanov. "A quadratic pencil of general type and nonlinear evolution equations. II. Hierarchies of Hamiltonian structures." Bulgarian Journal of Physics 10, no. 2 (1983): 130-43.
[19] Guo, B. L. and Y. P. Wu. "Orbital stability of solitary waves for the nonlinear derivative Schrödinger equation." Journal of Differential Equations 123, no. 1 (1995): 35-55.
[20] Guo, Z., and Y. Wu. "Global well-posedness for the derivative nonlinear Schrödinger equation in $H^{\frac{1}{2}}(\mathbb{R})$." arXiv:1606.07566, 2016.
[21] Hayashi, N. "The initial value problem for the derivative nonlinear Schrödinger equation in the energy space." Nonlinear Analysis. Theory, Methods \& Applications. An International Multidisciplinary Journal. Series A: Theory and Methods 20, no. 7 (1993): 823-33.
[22] Hayashi, N. and T. Ozawa. "On the derivative nonlinear Schrödinger equation." Physica D. Nonlinear Phenomena 55, no. (1-2) (1992): 14-36.
[23] Herr, S. "On the Cauchy problem for the derivative nonlinear Schrödinger equation with periodic boundary condition." International Mathematics Research Notices (2006): Art. ID 96763, 1-33.
[24] Ianni, I. and S. Le Coz. "Multi-speed solitary wave solutions for nonlinear Schrödinger systems." Journal of the London Mathematical Society. Second Series 89, no. 2 (2014): 623-39.
[25] Kaup, D. J. and A. C. Newell. "An exact solution for a derivative nonlinear Schrödinger equation." Journal of Mathematical Physics 19, no. 4 (1978): 798-801.
[26] Kwon, S. and Y. Wu. "Orbital stability of solitary waves for derivative nonlinear Schrödinger equation." Journal d'Analyse Mathématique, to appear.
[27] Le Coz, S. "Standing waves in nonlinear Schrödinger equations." In Analytical and Numerical Aspects of Partial Differential Equations, edited by E. Emmrich and P. Wittbold, 151-92. Berlin: Walter de Gruyter, 2009.
[28] Le Coz, S., D. Li, and T.-P. Tsai. "Fast-moving finite and infinite trains of solitons for nonlinear Schrödinger equations." Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 145, no. 6 (2015): 1251-82.
[29] Le Coz, S. and T.-P. Tsai. "Infinite soliton and kink-soliton trains for nonlinear Schrödinger equations." Nonlinearity 27, no. 11 (2014): 2689-709.
[30] Liu, J., Perry, P., and C. Sulem. "Global existence for the derivative nonlinear Schrodinger equation by the method of inverse scattering." Communications in Partial Differential Equations 41, no. 11 (2016): 1692-760.
[31] Lieb, E. H. "On the lowest eigenvalue of the Laplacian for the intersection of two domains." Inventiones Mathematicae 74, no. 3 (1983): 441-8.
[32] Liu, J., P. Perry, and C. Sulem. "Long-time behavior of solutions to the derivative nonlinear Schrödinger equation for soliton-free initial data." arXiv preprint arXiv:1608.07659, 2016.
[33] Liu, X., G. Simpson, and C. Sulem. "Focusing singularity in a derivative nonlinear Schrödinger equation." Physica D. Nonlinear Phenomena 262 (2013): 48-58.
[34] Liu, X., G. Simpson, and C. Sulem. "Stability of solitary waves for a generalized derivative nonlinear Schrödinger equation." Journal of Nonlinear Science 23, no. 4 (2013): 557-83.
[35] Martel, Y. and F. Merle. "Multi solitary waves for nonlinear Schrödinger equations." Annales de l'Institut Henri Poincaré. Analyse Non Linéaire 23, no. 6 (2006): 849-64.
[36] Martel, Y., F. Merle, and T.-P. Tsai. "Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations." Communications in Mathematical Physics 231, no. 2 (2002): 347-73.
[37] Martel, Y., F. Merle, and T.-P. Tsai. "Stability in H^{1} of the sum of K solitary waves for some nonlinear Schrödinger equations." Duke Mathematical Journal 133, no. 3 (2006): 405-66.
[38] Merle, F. "Existence of blow-up solutions in the energy space for the critical generalized KdV equation." Journal of the American Mathematical Society 14, no. 3 (2001): 555-78 (electronic).
[39] Miao, C., X. Tang, and G. Xu. "Stability of the traveling waves for the derivative Schrödinger equation in the energy space." preprint, 2016.
[40] Miao, C., Y. Wu, and G. Xu. "Global well-posedness for Schrödinger equation with derivative in $H^{\frac{1}{2}}(\mathbb{R}) . "$ Journal of Differential Equations 251, no. 8 (2011): 2164-95.
[41] Mjølhus, E. "On the modulational instability of hydromagnetic waves parallel to the magnetic field." Journal of Plasma Physics 16, no. 12 (1976): 321-34.
[42] Mosincat, R. and T. Oh. "A remark on global well-posedness of the derivative nonlinear Schrödinger equation on the circle." Comptes Rendus Mathématique. Académie des Sciences. Paris 353, no. 9 (2015): 837-41.
[43] Ohta, M. "Instability of solitary waves for nonlinear Schrödinger equations of derivative type." SUT Journal of Mathematics 50, no. 2 (2014): 399-415.
[44] Pelinovsky, D. E. and Y. Shimabukuro. "Existence of global solutions to the derivative NLS equation with the inverse scattering transform method." Preprint arXiv:1602.02118, 2016.
[45] Perelman, G. "Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations." Communications in Partial Differential Equations 29, no. 7-8 (2004): 1051-95.
[46] Rodnianski, I., W. Schlag, and A. Soffer. "Asymptotic stability of N-soliton states of NLS." arXiv preprint math/0309114, 2003.
[47] Sulem, C. and P.-L. Sulem. The Nonlinear Schrödinger Equation. Applied Mathematical Sciences, 139. New York: Springer, 1999. Self-focusing and wave collapse.
[48] Takaoka, H. "Global well-posedness for Schrödinger equations with derivative in a nonlinear term and data in low-order Sobolev spaces." Electronic Journal of Differential Equations 42 (2001): 1-23 (electronic).
[49] Takaoka, H. "A priori estimates and weak solutions for the derivative nonlinear Schrödinger equation on torus below $H^{1 / 2}$." Journal of Differential Equations 260, no. 1 (2016): 818-59.
[50] Thomann, L. and N. Tzvetkov. "Gibbs measure for the periodic derivative nonlinear Schrödinger equation." Nonlinearity 23, no. 11 (2010): 2771-91.
[51] Tsutsumi, M. and I. Fukuda. "On solutions of the derivative nonlinear Schrödinger equation. II." Fako de l'Funkcialaj Ekvacioj Japana Matematika Societo. Funkcialaj Ekvaciog. Serio Internacia 24, no. 1 (1981): 85-94.
[52] Weinstein, M. I. "Modulational stability of ground states of nonlinear Schrödinger equations." SIAM Journal on Mathematical Analysis 16 (1985): 472-91.
[53] Wu, Y. "Global well-posedness for the nonlinear Schrödinger equation with derivative in energy space." Analysis \& PDE 6, no. 8 (2013): 1989-2002.
[54] Wu, Y. "Global well-posedness on the derivative nonlinear Schrödinger equation." Analysis $\mathcal{S} P D E 8$, no. 5 (2015): 1101-12.
[55] Zakharov, V. E. and A. B. Shabat. "Exact theory of two-dimensional self-focusing and onedimensional self-modulation of waves in nonlinear media." Šoviet Physics JETP 34, no. 1 (1972): 62-9.

[^0]: © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

